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Age-related hearing loss (ARHL), the progressive loss of hearing associated with aging, is the most common sensory disorder in the
elderly population. The pathology of ARHL includes the hair cells of the organ of Corti, stria vascularis, and afferent spiral ganglion
neurons as well as the central auditory pathways. Many studies have suggested that the accumulation of mitochondrial DNA
damage, the production of reactive oxygen species, and decreased antioxidant function are associated with subsequent cochlear
senescence in response to aging stress. Mitochondria play a crucial role in the induction of intrinsic apoptosis in cochlear cells.
ARHL can be prevented in laboratory animals by certain interventions, such as caloric restriction and supplementation with
antioxidants. In this review, we will focus on previous research concerning the role of the oxidative stress and mitochondrial
dysfunction in the pathology of ARHL in both animal models and humans and introduce concepts that have recently emerged

regarding the mechanisms of the development of ARHL.

1. Introduction

Oxidative stress represents an imbalance between the pro-
duction of reactive oxygen species (ROS) and the detoxifica-
tion of their reactive intermediates. ROS, such as hydroxyl
radicals, superoxide anions, hydrogen peroxide, and singlet
oxygen, are primarily generated by mitochondria in most
mammalian cells and are generally regarded as the toxic
side-products of cellular metabolism [1-3]. ROS are normally
detoxified by a variety of antioxidant enzymatic scavengers,
including superoxide dismutase (SOD), catalase, glutathione
S-transferase (GST), and glutathione peroxidase (GPX) [4].
Mitochondria are a major site of ROS-induced oxidative
damage [5, 6]. ROS generated by mitochondria are hypoth-
esized to damage key mitochondrial components such as
mitochondrial DNA (mtDNA), mitochondrial membranes,
and respiratory chain proteins and nuclear DNA that affect
mitochondrial function. mtDNA is a circular, closed, double-
stranded molecule and is not protected by histones. There-
fore, mtDNA is more susceptible to DNA insults in compari-
son with nuclear DNA. Most of mtDNA mutations ate char-
acterized by heteroplasmy, which is defined as the presence

of more than one an organellar genome within a cell or tissue
from a single individual. As the percentage of mutant alleles
increases, the mitochondrial bioenergetic defect becomes
more severe. The expression of disease depends on the per-
centage of mutant alleles.

It has been widely considered that aging is the process
of accumulated oxidative damage caused by ROS [7, 8]. This
damage accumulates over time, causing mitochondrial dys-
function and an associated decrease of energy production,
and results in tissue dysfunction. ROS production increases
with age and it is known that oxidative stress and associated
mitochondrial dysfunction play an important role in aging
and age-related diseases [1, 2].

Age-related hearing loss (ARHL), which is also called
presbycusis, is the progressive loss of hearing associated with
aging and is the most common sensory disorder in the elderly
population [9-11]. ARHL afflicts approximately half of the
people over 65 years of age in the United States [12]. The
prevalence of the ARHL is expected to increase as the elderly
population grows [9, 13, 14]. It has been proposed that ARHL
is associated with many factors, including environmental,



medical, and hereditary factors [12, 15]. So far, no effective
treatment has been found for this age-related disorder.

Many studies have been conducted based on the assump-
tion that age-related oxidative stress and mitochondrial dys-
function could be an underlying pathology of ARHL as well
as other age-related diseases. In this review, we will focus on
previous research concerning the role of the oxidative stress
and mitochondrial dysfunction in the pathology of ARHL
in both animal models and humans and introduce concepts
that have recently emerged as potential mechanisms for the
development of ARHL.

