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TABLE 4 (Continued)

English Japanese English Japanese
4 22 2.51 3 0.82 4 84 9.59 29 7.95
999 7 0.8 0 0.00 999 10 114 1 0.27
Total 876 1060 365 100.00 Total 876 100 365 100.00
Saliva and drooling* Frequency % Frequency % Turning in bed Frequency % Frequency %
[¢] 341 38.93 186 50.96 0 277 31.62 122 33.42
1 15 1313 49 13.42 1 378 4315 144 39.45
2 203 2337 64 17.53 2 m 12.67 48 13.15
3 157 17.92 46 12.60 3 55 6.28 31 8.49
4 53 6.05 18 4.93 4 50 5.1 19 5.21
999 7 0.8 2 0.55 999 5 0.57 1 0.27
Total 876 100 365 100.00 Total 876 100 365 100.00
Chewing and Frequency % Frequency % Tremor* Frequency % Frequency %
swallowing
0 549 62.67 241 66.03 ¢} 189 2158 18 32.33
1 230 26.26 81 22.19 1 360 4.1 154 4219
2 54 6.16 22 6.03 2 212 24.2 69 18.80
3 34 3.88 18 4.93 3 72 8.22 17 4.66
4 3 0.34 3 0.82 4 36 41 7 1.92
999 6 0.68 0 0.00 999 7 0.8 0 0.00
Total 876 100 365 100.00 Total 876 100 365 100.00
Eating tasks Frequency % Frequency % Getting out of bed* Frequency % Frequency %
[¢] 363 4144 158 43.29 0 180 20.55 101 27.67
1 265 3025 114 31.23 1 317 3619 140 38.36
2 187 21.35 79 21.64 2 199 2272 73 20.00
3 42 4.79 8 219 3 104 1.87 35 9.59
4 10 114 5 137 4 70 7.99 15 41
999 9 1.03 1 0.27 999 6 0.68 1 0.27
Total 876 100 365 100.00 Total 876 100 365 100.00
Dressing Frequency % Frequency % Walking and balance  Frequency % Frequency %
] 220 251 82 22.47 0 184 21 74 20.27
1 322 36.76 176 48.22 1 336 38.36 156 42.74
2 21 2409 67 18.36 2 105 .99 38 10.41
3 76 8.68 28 7.67 3 172 19.63 61 18.71
4 42 479 12 3.29 4 74 8.45 33 9.04
999 5 0.57 ¢} 0.00 999 5 0.57 3 0.82
Total 876 100 365 100.00 Total 876 100 365 100.00
Hygiene Frequency % Frequency % Freezing Frequency % Frequency %
0 342 39.04 126 34.52 0 453 51.71 176 48.22
1 367 4189 160 43.84 1 182 2078 74 20.27
2 88 1005 47 12.88 2 89 10.16 40 10.96
3 33 3.77 25 6.85 3 90 10.27 49 13.42
4 38 4.34 7 192 4 56 6.39 25 6.85
999 8 0.91 0 0.00 999 6 0.68 1 0.27
Total 876 100 365 100.00 Total 876 100 365 100.00
Handwriting Frequency % Frequency %
0 161 1838 106 29.04
1 251 28.65 151 41.37
2 222 2534 75 20.55
3 146 16.67 22 6.03
Part 1l
Speech® Frequency % Frequency % Arising from chair Frequency % Frequency %
0 189 21.58 148 40.55 0 422 4817 197 53.97
1 379 43268 143 39.18 1 245 2797 106 29.04
2 213 2432 53 14.52 2 78 8.9 24 6.58
3 69 7.88 15 41 3 71 81 22 6.03
4 22 2.51 4 110 4 55 6.28 16 4.38
999 4 0.46 2 0.55 999 5 0.57 ¢} 0.00
Total 876 100 365 100.00 Total 876 100 365 100.00
Facial expression* Frequency % Frequency % Gait Frequency % Frequency %
0 96 1096 88 2411 0 202 2306 81 22.19
1 300 3425 137 37.53 1 351 40.07 187 51.23
2 361 41.21 109 29.86 2 167 19.06 47 12.88
3 89 10.16 23 6.30 3 97 1.07 36 9.86
4 26 297 7 192 4 55 6.28 14 3.84
999 4 0.46 1 0.27 999 4 0.46 0 0.00
Total 876 100 365 100.00 Total 876 100 365 100.00
Rigidity, neck Frequency % Frequency % Freezing of gait Frequency % Frequency %
0 260 29.68 134 36.71 0 655 7477 250 68.49
1 247 28.2 97 26.58 1 95 1084 50 13.70
2 274 3128 92 25.21 2 60 6.85 30 8.22
3 73 8.33 36 9.86 3 26 297 13 3.56
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TABLE 4 (Continued)

