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Figure 4. Evolutionary conservation of three novel genetic variants. The human and primate sequences of the SNP + 10 bp were obtained from Ensembl website.
(A) 152483280 of PRDM16, (B) rs335206 of PRDM6 and (C) rs17026156 of SLC8AL.

Shige University of Medical Science and Kyoto University
Graduate School of Medicine.

ECG measurements

PR interval and QRS duration values were obtained from a
supine 12-lead ECG using digital electrocardiographic recor-
ders—Phase 1, MACS5000 (GE Medical System, CT, USA);
Phase 2, FCP-7411 and FCP-7431 (Fukuda Denshi, Tokyo,
Japan); Phase 3, AAC, ECG-1500 (Nihon Kohden, Tokyo,
Japan) and Takashima, FCP-4720 (Fukuda Denshi, Tokyo,
Japan). ECGs with insufficient quality (e.g., owing to baseline
drift or missing leads) and those with rhythms other than sinus
rhythm or AF were excluded. PR interval was measured from
the onset of the P-wave to the onset of ventricular depolarization.
QRS duration was measured from the onset of ventricular
depolarization to the J point.

Genotyping

The genotyping data were obtained from KARE, which used the
Affymetrix Genomewide Human SNP Array 5.0. The genotype
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quality control criteria have been reported in a previous GWAS
study (28). Briefly, the criteria for the inclusion of SNPs were
genotype call rate of >0.98, minor allele frequency (MAF) of
>0. 01 and Hardy—Weinberg equilibrium (HWE) (P > 1 x
107%). The related individuals were excluded from the KARE
genotype dataset, whose computed average pairwise identity-
by-state value was higher than that estimated from first-degree
relatives of Korean sib-pair samples (>0.80, n = 601). Ultim-
ately, 352228 SNPs passed the quality control process and
were subsequently used in the GWASs for PR interval and
QRS duration. SNP imputation was performed with IMPUTE
(29) using the JPT and CHB sets of HapMap Phase 2 as refer-
ences. After removing SNPs with MAF of <0.01 and SNP
missing rate of >0.05, we combined the remaining 1.8 million
imputed SNPs with the SNPs that were typed directly in
KARE for the association analysis.

Genome-wide SNP genotyping of the Nagahama sample
was performed using a series of BeadChip DNA arrays (Illumina,
San Diego, CA, USA). Genotyping quality was controlled by ex-
cluding SNPs with call rates of <99%, with an MAF of <0.1%,
and deviating significantly from HWE (P <1 x 1077).
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Individuals who met the following criteria were excluded from
analysis: average genotype call rate <95%, high degree of
kinship (Pi-hat >0.35 [PLINK version 1.07 (30)]), and identi-
fied as an ancestry outlier by principal component analysis
with the HapMap Phase 2, release 28 JPT dataset as the reference
[EIGENSTRAT version 2.0 (31)]. Genotype imputation was
performed using MACH, version 1.0.16 (32). Imputed SNPs
for which the MAF was <0.01 or R-square value was <0.5
were excluded from the association analysis.

Replication genotyping of the Phase 3 sample was performed
using a TagMan probe assay and commercially available primer
and probe sets (Life Technologies Corporation, Carlsbad, CA,
USA). The fluorescence level of the PCR products was measured
ona7900HT Fast Real-Time PCR System (Applied Biosystems,
Foster, CA, USA).

Statistical analysis

The effect of a genotype was analyzed by linear regression. The
effect size (beta) and standard error (SE) of coded alleles were
calculated on PR interval and QRS duration. All analyses were
adjusted for age, sex, recruitment area, BMI, systolic blood pres-
sure and height. PLINK (30) was used for all statistical tests. All
tests were based on an additive model, and Phase 1 SNPs for
replication test were selected, basedon P < 1 x 10™*. We com-
bined Phase 1 and Phase 2 data by inverse-variance meta-
analysis under the assumption of fixed effects using Cochran’s
Q test to determine between-study heterogeneity (33). Phase
1 + Phase 2 SNPs were selected, based on meta-analyses
P-values that were more significant than Phase 1 P-values.
Finally, Phase 1 + Phase 2 + Phase 3 meta-analyses were
conducted, and through which we identified significant genome-
wide-level variants. All meta-analysis calculations were imple-
mented in PLINK (30) (version 1.07).