2. Pathological Findings in ARHL

Sound waves travel down the external ear canal and cause the
tympanic membrane to vibrate. The ossicles in the middle
ear link the vibrating tympanic membrane to the cochlea,
the auditory end organ of the inner ear. The cochlea is filled
with fluid that vibrates in response to the movement of the
ossicles. The inner and outer sensory hair cells are located
within a core component of the cochlea, the organ of Corti.
When a sound pressure wave travels from the basal turn to the
apical turn of the cochlea, the basilar membrane vibrates [16].
Displacement of stereocilia, the mechanosensing organelles
of the hair cell, in association with the vibration of the basilar
membrane, opens transduction ion channels, allowing entry
of potassium ions from the endolymph produced by the stria
vascularis. This transduction current then activates voltage-
dependent calcium channels along the hair cell lateral wall
and base [17]. The inner hair cells release the neurotransmitter
glutamate to encode acoustic signals for the adjacent spiral
ganglion neurons (SGNs), which are the primary auditory
neurons [18]. ‘

Based on postmortem pathological analysis, ARHL in
humans is generally classified into 3 types: sensory hearing
loss (loss of sensory hair cells), neuronal hearing loss (loss
of SGNs), and metabolic hearing loss (atrophy of the stria
vascularis) [9, 19], although it is now well established that
most cases of ARHL exhibit mixed pathological changes [9].
This idea is supported by the observation that the progressive
loss of hair cells and SGNs leads to ARHL because these two
cell types do not regenerate in mammals.

3. Candidate Genes for ARHL
Associated with Oxidative Stress
and Mitechondrial Dysfunction

Many genetic investigations of ARHL, such as genome-wide
association studies and candidate-gene-based association
studies, have been performed recently [20]. With regard to
oxidative stress and mitochondrial function, several genes
and loci have been proposed as a result of candidate-gene-
based association studies, which are based on hypotheses
about the relationship between specific known loci and phe-
notypes.

The superoxide dismutases (SODs), which catalyze the
dismutation of superoxide into oxygen and hydrogen perox-
ide, are an important part of the antioxidant defense system
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against ROS. Recently, evidence from the London ARHL
cohort suggested an effect of common superoxide dismutase
2 (SODz2, also known as manganese SOD or mitochondrial
SOD) promoter variation, =38 C > G, on SOD2 promoter
regulation and linked it to ARHL risk in men; however, this
assoctation was ounly suggestive due to a lack of replication
[21].

The glutathione S-transferases (GSTs) catalyze the detox-
ification of clectrophilic substrates by conjugation with re-
duced glutathione and participate in intracellular binding
and transport of lipophilic substances. Decreased glutathione
and GST activity levels cause an increase in susceptibility to
cell damage. A previous study investigated the association
between ARHL and genes related to oxidative stress using a
large set of samples from two population groups, a general
European group and a Finnish group [22]. Although an
association between the polymorphisms of glutathione S-
transferase, mu 1 (GSTMI) or glutathione S-transferase, theta
1(GSTTI), and ARHL was not detected in the former popu-
lation, there were significant associations between both genes
and ARHL in the latter population.

Mitochondrial uncoupling proteins (UCPs), which are
members of the larger family of mitochondrial anion carrier
proteins, facilitate the transfer of anions from the inner to
the outer mitochondrial membrane and the return transfer
of protons from the outer to the inner mitochondrial mem-
brane. UCPs reduce the mitochondrial membrane poten-
tial in mammalian cells. The main function of uncoupling
protein 2 (UCP2) is the control of mitochondria-derived
ROS [23]. UCP2 Ala55Val polymorphisms exhibited a sig-
nificant association with ARHL in a Japanese population
[24].