English Japanese English Japanese

4 16 1.83 4 110 4 38 4.34 19 5.21

999 [¢] 0.68 2 0.55 999 2 0.23 3 0.82

Total 876 100 365 100.00 Total 876 100 365 100.00
Rigidity, RUE* Frequency % Frequency % Postural stability* Frequency % Frequency %

0 176 20,09 93 25.48 0 422 4817 150 4110

1 282 3219 142 38.90 1 157 17.92 66 18.08

2 342 39.04 M 30.41 2 60 6.85 44 12.05

3 69 7.88 14 3.84 3 149 17.01 84 23.01

4 6 0.68 2 0.55 4 86 9.82 20 5.48

999 1 (OR1] 3 0.82 999 2 0.23 1 0.27

Total 876 100 365 100.00 Total 876 100 365 100.00
Rigidity, LUE® Frequency % Frequency % Posture Frequency % Frequency %

0 205 234 99 2712 0 173 19.75 78 21.37

1 268 3059 135 36,99 1 337 3847 129 35.34

2 317 3619 121 3315 2 206 2352 84 23.01

3 77 8.79 9 2.47 3 125 1427 52 14.25

4 7 0.8 1 0.27 4 33 377 21 575

999 2 0.23 0 0.00 999 2 0.23 1 0.27

Total 876 100 365 100.00 Total 876 100 365 100.00
Rigidity, RLE Frequency % Frequency % Global spontaneity Frequency % Frequency %

of movement

0 272 3N.05 109 29.86 0 108 1233 49 13.42

1 248 28.31 125 34.25 1 278 3174 155 42.47

2 275 31.39 106 29.04 2 279 31.85 97 26,58

3 67 7.65 23 6.30 3 184 21 51 13.97

4 10 114 1 0.27 4 27 3.08 12 3.29

999 4 0.46 1 0.27 999 0 0 1 0.27

Total 876 100 365 100.00 Total 876 100 365 100.00
Rigidity, LLE Frequency % Frequency % Postural tremor, Frequency % Frequency %

right hand

0 286 3265 16 3178 0 544 62.1 223 6110

1 227 25.91 120 32.88 1 262 2991 N9 32.60

2 275 31.39 100 27.40 2 43 4.91 19 5.21

3 75 8.56 26 7.12 3 23 2.63 2 0.55

4 1 1.26 1 0.27 4 1 on 2 0.55

999 2 0.23 2 0.55 999 3 0.34 0 0.00

Total 876 100 365 100.00 Total 876 100 365 100.00
Finger tapping, right  Frequency % Frequency % Postural tremor, left Frequency % Frequency %

hand* hand”

0 122 1393 95 26.03 0 518 5913 234 64.11

1 342 39.04 167 4575 1 276 31.51 98 26.85

2 252 2877 64 17.53 2 49 5.59 27 7.40

3 144 16.44 35 9.59 3 29 3.31 2 0.55

4 15 171 3 0.82 4 1 on 1 0.27

999 1 on 1 0.27 999 3 0.34 3 0.82

Total 876 100 365 100.00 Total 876 100 365 100.00
Finger tapping, left Frequency % Frequency % Kinetic tremor, right Frequency % Frequency %

hand* hand*

0 108 12.33 91 24.93 0 546 6233 258 70.68

1 298 34.02 135 36.99 1 265 30.25 89 24.38

2 265 3025 96 26.30 2 46 525 15 41

3 181 2066 37 10.14 3 13 1.48 1 0.27

4 22 251 5 1.37 4 2 0.23 1 0.27

999 2 0.23 1 0.27 999 4 0.46 1 0.27

Total 876 100 365 100.00 Total 876 100 365 100.00
Hand movements, Frequency % Frequency % Kinetic tremor, left Frequency % Frequency %

right hand* hand*

0 187 21.35 129 35.34 0 493 56.28 236 64.66

1 346 395 160 43.84 1 293 3345 105 28.77

2 231 2637 57 15.62 2 72 8.22 22 6.03

3 98 119 17 4.66 3 14 1.6 1 0.27

4 12 1.37 2 0.55 4 0 0 1 0.27

999 2 0.23 0 0.00 999 4 0.46 0 0.00

Total 876 100 365 100.00 Total 876 100 365 100.00
Hand movements, Frequency % Frequency % Rest tremor Frequency % Frequency %

left hand* amplitude, RUE*

0 164 18.72 18 3233 0 586 66.89 281 76.99

1 31 355 147 40.27 1 nz 12.79 51 13.97

2 250 2854 78 21.37 2 121 13.81 26 7.2

3 125 14.27 17 4.66 3 53 6.05 6 1.64
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TABLE 4 (Continued)