In silico functional analysis of novel SNPs

Proximal SNP and LD were computed using SNAP, a web-based
software program (http://www.broadinstitute.org/mpg/snap/
ldsearchpw.php) (34). Evolutional conservation was confirmed
using the Ensembl Genome browser (http://www.ensembl.org/
index.html), comparing the SNP + 10 bp in primates. The func-
tional elements that were linked to the associated SNPs were ana-
lyzed using the RegulomeDB (http://regulome.stanford.edu/),
which was developed by the ENCODE project (35).

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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APPENDIX

Principal investigators of the Japanese study cohorts are as follows:

Nagahama Study: Fumihiko Matsuda (chairperson), Yasuharu
Tabara, Takahisa Kawaguchi, Yoshimitsu Takahashi, Kazuya Setoh,
Chikashi Terao, Ryo Yamada, Akihiro Sekine, Shinji Kosugi and
Takeo Nakayama (Kyoto University Graduate School of Medicine,
and School of Public Health); the AAC study: Yasuharu Tabara (chair-
person), Katsuhiko Kohara, Michiya Igase and Tetsuro Miki (Ehime
University Graduate School of Medicine)

Takashima study: Yoshikuni Kita (chairperson), Hirotsugu Ueshima
and Naoyuki Takashima (Shiga University of Medical Science).
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Abstract

Profiles of sequence variants that influence gene transcription are very important for understanding mechanisms that affect
phenotypic variation and disease susceptibility. Using genotypes at 1.4 million SNPs and a comprehensive transcriptional
profile of 15,454 coding genes and 6,113 lincRNA genes obtained from peripheral blood cells of 298 Japanese individuals,
we mapped expression quantitative trait loci (eQTLs). We identified 3,804 ¢is-eQTLs (within 500 kb from target genes) and
165 trans-eQTLs (>500 kb away or on different chromosomes). Cis-eQTLs were often located in transcribed or adjacent
regions of genes; among these regions, 5’ untranslated regions and 5’ flanking regions had the largest effects. Epigenetic
evidence for regulatory potential accumulated in public databases explained the magnitude of the effects of our eQTLs. Cis-
eQTLs were often located near the respective target genes, if not within genes. Large effect sizes were observed with eQTLs
near target genes, and effect sizes were obviously attenuated as the eQTL distance from the gene increased. Using a very
stringent significance threshold, we identified 165 large-effect trans-eQTLs. We used our eQTL map to assess 8,069 disease-
associated SNPs identified in 1,436 genome-wide association studies (GWAS). We identified genes that might be truly
causative, but GWAS might have failed to identify for 148 out of the GWAS-identified SNPs; for example, TUFM (P =3.3E-48)
was identified for inflammatory bowel disease (early onset); ZFP90 (P =4.4E-34) for ulcerative colitis; and IDUA (P=2.2E-11)
for Parkinson’s disease. We identified four genes (P<<2.0E-14) that might be related to three diseases and two hematological
traits; each expression is regulated by trans-eQTLs on a different chromosome than the gene.
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Introduction