4. Deletions and Mutations of
mtDNA in the Peripheral Auditory
System of ARHL Patients

Acquired mtDNA defects have been proposed as important
factors in aging. Increases in deletions, mutations, or both, in
mtDNA have been reported in human temporal bone studies
from ARHL patients in comparison with normal-hearing
control tissues. A 4977-base pair deletion of mtDNA from
celloidin-embedded temporal bone sections was significantly
more frequent in cochlear tissue from ARHL patients in
comparison to those with normal hearing [25]. Another study
reported that quantitative analysis of the mtDNA in archival
cochlear tissue samples revealed a mean common deletion
level of 32:414% in ARHL patients, in comparison with alevel
of 12 £ 2% in age-matched controls with normal hearing, and
showed a significant correlation between the common dele-
tion level and the severity of hearing loss [26]. Cytochrome
¢ oxidase subunit 3 (COX3) expression was significantly
diminished in SGNs from ARHL patients in comparison
with age-matched normal-hearing individuals. In addition
to the mtDNA common deletion, other deletions involving
the mtDNA major arc contributed to the observed deficit in
COX3 expression [27]. Mutations within the cytochrome ¢
oxidase subunit 2 (COX2) gene in the spiral ganglion and
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membranous labyrinth from archival temporal bones occur
more commonly in ARHL patients relative to controls [28].

5. Basic Research in Animals on the Role
of Oxidative Stresses and Mitochondrial
Dysfunction in ARHL

Although details of the aging process differ in various organ-
jsms, there is a common understanding that oxidative stress
and mitochondrial dysfunction play a major part in aging.
The auditory system is no exception and it is thought that
oxidative damage caused by ROS and mitochondrial dysfunc-
tion plays a causal role in ARHL. The fast-aging senescence-
accelerated mouse-prone 8 (SAMP8) strain that is a useful
model for probing the effects of aging on biological processes
displays premature hearing loss associated with strial, sen-
sory, and neural degeneration [29]. The molecular mecha-
nisms associated with premature ARHL in SAMPS strain
mice involve oxidative stress, altered levels of antioxidant
enzymes, and decreased activity of complexes I, II, and IV,
which lead to triggering of apoptotic cell death pathways.

In the organ of Corti of CBA/J mice, glutathione-conju-
gated proteins, markers of H,0,-mediated oxidation, were
shown to begin to increase at 12 months, and 4-hydroxyn-
onenal and 3-nitrotyrosine, products of hydroxyl radical and
peroxynitrite action, respectively, were elevated by 18 months
[30]. On the other hand, apoptosis-inducing factor and SOD2
were decreased by 18 months in the organ of Corti and SGNs
[30]. Mice lacking superoxide dismutase 1 (Sodl) showed
premature ARHL [31, 32]. Age-related cochlear hair cell loss
was observed in Sodl knockout mice [32] and a reduced
thickness of the stria vascularis and severe degeneration of
SGNs were observed at middle age [31]. A previous study
showed that increased GPX activity was observed in the stria
vascularis and spiral ligament of the cochlea in aged Fischer
344 rats [33]. Two-month-old knockout mice with a targeted
inactivating mutation of the gene coding for glutathione
peroxidase 1 (Gpxl) showed a significant increase in hearing
thresholds at high frequency [34]. Mice lacking senescence
marker protein 30 (SMP30)/gluconolactonase (GNL), which
are not able to synthesize vitamin C, showed a reduction of
vitamin C in the inner ear, an increase of hearing thresholds,
and loss of spiral ganglion cells, suggesting that depletion of
vitamin C accelerates ARHL [35]. Oxidative stressinduces the
expression of BCL2-antagonist/killer 1 (Bak); the mitochon-
drial proapoptotic gene, in primary cochlear cells and Bak
deficiency prevents apoptotic cell death [36]. C57BL/6] mice
with a deletion of Bak exhibit reduced age-related apoptotic
cell death of SGNs and hair cells in the cochlea and prevention
of ARHL [36]. A mitochondrially targeted catalase transgene
suppresses Bak expression in the cochlea, reduces cochlear
cell death, and prevents ARHL [36]. Collectively, these find-
ings indicate that age-related increases in ROS levels play an
important role in the development of ARHL.

It has been shown that accumulation of mtDNA muta-
tions leads to premature aging in mice expressing a proof-
reading-deficient version of the mtDNA polymerase g (POLG
D257A mice), indicating a causal role of mtDNA mutations

in mammalian aging [37, 38]. POLG D257A mice accumulate
mitochondrial mutations more rapidly than wild-type mice.
At 9-10 months old, POLG D257A mice showed a variety
of premature aging phenotypes, including the early onset
of ARHL. Histological findings in the cochlear basal turn
confirmed that POLG D257A mice at the age of 9-10 months
showed a severe loss of SGNs and hair cells and significant
elevation in TUNEL-positive cells and cleaved caspase-3-
positive cells in the cochlea [39].