English Japanese English Japanese
4 25 2.85 4 1.10 4 3 0.34 1 0.27
999 1 on 1 0.27 999 1 on ¢] 0.00
Total 876 100 365 100.00 Total 876 100 365 100.00
Pronation: Frequency % Frequency % Rest tremor Frequency % Frequency %
supination amplitude, LUE*
movements, right
hand*
o] 199 2272 100 27.40 ¢] 603 68.84 280 76.71
1 335 3824 159 43.56 1 120 13.7 56 15.34
2 216 2466 64 17.53 2 99 1.3 20 5.48
3 107 12.21 35 9.59 3 45 514 9 247
4 17 1.94 6 1.64 4 5 0.57 [¢] 0.00
999 2 0.23 1 0.27 999 4 0.46 0 0.00
Total 876 100 365 100.00 Total 876 100 365 100.00
Pronation: Frequency % Frequency % Rest tremor Frequency % Frequency %
supination amplitude, RLE
movements, left
hand
[¢] 162 18.49 76 20.82 [¢] 777 88.7 319 87.40
1 297 33.9 138 37.81 1 52 5.94 25 6.85
2 235 26.83 101 27.67 2 35 4 18 4.93
3 150 17.12 42 1.51 3 9 1.03 2 0.55
4 29 3.31 8 219 4 o} 4] 0 0.00
999 3 0.34 o} 0.00 999 3 0.34 1 0.27
Total 876 100 365 100.00 Total 876 100 365 100.00
Toe tapping, right Frequency % Frequency % Rest tremor Frequency % Frequency %
foot* amplitude, LLE
0 168 19.18 89 24.38 0 795 9075 319 87.40
1 323 36.87 149 40.82 1 46 5.25 24 6.58
2 228 26.03 96 26.30 2 20 2.28 17 4.66
3 129 14.73 24 6.58 3 12 1.37 2 0.55
4 27 3.08 6 1.64 4 0 4] Q 0.00
999 1 on 1 0.27 999 3 0.34 3 0.82
Total 876 100 365 100.00 Total 876 100 365 100.00
Toe tapping, left Frequency % Frequency % Rest tremor Frequency % Frequency %
foot* amplitude, lip/jaw*
0 154 17.58 68 18.63 0 780 89.04 349 95.62
1 251 28.65 140 38.36 1 63 719 12 3.29
2 268 3059 M 30.41 2 18 2.05 3 0.82
3 154 17.58 36 9.86 3 13 1.48 [¢] 0.00
4 46 5.25 10 274 4 1 on 1 0.27
999 3 0.34 0 0.00 999 1 on ¢] 0.00
Total 876 100 365 100.00 Total 876 100 365 100.00
Leg agility, right leg*  Frequency % Frequency % Constancy of rest* Frequency % Frequency %
0 250 2854 19 32.60 0 409 46.69 219 60.00
1 329 37.56 163 4466 1 214 2443 79 21.64
2 190 21.69 61 16.71 2 AN 10.39 28 7.67
3 86 9.82 18 493 3 85 97 21 575
4 18 2.05 4 110 4 67 7.65 17 4.66
999 3 0.34 0 0.00 999 10 114 1 0.27
Total 876 100 365 100.00 Total 876 100 365 100.00
Leg agility, left leg* Frequency % Frequency %
] 218 2466 99 2712
1 298 3402 142 38.90
2 213 24.32 a0 24.66
3 106 121 30 8.22
4 38 4.34 3 0.82
999 5 0.57 1 0.27
Total 876 100 365 100.00
Part IV
Time spent with Frequency % Frequency % Functional impact of  Frequency % Frequency %
dyskinesias* fluctuations
0 563 64.27 273 7479 o] 433 4943 194 53.15
1 173 19.75 41 1.23 1 165 18.84 56 15.34
2 87 9.93 30 8.22 2 81 9.25 32 8.77
3 27 3.08 12 3.29 3 19 13.58 60 16.44
4 17 1.94 6 1.64 4 63 719 19 5.21
999 9 1.03 3 0.82 999 15 1.7 4 1.10
Total 876 100 365 100.00 Total 876 100 365 100.00
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TABLE 4 (Continued)