Variation in gene expression levels is one of the major factors
causing phenotypic variation and disease susceptibility. Although
gene expression levels are influenced by environmental factors,
genetic variations also play an important role in transcriptional
regulation; notably, about 30% of transcriptional phenotypes are
heritable (A2>30%) [1]. Additionally, many loci identified in
genome-wide association studies (GWAS) are located in non-
coding regions that have no known protein-coding genes,
suggesting that these loci influence transcriptional regulation.
Expression quantitative trait locus (eQTL) mapping is a common
approach to locate genetic loci that regulate transcription, and
recent development with genome-wide SNP typing arrays and
gene expression microarrays has enhanced genome-wide eQTL
mapping. Genome-wide eQTL maps can substantially improve
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our understanding of transcriptional regulation at the genetic level;
they can also improve the interpretability of the results of GWAS.
Moreover, comprehensive hypothesis-free scans of eQTLs can
provide hypothesis-generating results; this approach may lead to
the unexpected discovery of important biological phenomena.
Consequently, ¢QTL mapping has been intensively studied in
humans [1-9]. However, further eQTL mapping studies would be
valuable because technical advances in high-throughput genome
analysis are being made in terms of experiments, accumulation of
knowledge, and computation. Moreover, non-coding RNAs are
important regulators of gene expression, and these RNAs greatly
influence many phenotypes [10,11]. Therefore, profiling eQTLs of
non-coding RNAs should be very valuable for biomedical
research; however, previous eQTL studies have focused almost
exclusively on protein-coding genes. Here, our study included
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6,113 lincRNA probes; we identified 278 unique eQTLs that
affected 326 unique lincRNA probes.

Notably, expression levels of many individual genes vary among
human populations [7,12-16], and this variation among popula-
tions is primarily explained by differences in genotype frequencies
(R? of ~0.81) among populations; nevertheless, population-specific
genotypic effects may also be an important source of this variation
(R? of ~0.31) [13]. Additionally, low between-population replica-
tion rates of ¢QTLs indicate that population-specific eQTL effects
exist; for example, only 37% of cis-eQTLs and 15% of trans-
eQTLs identified in one population were also identified in a
second population [7]. Therefore, ethnicity-specific eQTL maps
may be very useful for basic and applied research. Here, we
describe large-scale ¢QTL mapping in a Japanese population; the
sample size (7= 298 unrelated individuals) was 3-fold larger than
that in any preceding eQTL study of East Asian individuals
[7,13,17]; moreover, updated genome and gene data were used to
improve the coverage of tested transcripts over that in preceding
studies. In this study, we report genome-wide, high-resolution
eQTL association mapping for baseline gene expression levels in
peripheral blood cells.

We identified 3,804 cis-eQTLs (defined as a SNP that affects
expression of a gene located within 500 kb) that affected 16.9% of
genes; among these cis-eQTLs, the mean fold difference in gene
expression levels between two homozygous genotypes was 1.6-fold,
and the mean proportion of transcriptional variance explained by
genotype was 0.19. We also identified 165 #rans-eQTLs (defined as
a SNP that affects expression of any transcript more than 500 kb
away or on a different chromosome); among these trans-eQTLs,
the mean fold difference in gene expression levels between two
homozygous genotypes was 2.1-fold, and the mean proportion of
transcriptional variance explained by genotype was 0.27. Cis-
eQTLs were more likely to be located in gene structure and the
adjacent regions; specifically, 45.7% of cis-eQTLs were located
within 1 kb of the respective differentially expressed gene (genic
cis-eQTLs). The genic ¢is-eQTLs had a larger effect than other czs-
eQTLs (mean [B]: 0.33 vs. 0.31, P=0.00093; mean R%0.21 vs.
0.17, P=7.8E-11). Cis-eQTLs with the largest effects (top 10%)
were located predominantly in genic regions (58% in genic vs.
42% in the others). Among the genic regions, 5 untranslated
regions (UTR) and upstream regions within 1 kb of a transcription
start site had relatively more cis-eQ)TLs than the other regions, and
cis-eQYT'Ls with larger effects also tended to be located in these two
types of genic regions; the mean effect size of cis-eQQTLs in these
regions were 1.4-fold larger than those of others (mean |B|: 0.45
vs. 0.32, P=0.0033). The density of cis-eQTLs decreased
exponentially with distance from respective structural genes; the
majority (70%) of ¢is-eQTLs were located within 17 kb-flanking or
within a target protein coding gene; and effects of individual czs-
eQTLs became small with distance from a target gene.