Mitochondrial biogenesis and degradation are involved
in mitochondrial turnover. In the SGNs of SAMPS strain
mice, mitochondrial biogenesis, characterized by the ratio
of mtDNA/nuclear DNA and the activity of citrate synthase,
was increased at younger ages and decreased in old age [29].
Age-related reductions of peroxisome proliferator-activated
receptor ¢ coactivator a (PGC-1a), one of the key regulators of
mitochondrial biogenesis, might be an important factor for
mitochondrial function in age-related diseases [40]. When
it comes to mitochondrial function in the cochlea, the over-
expression of PGC-la with a consequent increase of nuclear
respiratory factor 1 (NRF1) and mitochondrial transcription
factor A (TFAM) caused a significant decrease in the accuru-
lation of damaged mtDNA and the number of apoptotic cells
in the strial marginal cells senescence model [41]. Autophagy
is one of the major intracellular degradation pathways along
with the ubiquitin-proteasome system [42]. Unnecessary
cytoplasmic proteins and organelles are enclosed by the
autophagosome and then delivered to the lysosome by auto-
phagy. It has been reported that the SGNs of SAMP8 undergo
autophagic stress with accumulation of lipofuscin inside
these cells {29]. Downregulation of mitophagy, the selective
removal of damaged and dysfunctional mitochondria by
autophagosomes will cause abnormal mitochondrial mor-
phological changes. Impairment of mitophagy might result
in the formation of giant mitochondria, which have been
characterized as having low ATP production, a loss of cristae
structure, and a swollen morphology [43]. Accumulation of
abnormally functioning and shaped mitochondria accelerates
apoptosis [44], which merits further investigation in the
cochlea.

6. Prevention and Retardation of ARHL by
Supplementation or Caloric Restriction

Several studies have reported the effects of supplementation
of antioxidants against ARHL. A cross-sectional and 5-year
longitudinal study in Australia demonstrated that dietary
vitamin A and vitamin E has a significant association with
the prevalence of hearing loss, although dietary antioxi-
dant intake did not increase the incidence of hearing loss
[45]. Another cross-sectional study in Australia showed that
higher carbohydrate, vitamin C, vitamin E, riboflavin, mag-
nesium, and lycopene intakes were significantly associated
with larger transiently evoked otoacoustic emission (TEOAE)
amplitudes and better pure tone averages (PTAs) whereas
higher cholesterol, fat, and retinol intakes were significantly
associated with lower TEQAE amplitude and worse PTAs
[46]. Another further cross-sectional study in the United
States showed that higher intakes of beta-carotene, vitamin C,



and magnesium were associated with better PTAs at both
speech and high frequencies, and high intakes of beta-
carotene or vitamin C combined with high magnesium com-
pared with low intakes of both nutrients were significantly
associated with better PTAs at high frequencies [47].