English Japanese English Japanese

Functional impact of  Frequency % Frequency % Complexity of motor  Frequency % Frequency %

dyskinesias® fluctuations®

0 695 7934 308 84.38 0 404 4612 192 52.60

1 90 1027 27 7.40 1 291 3322 125 34.25

2 29 3.31 19 5.21 2 69 7.88 21 575

3 46 5.25 7 192 3 50 571 17 4.66

4 5 0.57 2 0.55 4 46 5.25 3 0.82

999 1 126 2 0.55 999 16 1.83 7 192

Total 876 100 365 100.00 Total 876 100 365 100.00
Time spent in the Frequency % Frequency % Painful OFF state Frequency % Frequency %

OFF state” dystonia®

0 383 43.72 183 50.14 0 680 77.63 319 87.40

1 341 3893 18 30.96 1 114 13.01 28 7.67

2 106 121 50 13.70 2 45 514 4 110

3 22 2.51 14 3.84 3 13 1.48 [§] 1.64

4 14 1.6 2 0.55 4 15 171 5 1.37

999 10 114 3 0.82 999 9 1.03 3 0.82

Total 876 100 365 100.00 Total 876 100 365 100.00

2999 = missing.
*P < 0.05 by chi-square test (df = 4).

DDS, dopamine dysregulation syndrome; RUE, right upper extremity; LUE, left upper extremity; RLE, right lower extremity; LLE, left lower

extremity.
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Pituitary-Targeted Dynamic Contrast-Enhanced Multisection
CT for Detecting MR Imaging—Occult Functional Pituitary
Microadenoma

M. Kinoshita, H. Tanaka, H. Arita, Y. Goto, S. Oshino, Y. Watanabe, T. Yoshimine, and Y. Saitoh
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ABSTRACT

BACKGROUND AND PURPOSE: Although resection of a tumor by trans-sphenoidal surgery is considered the criterion standard for
successful surgical treatment of functional pituitary microadenoma, MR imaging occasionally fails to visualize and identify the tumor and
supplementary imaging modalities are necessary. We tested the possibility of dynamic contrast-enhanced multisection CT of the pituitary
gland accompanying image reconstruction of contrast agent dynamics to identify the localizations of microadenomas and compared the
diagnostic performance with conventional pituitary-targeted MR imaging.

MATERIALS AND METHODS: Twenty-eight patients with surgically confirmed functional pituitary microadenomas (including growth
hormone-, adrenocorticotropic hormone—, and prolactin-secreting adenomas) who underwent pituitary-targeted dynamic contrast-
enhanced multisection CT were retrospectively investigated. We undertook image reconstruction of the dynamics of the contrast agent around
the pituitary gland in a voxelwise manner, visualizing any abnormality and enabling qualification of contrast dynamics within the tumor.

RESULTS: Fifteen cases were correctly diagnosed by MR imaging, while dynamic contrast-enhanced multisection CT correctly diagnosed 26 cases.
The accuracy of localization was markedly better for adrenocorticotropic hormone-secreting microadenomas, increasing from 32% on MR imaging to
85% by dynamic contrast-enhanced multisection CT. Compared with the normal pituitary gland, adrenocorticotropic hormone-secreting adenoma
showed the least difference in contrast enhancement of the different functional microadenomas. Images acquired at 45-60 seconds after
contrast agent injection showed the largest difference in contrast enhancement between an adenoma and the normal pituitary gland.

CONCLUSIONS: Dynamic contrast-enhanced multisection CT combined with image reconstruction of the contrast-enhanced dynamics
holds promise in detecting MR imaging—occult pituitary microadenormas.