eQTL analyses have been used to reliably identify variant-gene
pair(s) among potential combinations of SNPs identified by GWAS
and the nearby genes [18]; nevertheless, a considerable fraction of
GWAS have not included eQTLs evaluation. In many GWAS, the
gene closest to the significant SNP is reported as a probable
causative gene. However, there are two major caveats with this
practice: 1) when multiple genes are in strong linkage disequilib-
rium (LD) in the detected region, the reported SNP may capture
an effect of a faraway gene, and thus, GWAS cannot determine
which gene in the LD region is truly causative; and 2) the reported
SNP may capture a transcriptional regulatory site that is located
far from the regulated and causative gene. Therefore, eQTL maps
may improve interpretation of GWAS results and overcome these
two caveats by identifying causative genes whose expression is
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actually altered. We used our eQTL map to reassess 8,069 trait/
disease-associated SNPs identified in 1,436 published GWAS; our
eQTL map suggested different causative genes from those
reported in published GWAS for 148 of the GWAS-identified
SNPs.

Our eQTL mapping project is part of the Human Genetic
Variation  Browser  (http://www.genome.med.kyoto-u.ac.jp/
SnpDB/), an open-access database; this project is intended to
provide researchers with integrative genomic data—including our
e¢QTL map, summary statistics for genotypes of all SNPs used in
this study, and exome sequencing data—for biomedical studies.

Results

Gene expression profile

Our study population comprised 298 individuals (102 male and
196 female); the mean age was 55.1 years, and age ranged from 32
to 66 years (Table S1). We treated each probe as though it
represented a unique transcript, and each Entrez Gene ID
represented a distinct gene. With this definition of genes, our
expression profile was comprised of 30,395 autosomal transcripts
(17,598 genes): 19,818 mRNA transcripts representing 15,454
genes, 6,113 lincRNA transcripts (no gene ID was assigned for any
of them), and 4,464 other transcripts representing 3,288 genes (see
Methods for classification). The numbers of genes (15,454 and
3,288) do not add up to the total (17,598) because 1,144 gene IDs
were found in both mRNA and others as different transcripts.
Definitions of ¢is- and trans-eQTLs, and local and distant SNPs are
described in Methods.

Cis-eQTL analysis

A distribution of P values for all local SNP-transcript pairs
showed an excess of small Pvalues (Figure S1A), suggesting that a
substantial fraction of associations are truly positive. With the false
discovery rate (FDR) <5%, we identified 3,804 cis-eQTLs
transcript pairs (Figure 1, Table 1). 12.5%, or 16.9%, of all tested
transcripts, or genes, were cis-regulated (Table 1). The complete
list of the cis-eQTLs with annotation and statistics is provided in
File S1.

We used two statistics as measures for magnitudes of effects of
eQTLs; the coeflicient of genotypes was designated B, or its
absolute value |B], and the proportion of transcriptional variance
explained by genotypes was designated R? (see supplementary note
in File 83 for more explanation). Cis-eQTLs with large effects were
abundant (Figure 2A, 2B and Table 1): for example, the number of
cis-eQTLs with | B| values larger than 0.3, which corresponds to a
1.5-fold change between two homozygous genotypes, was 1,440
(4.7%) of all tested transcripts. The numbers of ¢is-eQTLs with R
values larger than 0.1 were 2,568 (8.4%) of all examined

transcripts.
Gene-based  functional categories and  protein
consequences. Next, we analyzed the cs-eQTLs in terms of

gene-based functional categories of SNPs. Here, we analyzed the
¢cis-eQTLs that affected mRNAs because the structures of the
coding genes represented by these transcripts were the most clearly
annotated. First, we compared SNPs in genic regions, those within
genes and 1 kb upstream or downstream of genes, with SNPs in
intergenic regions. We define enrichment as the fold change in
proportion that each group constitutes among cis-eQTLs com-
pared to among all local SNPs. The enrichment of genic SNPs was
7.04 (45.74% of ¢is-eQTLs vs. 6.50% of all local SNPs, Table 2).
Moreover, cis-eQTLs had significantly stronger effects than did
intergenic cis-eQTLs (mean || values 0.33 vs. 0.31, P=0.00093;
mean R values 0.21 vs. 0.17, P=7.8E-11, Table 2, Figure 3A,
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Table 1. Summary statistics and counts of ¢is- and trans-eQTLs at thresholds by R2 or |B).