In animal studies, Fischer 344 rats given vitamin C,
vitamin E, melatonin, or lazaroid had better auditory sensi-
tivities and a trend for fewer mtDNA deletions in comparison
with placebo subjects [48]. Fischer 344 rats of 18~20 months
old supplemented orally for 6 months with lecithin, a poly-
unsaturated phosphatidylcholine (PCP) which has anti-
oxidant effects, showed significantly better hearing sensi-
tivities, higher mitochondrial membrane potentials, and
reduced frequency of the common aging mt{DNA deletion in
the cochlear tissues compared with controls [49]. Aged dogs
fed a high antioxidant diet for the last 3 years of their life
showed less degeneration of the spiral ganglion cells and stria
vascularis in comparison with dogs fed a control-diet [50].
In C57BL/6 mice, supplementation with vitamin C did not
increase vitamin C levels in the cochlea or siow ARHL [35],
but animals fed with a diet comprising 6 antioxidant agents
(L-cysteine-glutathione mixed disulfide, ribose-cysteine,
NW-nitro-L-arginine methyl ester, vitamin B12, folate, and
ascorbic acid) showed significantly better auditory sensitivity
[51]. When C57BL/6 mice were fed with a diet containing one
of 17 antioxidant agents (acetyl-L-carnitine, alpha-lipoic acid,
beta-carotene, carnosine, coenzyme Q10, curcumin, d-alpha-
tocopherol, epigallocatechin gallate, gallic acid, lutein, lyco-
pene, melatonin, N-acetyl-L-cysteine, proanthocyanidin,
quercetin, resveratrol, and tannic acid), ARHL was nearly
completely prevented by alpha-lipoic acid and coenzyme
Q10 and partially by N-acetyl-L-cysteine, but not by other
agents [36]. When CBA/J mice were fed with an antioxidant-
enriched diet containing vitamin A, vitamin C, vitamin E,
L-carnitine, and a-lipoic acid from 10 months through 24
months of age, the antioxidant capacity of the inner ear tissues
was significantly increased, but the loss of hair cells and
spiral ganglion cells and the magnitude of ARHL were not
improved [52]. These studies show that the prevention and
retardation of ARHL by supplementation with antioxidants
can be influenced by many factors such as the type and
dosage of antioxidant compounds, the timing and duration
of the treatment, and the species and strains involved.

Caloric restriction (CR) extends the lifespan of various
organisms including yeast, worms, flies, rodents and non-
human primates. It has been reported that CR plays an
important role in reducing age-related diseases such as cancer
[53], protecting age-related mitochondrial dysfunction [54]
and reducing mtDNA damage [55]. It has also been reported
that CR can protect neurons against degeneration in animal
models of neurodegenerative diseases, as well as promote
neurogenesis and enhance synaptic plasticity [56]. The ability
of CR to prevent cochlear pathology and ARHL has been
extensively studied using laboratory animals [57]. C57BL/6
mice with CR by 15 months of age maintained normal hearing
and showed no obvious cochlear degeneration and a signifi-
cant reduction in the number of TUNEL-positive and cleaved
caspase-3-positive cells in the spiral ganglion cells in compar-
ison with controls [58]. Fischer 344 rats with CR to 70% of
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the control intake beginning at one month of age and then
housed for 24-25 months showed significantly better hearing
thresholds, reduced hair cell loss, and decreased mtDNA
common deletion in the auditory nerve and stria vascularis
of the cochlea than control rats [48]. Beneficial effects of CR
for the prevention of ARHL has been reported in the AU/Ss,
CBA/] strains of mice as well as the C57BL/6 strain, but not in
the DBA/2], WB/Re], or BALB/cBy] strains [57]. The effects of
CR may depend on genetic background. On the other hand,
a high fat diet given to Sprague Dawley rats for 12 months
resulted in elevated hearing thresholds in the high-frequency
region, increased ROS generation, expression of reduced
nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase and UCP, accumulation of mtDNA common deletion,
and cleaved caspase-3 and TUNEL-positive cells in the inner
ear [59]. A microarray analysis study of the cochlea revealed
that CR down-regulated the expression of 24 apoptotic genes,
including Bak and BCL2-like 11 (Bim), suggesting that CR
could prevent apoptosis of cochlear cells [58]. It has been
reported that the mitochondrial deacetylase Sirtuin 3 (Sir3)
mediates reduction of oxidative damage and prevention of
ARHL under CR [60]. CR failed to reduce oxidative DNA
damage or prevent ARHL in C57B/6 mice lacking Sirt3 {60].
In response to CR, Sirt3 directly deacetylated and activated
mitochondrial isocitrate dehydrogenase 2 (Idh2), leading to
increased NADPH levels and an increased ratio of reduced-
to-oxidized glutathione in mitochondria [60]. In cultured
human kidney cells (HEK293), overexpression of Sirt3 and/or
Idh2 increased NADPH levels and gave protection from
oxidative stress-induced cell death [60].