ABBREVIATIONS: ACTH = adrenocorticotropic hormone; AUC = area under the curve; DCE = dynamic contrast-enhanced; MCT = multisection CT; PRL =
prolactin; rAUC = relative AUC

Pituitary microadenoma often shows uncontrolled production  pharmacotherapy has recently played a more pivotal role in treat-

of pituitary hormones and causes endocrine disorders suchas  ing functional pituitary microadenoma,? resection of the tumor
Cushing disease, acromegaly, and hyperprolactinemia. Although by trans-sphenoidal surgery is still considered the criterion stan-
dard.” Because these tumors tend to be relatively small, precise

preoperative identification of a microadenoma is one of the cru-
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MR imaging with or without contrast agent is most commonly
used for this purpose, and dynamic contrast-enhanced techniques
are sometimes applied for better tumor visnalization.>® Moreover,
the magnetic field strength typically applied in MR imaging has re-
cently increased from 1.5T to 3T, and clearer imaging of microad-
enomas has thus been anticipated.* Such effort, however, often fails
to correctly depict the microadenoma, and other modalities such as
methionine positron-emission tomography have been suggested to
meet this need.* Methionine PET does indeed hold promise for the
visualization of microadenoma but is not yet widely clinically avail-
able, and a more clinically accessible technique is necessary for better
visualization of this entity. The present study investigated the possi-
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bility of dynamic contrast-enhanced multisection CT (DCE-MCT)
of the pituitary gland accompanying image reconstruction of con-
trast agent dynamics to identify the location of a microadenoma and
compared the diagnostic performance with conventional pituitary-
targeted MR imaging.

MATERIALS AND METHODS

Patient Characteristics

The selected patients for this study consisted of a consecutive series of
all those with endocrinopathy treated by surgery who had undergone
both pituitary-targeted dynamic contrast-enhanced multisection CT
and MR imaging as presurgical studies. As a result, pituitary-targeted
DCE-MCT was performed for 28 patients with functional pituitary
microadenoma at Osaka University Hospital between 2004 and 2014
as a preoperative assessment. Patient characteristics are shown in
On-line Table 1. The underlying pathology was adrenocorticotropic
hormone (ACTH)-secreting adenomain 13 cases, growth hormone~
secreting adenoma in 6, and prolactin (PRL)-secreting adenomain 9.
The institutional review board of the local ethics committee ap-
proved research use of the collected data (institutional review board
number: 12491), and written consent was waived for this study.

Preoperative MR Imaging

MR imaging was performed at either 1.5T (Signa Genesis/Excite;
GE Healthcare, Milwaukee, Wisconsin; or Magnetom Vision
Plus; Siemens, Erlangen, Germany) or 3T (Signa HDxt; GE
Healthcare; or Achieva/Ingenia; Philips Healthcare, Best, the
Netherlands). Six patients were scanned at 1.5T; and 22, at 3T.
Standard T1- and T2-weighted images and gadolinium-enhanced
T1-weighted images targeting the pituitary gland were obtained.
The dynamic contrast-enhanced technique was not included for
MR imaging in the current study. Axial, coronal, and sagittal im-
ages were routinely obtained for gadolinium-enhanced T1-
weighted imaging. Section thickness was 3 mm, with section spac-
ing ranging from 0.3 to 0.6 mm. Detailed parameters for MR
imaging are listed in On-line Table 2. The final diagnostic report
from board-certified neuroradiologists was referenced for defin-
ing the tumor location. The surgeons (M.K., $.0., Y.S.) and the
first author (M.K.) confirmed the radiologists’ official report by
observing the actual MR imaging.

Preoperative Dynamic Contrast-Enhanced

Multisection CT

Pituitary-targeted dynamic contrast-enhanced multisection CT
was performed by using either a Discovery CT750 HD, Light-
Speed Ultra, or LightSpeed VCT system (GE Healthcare). A sche-
matic presentation of the protocol is provided in Fig 1. One hun-
dred milliliters of 300-mg I/mL contrast agent was injected
intravenously with an injection rate of 5 mL/s, and MCT was
acquired at 30, 45, 60, and 90 seconds after contrast agent injec-
tion. MCT was acquired at 60, 90, 120, and 150 seconds after
contrast agent injection for 2 cases and at 40, 80, and 120 seconds
for 1 case for technical reasons (On-line Table 1). Approximately
3 seconds were required to acquire each phase in a gapless 3D
volume. Subsequently, pituitary-targeted axial images were re-
constructed at a special resolution of 0.3/0.3/0.6 mm with no sec-
tion gap.
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FIG 1. Schematic presentation for DCE-MCT image acquisition and
reconstruction. DCE-MCT was performed at 30, 45, 60, and 90 sec-
onds after contrast agent injection. Subsequently, the “AUC image”
was reconstructed in 3D. A representative case of a PRL-secreting
pituitary microadenoma {case 20) is illustrated. The red arrows indi-
cate the microadenoma, which was confirmed by surgical removal of
the lesion.