ciseQTL transeQTL
(n=3,804 by FDR <5%) (n=165 by FWER <5%)
Al mRNA lincRNA Other All mRNA lincRNA Other
#eQTLs-transcript pairs 3,804 2,995 293 516 165 91 49 25
F#unique eQTLs 3,385 2,779 244 440 105 65 34 21
#unique transcripts (%) 3,804 (12.5%) 2,995 (15.1%) 293 (4.8%) 516 (11.6%) 114 (0.4%) 60 (0.3%) 34 (0.6%) 20 (0.4%)
#unique genes (%) 2,973 (16.9%) 2,667 (17.3%) 0 357 (10.9%) 74 (0.4%) 57 (0.4%) 0 17 (0.5%)
Funique transcripts without gene ID 455 28 293 134 54 1 49 4
R mean:SD 0.19%0.15 0.19x£0.15 0.20*0.16 0.21£0.18 0.27+:0.12 0.27+£0.12 0.29+0.13 0.23+0.07
R median+IQR 0.13£0.15 0.13%£0.14 0.13£0.15 0.15%0.17 6.2310.12 0.23+0.12 0.26%0.11 0.21£0.09
|B| mean+SD 0.33+0.33 0321032 0.38+0.33 0.38+0.34 0.53+0.35 0.50+0.38 0.59+0.31 0.51£0.33
|B| median=IQR 0.24x0.24 0.23+0.23 0.30%0.31 0.28+0.25 0.47+0.41 0.40+0.44 0.58+0.34 0.43+0.34
Stat. Cutoff
R 0.1 2,568 2,022 192 354 165 91 49 25
0.3 665 500 56 109 45 25 15 5
0.5 245 71 22 52 10 5 5 0
0.7 67 43 8 16 2 2 0 0
0.9 2 2 ’ 0 0 0 0 0 0
18| 0.3 1,440 1,053 146 241 118 60 40 18
‘ 0.9 iSS 122 11 22 23 13 6 4
1.5 55 44 3 8 3 1 1 1
2.1 26 19 2 5 1 1 ‘ 0 0
2.7 12 9 1 2 1 1 0 [

FDR: false discovery rate; FWER: family-wise error rate; SD: standard deviation; IQR: inter-quartile range; R%: proportion of phenotypic variances explained by genotypes; |B]: absolute value of coefficient of genotypes.

The sum of #unique eQTLs counted within RNA types is not necessarily equal to #unique eQTLs counted for all transcripts because the same eQTLs may be counted in more than one RNA types. The number of genes for All and

each type do not match for a similar reason.
doi:10.137/journal.pone.0100924.t001
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doi:10.1371/journal.pone.0100924.g001

A B
= 12004 []
1200
1000
1000
800 -
38004 |h g
O [}
Z & 600
Z 600
£ 600+ £
400 400
200 - [ 200
0 0 1
T T T T T T 1 T 1] L ; T
0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0
1Bl R?
C D
50
] 60- |
404 ] 50
40-
g 30- g
[ [}
= =
8 g 304
. 204 .
20
10
10-
o = p— 0
T T T T T T T T T T T T T
00 05 10 15 20 25 30 0.0 0.2 0.4 0.6 0.8 1.0
18| R?