7. Putative Role of Oxidative Stress and
Mitochondrial Dysfunction in ARHL

The important role of oxidative stress and mitochondrial
dysfunction in the development of ARHL has been estab-
lished by reviewing previous studies. The severity of hear-
ing loss is probably associated with cochlear degeneration.
Accumulation of mtDNA damage, ROS production, and
decreased antioxidant function are primarily involved in
the process of cochlear senescence in response to aging
stress. Mitochondria play a crucial role in the induction of
intrinsic apoptosis in cochlear cells. ARHL in laboratory
animals can be prevented by certain interventions, such as
CR and supplementation with antioxidants. Further large
clinical studies are needed to confirm whether ARHL can be
prevented by the above-mentioned interventions in humans.
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Age-related auditory disorder

Tatsuya Yamasoba, MD. PhD.”, Atsushi Ochi,
MD.Z}

"Nepartment of Otolaryngology and Head and
Neck Surgery, University of Tokyo
“Department of Otolaryngology and Head and
Neck Surgery, Kameda General Hospital

Age—related auditory disorder is a complex dis-
order characterized by a decline in peripheral and
central auditory and cognitive functions. Ilearing
thresholds, which begin to be elevated from higher
frequencies, vary significantly among the subjects
and the speed of the threshold clevation increasces
with age. Speech perception is affected in subjects
with preshycusis, due mainly to their hearing loss,
but is more severely so in patients of advanced age.
Otoacoustic emissions and auditory brainstem re-
sponses are also impaired, mainly reflecting the
subjects’ hearing threshold clevations, and less sig-
nificantly, their age. Auditory temporal processing,
which can be evaluated hy psychoacoustic tests
such as the gap detection test, is also deteriorated
in elderly subjects. For elderly subjects with diffi-
culty in speech commumnication in daily life, hearing
aid (HA) is the treatment of choice. When HAs no
longer provide benefit, cochlear implantation is the
treatment of choice ; excellent results of cochlear

implantation have been demonstrated even in eld-
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erly subjects, although those who are older at im-
plantation tend to show lower speech understanding
scores postoperatively. It is considered important to
avoid unnecessary exposure to loud noises and to
prevent/treat atherosclerosis in order to prevent
age—related auditory disorder. Auditory—based cog-
nitive training may be useful to restore age-related

deficits in temporal processing.
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The ear has external, middle, and inner portions. Conductive deafness
occurs due to abnormalities in the external or middle ear, while
sensorineural deafness occurs when there is damage to the inner ear
(cochlea), or to the nerve pathways from the inner ear to the auditory
cortex. Age-related hearing loss (AHL), also known as presbycusis, is
a type of sensorineural deafness, which is characterized by a decline
of auditory function, such as increased hearing thresholds and poor
frequency resolution. The primary pathology of AHL includes the hair
cells, stria vascularis, and afferent spiral ganglion neurons as well as the
central auditory pathways. A growing body of evidence in animal studies
has suggested that cumulative effect of oxidative stress could induce
damage to macromolecules such as mitochondrial DNA (mtDNA) and that
the resulting accumulation of mIDNA mutations/deletions and decline
of mitochondrial function play an important role in inducing apoptosis
of the cochlear cells, thereby the development of AHL. Epidemiological
studies have demonstrated risk factors of AHL, including noise exposure,
genetic predisposition, and health co-morbidities such as atherosclerosis.
Exposure to noise is known to induce excess generation of reactive
oxygen species (ROS) in the cochlea, and cumulative oxidative stress can
be enhanced by relatively hypoxic situations resulting from the impaired
homeostasis of cochlear blood supply due to atherosclerosis etc, which
could be accelerated by ’genetio and co-morbidity factors. Antioxidant
defense system may also be influenced by genetic backgrounds. These
may explain the large variations of the onset and extent of AHL among
elderly subjects. ' ‘
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