Image Reconstruction of Contrast Agent Dynamics and
Statistical Analysis

The dynamics of the contrast agent around the pituitary gland
were calculated by summation of the acquired multiphase MCT
in a voxelwise manner by using software developed in-house on
Matlab (MathWorks, Natick, Massachusetts). An ROI was placed
preoperatively at the normal pituitary gland and the suspected
adenoma by the first author (M.K.) on the reconstructed area
under the curve (AUC) images without referring to MR imaging,
followed by calculation of ROI statistics. A paired ¢ test, 2-way
analysis of variance, or 1-way ANOVA with a Tukey multiple
comparison test was performed by using GraphPad Prism soft-
ware, Version 5.0 (GraphPad Software, San Diego, California).

Trans-Sphenoidal Surgery and Verification of the
Adenoma

Judgment of tumor location was preoperatively performed by us-
ing both MR imaging and DCE-MCT with AUC-reconstructed
images. When MR imaging and DCE-MCT led to conflicting re-
sults, a surgical approach to the tumor was planned so that both
sides within the sella turcica could be explored. Endoscope-as-
sisted trans-sphenoidal surgery was performed in all cases by 3
neurosurgeons specializing in pituitary surgery (M.K,, S.0., Y.S.).
Histologic or endocrinologic confirmation was undertaken to
confirm the presence or absence of a hormone-secreting func-
tional adenoma at the surgical location.

RESULTS

Diagnostic Efficacy of MR Imaging and DCE-MCT for
Functional Pituitary Microadenoma

Representative cases are shown in Figs 1 and 2. Figure 1 shows a
case of PRL-secreting microadenoma. Contrast-enhanced MR
imaging failed to identify tumor within the sella turcica, while
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FIG 2. A representative case of ACTH-secreting pituitary microadenoma. DCE-MCT analysis
of an ACTH-secreting pituitary microadenoma (case 12) is presented. Abnormal contrast
agent dynamics are observed on the right side of the pituitary gland, though no abnormality
is evident on MR imaging. The red arrows indicate the microadenoma, which was confirmed
by surgical removal of the lesion. The blue arrows indicate a normal pituitary gland.

Comparison of MRI and CT for correct localization diagnosis of
functional microadenomas

Hormone  No.of  Correct Diagnosis  Correct Diagnosis
Secreted Cases by MRI by CT
ACTH 13 4 1
GH 6 6 6
PRL 9 5 9
Total 28 15 26

Note:—GH indicates growth hormone.

DCE-MCT clearly showed decreased and delayed contrast en-
hancement on the left side of the pituitary gland. Abnormal con-
trast agent dynamics were much more easily appreciated on the
reconstructed AUC image. Figure 2 shows a case of ACTH-secret-
ing microadenoma. Contrast-enhanced MR imaging again failed
to identify the presence of tumor, while DCE-MCT along with the
reconstructed AUC image clearly suggested alesion located on the
right side of the pituitary gland. Diagnostic performances of MR
imaging and DCE-MCT for each type of functional pituitary mi-
croadenoma are listed in the Table and On-line Table 1. Overall,
15 of the 28 cases were correctly diagnosed by MR imaging, while
DCE-MCT correctly diagnosed 26 cases (Table). The accuracy of
location prediction was markedly improved for ACTH-secreting
microadenoma, increasing from 32% (4/13) with MR imaging to
85% (11/13) with DCE-MCT.

Comparison of Contrast-Enhancement Dynarmics
between the Normal Pituitary Gland and a Functional
Pituitary Microadenoma by DCE-MCT

The dynamics of contrast enhancement were compared between
the normal pituitary gland and a functional pituitary microad-
enoma by looking into differences in the AUC retrieved by DCE-

confirmed postoperatively. AUC was
significantly decreased in the microad-
enoma compared with the normal pitu-
itary gland (Fig 3A). Relative AUC
(rAUC) was subsequently calculated for
each lesion, as rAUC = AUC,
AUC

pituitary:

;clcx\mna/
When contrast-enhanced

dynamics are equal between the ade-
noma and the normal pituitary gland,
the rAUC will thus be 1. Fig 3B shows
that ACTH-secreting adenomas pre-
sented with a significantly higher rAUC
compared with PRL-secreting adeno-
mas, and the rAUC of ACTH-secreting
adenoma was close to 1. A trend was also
seen for the growth hormone-secreting
adenoma to show lower rAUC than the
ACTH-secreting adenoma. These re-
sults suggest that the contrast-enhanced
dynamics of ACTH-secreting microad-
enomas are relatively similar to those of
the normal pitaitary gland compared