Figure 2. Histograms of effects of eQTLs. A, B) Histograms of || values (A) and of R* values (B) of cis-eQTLs are shown. C, D) Histograms of |f|
values (C) and R? values (D) of trans-eQTLs are shown.
doi:10.1371/journal.pone.0100924.g002
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3B). To further characterize genic eQTLs, we compared genic 1,523 intergenic eQTLs constituted 50.85% of the cs-eQTLs

subcategories (exonic excluding UTRs, intronic, 5° UTR, 3’ (Table 2). Therefore, to further characterize this large number of
UTR, upstream, and downstream). Upstream and 5" UTR were intergenic eQTLs we analyzed each in terms of regulatory
distinctly important compared to other genic subcategories: The potential; this potential was predicted based on known epigenetic
most intense enrichment was observed for the 5" UTR (41.79 fold), evidence. We classified each intergenic eQTL into one of seven
followed by upstream (27.95 fold), and these two subcategories had numbered categories based on the RegulomeDB, which indicates
largest mean || and R? values (Table 2). Mean | B} and R? values how likely a variant is to disrupt transcription factor binding [19]
of seven categories (six genic subcategories and the intergenic (see Methods for the classification). We observed statistically

category) were significantly different (ANOVA P=1.1E-05 for | B| significant trends in means of R? values (P=3e-05) but not in
and P=2.5E-08 for R%). Significantly different category pairs are means of |B| (P=0.37); the eQTLs classified into higher potential
shown in Table S2: The upstream had significantly larger |B| classes had stronger effects (Figure 4). Although the ¢QTLs in

value than intron, 3’ UTR, or downstream, and for R values, no Category | had the largest mean R?, the means of other categories
pairs of genic subcategories were significantly different. Consis- were not apparently different.
tently, cis-eQTLs with larger || values were more common in 5’ Relationship between eQTL effects and distance. Next,
UTR or upstream regions than in other regions (Figure 3C); we investigated whether and how distances between ¢is-eQTLs
additionally, R value of each genic subcategories tended to be and their mRINA transcripts were related to the magnitudes of the
larger than the B2 value of the intergenic category (Figure 3D). We effects. Distances and effects were strongly correlated with
did not observe statistically significant difference between non- exponential decay in both the 5 and 3’ directions (Figure 5A,
synonymous and synonymous SNPs in enrichment or mean effect 5D). eQTLs were concentrated in regions near genes; 73% of ¢is-
sizes (eQTL enrichment: Fisher’s exact £=0.56, |B|: P=0.257 eQTLs outside genes were located within 50 kb of their target
R* P=0.70), and the distribution of |B| values or R” values was genes. Promoters are usually located within 100 bp upstream of
similar (Figure 3E, 3F). genes; nevertheless, eQTLs were not apparently enriched in
Intergenic eQTLs and RegulomeDB class. Next, we promoter regions (Figure 5B, 5E). As distances increased, eQTLs
characterized the intergenic cis-eQTLs; again, we focused only of small effect became more common; this trend is evident in R?

on c¢is-eQTLs that affected mRINA transcripts. Although the mean values for eQTLs>100 kb, but not in the |B]| values (Figure 5C,
effects of intergenic eQTLs were significantly smaller than those of 5F).
genic eQTLs, intergenic eQTLs are still important because the

Table 2. Counts and proportions of gene structure-based categories and protein consequences in local SNPs and cis-eQTLs.

Mean effect

Categories Local SNPs (%) cis-eQTLs (%) Enrich B R
Intergenic 10,268,814 (93.11) 1,523 (50.85) 0.55 0.31 017
Genic 716,576 (6.50) 1,370 (45.74) 7.04 033 0.21
Exonic 25,822 (0.23) 109 (3.64) 15.54 032 Q.19
Splicing 28 (0.00) 0 (0.00) - - -
Intronic 633,398 (5.74) 889 (29.68) 5.17 0.33 0.20
3" UTR 29,609 (0.27) 188 (6.28) 2338 0.28 0.22
5" UTR 3,965 (0.04) 45 (1.50) 41.79 041 0.22
Upstream 11,727 (0.11) ; 89 (2.97) 2795 047 023
Downstream 12,027 (0.11) 50 (1.67) 15.31 0.27 0.19
N.A. 42,870 (0.39) 102 (3.41) 8.76 0.38 0.21
Total 11,028,260 (100.00) 2,995 (100.00) 1.00 0.32 0.19
Exonic nonsyn 11,739 (45.46) 52 (47.71) 1.05 0.35 0.20
syn 13,662 (52.91) 53 (48.62) 0.92 0.29 0.18
stopgain 52 (0.20) 2(1.83) 9.11 0.45 0.24
stoploss 10 (0.04) 0 (0.00) - - -
N.A. 359 (1.39) 2(1.83) 1.32 032 0.19
Total 25,822 (100.00) 109 (100.00) 1.00 0.32 0.19