High

with PRL- or growth hormone-secret-
ing microadenomas. This finding was
also confirmed by analyzing the ratio of contrast enhancement
compared with the normal pituitary gland in each phase during
DCE-MCT. The ACTH-secreting adenoma showed the least con-
trast-enhancement differences compared with the normal pitu-
itary gland (Fig 3C). These differences were significant (P = .01,
2-way ANOVA). In addition, the time phase that showed the larg-
est difference in contrast enhancement between the adenoma and
the normal pituitary gland was 45— 60 seconds after contrast agent
injection, irrespective of the secreted hormone.

DISCUSSION

Successful surgical treatment of functional pituitary microad-
enoma largely relies on accurate identification of the tumor
within the sella turcica.” These relatively small tumors represent a
challenge to both neuroradiologists and neurosurgeons in locat-
ing them, resulting in a greater potential for insufficient treatment
of the lesion. The criterion standard technique used for lesion
Jocalization is MR imaging,”” and some clinical investigations
have suggested contrast-enhanced CT,»* super-selective ve-

10-12 4 nd methio-

nous sampling of pituitary hormone levels,
nine PET* as useful modalities to supplement MR imaging
findings. The clinical values of these additional presurgical
studies, however, remain undetermined, and conflicting re-
sults have been reported. For example, one report has claimed
that venous sampling of ACTH at the inferior petrosal sinus is
informative for determining adenoma location,'? while others
have reported results to the contrary.'' Methionine PET has
also been proposed as a promising imaging technique to iden-
tify MR imaging—occult ACTH-secreting microadenomas. MR
imaging-registered methionine PET was previously reported
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FIG 3. Contrast agent dynamics of pituitary microadenomas assessed by AUC. A, Adenomas show significantly lower AUC compared with the
normal pituitary gland (P << .0001, paired t test). B, ACTH-secreting pituitary microadenomas show significantly higher rAUC compared with
PRL-secreting microadenomas (P < .05, -way ANOVA with a Tukey multiple comparison), suggesting that contrast agent dynamics within
ACTH-secreting microadenomas are similar to those of the normal pituitary gland. GH indicates growth hormone. C, The ratio of CT values of
adenomas to those of the normal pituitary gland (tumor/node ratio [T/n ratio]) is plotted as a function of the time phase during DCE-MCT.
Twenty-three cases in which CT acquisition was performed at 30, 45, 60, and 90 seconds were collected. The most significant drop was observed
at 45— 60 seconds, irrespective of the secreted hormone. In addition, ACTH-secreting adenomas showed the highest tumor/node ratio among
the 3 hormones, indicating the least contrast between the adenoma and normal pituitary gland {2-way ANOVA, P = 01).

as showing superb performance in detecting ACTH-secreting
microadenomas, of which identification was significantly dif-
ficult by using MR imaging alone.* The availability of methio-
nine PET, however, remains limited, and more extensive stud-
ies are required to confirm the clinical value of methionine
PET for diagnosing functional microadenoma.

MR imaging shows several technical limitations in elucidating
the presence of microadenoma. The above-mentioned small size
of the tumor is one. To guarantee sufficient image quality, we
usually select a section thickness of 3 mm for pituitary imaging.
Given the sizes of microadenomas, which are <10 mm, there is a
high chance of overlooking the lesion. In addition to the problem
of size, pituitary adenoma imaging by using a contrast agent
largely relies on the adenomas showing much less contrast en-
hancement than the normal pituitary gland. As Fig 3B suggests, an
ACTH-secreting microadenoma, in particular, shows contrast-
enhanced dynamics similar to that of the normal pituitary gland,
which seems likely to contribute to failed detection of the lesion
on MR imaging. Although the dynamic contrast-enhanced tech-
nique is often applied on MR imaging to overcome this issue,
scanning time usually required to obtain each dynamic phase
ranges from 20 to 30 seconds® or is shortened into 12-20 seconds
in some cases, but it is not possible to obtain a gapless 3D image as
in MCT. Figure 3C, in particular, highlights this problem. The
most suitable time phase to obtain sufficient contrast between an
adenoma and the normal pituitary gland is 45-60 seconds after
contrast agent injection. This adenoma/normal pituitary gland
contrast will rapidly diminish within the subsequent 30 seconds.
Both spatial and temporal resolution must, therefore, be suffi-
ciently high to visualize the presence of the adenoma.

The proposed CT-based imaging technique has the potential
to overcome these technical difficulties associated with MR imag-
ing, mainly due to the superior temporal resolution of CT com-
pared with MR imaging. Each phase of MCT can be acquired in a
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full 3D image within 3 seconds, which provides satisfactory spatial
and temporal resolution. The idea of using DCE-MCT for mi-
croadenoma detection has been proposed before.*® To better vi-
sualize contrast-enhancement dynamics in a voxelwise manner,
the present study applied image reconstruction. The resulting
AUC images provided intuitive images for clinicians to identify
lesions with abnormal contrast-enhancement dynamics.

Limitations of the current study should be mentioned. First,
this study was not a direct comparison between DCE-MR imag-
ingand DCE-MCT. The patient cohort for this study did not have
DCE~MR imaging as presurgical imaging for pituitary microad-
enomas. Further study is necessary to critically evaluate the clin-
ical value of DCE-MCT with an image-reconstruction technique
compared with conventional DCE-MR imaging. Another con-
cern is the MR image quality of the current study. Previous studies
reported exhibiting 66%-100% sensitivity in detecting ACTH-
secreting microadenoma®’ with the aid of DCE-MR imaging.
The sensitivity of the current study for detecting ACTH-secreting
microadenomas was as low as 32%, which may suggest that MR
images of the current study might have been suboptimized com-
pared with the past literature reports. In addition, although it is
intriguing to contemplate why ACTH-secreting microadenomas
show different contrast-enhanced dynamics compared with other
functional microadenomas as shown in Fig 3C, the pathology of
the blood supply to microadenomas is unfortunately not yet well-
understood, making it difficult to reach any conclusive argument
on this matter.

In summary, the present results show that DCE-MCT images
along with AUC images can help identify microadenomas and
improve the overall detection of those lesions compared with MR
imaging alone. Although this study was not a direct comparison
between DCE-MR imaging and DCE-MCT, it seems valid to con-
clude that DCE-MCT is a noninvasive diagnostic technique,
which, along with the reported AUC reconstruction method,



could be recommended as a supplementary diagnostic technique
for MR imaging—occult functional microadenoma.

COMCLUSIONS

Dynamic contrast-enhanced multisection CT combined with im-
age reconstruction of the contrast-enhanced dynamics holds
promise in detecting MR imaging-occult pituitary microad-
enoma. Because surgical outcomes are highly reliant on accurate
preoperative identification of the adenoma, the proposed tech-
nique should contribute to better surgical outcomes for func-
tional pituitary microadenomas.
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Functional Near Infrared Spectroscopy in Neurorehabilitation *!

Masahito Miaara™*?

Abstract : Functional Near-Infrared Spectroscopy (fNIRS) is a characteristically functional neu-
roimaging technique which enables us to measure the daily tasks related to cortical activation in-
cluding gait and postural task. Using fNIRS, it was found that the medial sensorimotor and supple-
mentary motor area plav an important role in gait and postural control in healthy subjects. In
addition, it was also revealed that the individual balance ability was correlated with the cortical ac-
tivation in the supplementary motor area during the postural task. These findings supported the
notion that the supplementary motor area is one of the key structures for balance recovery in
stroke patients. Not only can fNIRS effectively monitor the functional reorganization of the central
nervous system, but fNIRS has also been used as a therapeutic tool. With recent advances in tech-
nique enabling realtime decoding of brain activity, functional neuroimaging can now be used as a
neurofeedback tool, in which the voluntary modulation of cortical activation is available. After we
developed a working fNIRS mediated neurofeedback system and confirmed its neuromodulation
effect in healthy subjects, we investigated ifs clinical efficacy as a therapeutic tool for augmenting
the functional recovery after stroke. Our pilot randomized control study revealed the promising
result that neurofeedback intervention could improve finger function in chronic stroke patients in-
cluding patients with moderate to severe paresis. These findings provide a new therapeutic possi-
bility for those patients who gain only limited functional recovery from conventional rehabilitative
interventions in the chronic stage. (Jpn J Rehabil Med 2014 ; 51 . 645-649)

Key words : 7% (stroke), g al % (neur oplasticity) W ARAL 56 (near infrared
spectroscopy), —x—17 4 — KV 2 (neurofeedback)
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