Local SNPs and cis-eQTLs that affect mRNA transcripts are counted within each gene-based functional category (upper panel) and for each protein consequence {lower
panel).

Enrich: the fold change in proportion that each group constitutes among cis-eQTLs compared to among all local SNPs.

The category “Exonic” does not include 5" and 3’ untranslated regions (UTRs); “Upstream” and “Downstream” each includes regions within 1 kb from transcription start
or end sites of genes, respectively; “Splicing” includes SNPs 2 bp from exon-intron splicing junctions and within an intron; SNPs 2 bp from a splice junction and within
an exon are designated “Exonic”); “Intronic” includes SNPs in introns, but not those 2 bp from exon-intron splicing junctions; “nonsyn” indicates a SNP in an Exonic that
is non-synonymous; “syn” indicates an SNP in an Exonic that is synonymous; “stopgain” indicates an SNP in an Exonic and with a variant that causes the creation of stop
codon; “stoploss” indicates an SNP in an Exonic and with a variant that eliminates a stop codon.

N.A. means “Not Available” and includes SNPs that were found in a gene, but that could not be assigned to a specific functional category.

Totals for gene-structure-based classification and protein consequences are shown in bold font.

doi:10.1371/journal.pone.0100924.t002
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PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | 100924

166



Large-Scale East-Asian eQTL Mapping

< A 2 ]
H
© I
™ . o Lo
s » . i ¢ .
: & Do I: :
® o . ] . e N
o o . o Y T
L o7
A 5 3] AR
e . ‘ * . ¢ P I L T o
< o YRR R B R i
PRl ~ ! k.
: 3 TLT: S - DH u i‘it’
o ; 'é:&z EE;@Q ' . o PR L N AL ] I 1411 .".' e .
---o.——-—-_-q-gme Sm%(.).___..... oceme S - "_—-—'_-E,?;FR_G 61”‘56_-"- scomo
T T UL LU T T T T LELLE L L U] T T
(kb) -400 -200 0 2oown 0 200 400 (kb) -400 -200 0 ®ooom 200 400
OVOITO QOO
—O= == T
ooxfe coxfe
Upstream In gene §§53§ Downstream Upstream In gene §§53§ Downstream
N=1,004 N=1,334 WEun"% N=657 N=1,004 N=1,334 WEe°2 N=657
o oo
Q
< 1.0 < 1.0
c
208 5087
™ é / "g
: 206 %0.6
B < 2 o
© 0.4 =04
= | &
£ | 8
302 3 0.2
1 0.0 — 0.0
-5 00 5 0.050.100.20 0.501.0 2.0 -5 00 5 0.1 0.2 05 1.0
Distance (kb) 18l Distance (kb) R?
~— ingene (1,334) — ingene (1,334)
— (0,5](375) —— (10, 100] (875) — (0,5](375) —— (10, 100] (875)
— (5, 10] (182) —— (100, 500] (228) — (5,10] (182) —— (100, 500] (228)

Figure 5. Relationships between effects of ¢/s-eQTLs and distance from genes. |B| values (A) and R? values (D) of cis-eQTLs that affect mRNA
transcripts are plotted against distances from the respective target genes by scatter (non-transcribed regions) and by box-and-whisker plots
(transcribed regions). eQTLs in transcribed regions are shown for each gene-structure-based category. The number following each category name
represents the number of cis-eQTLs classified into that category. Negative distance values indicate that the eQTL is upstream of the target gene, and
positive values indicate that it is downstream, regarding transcriptional directions. Distributions of distances are represented by box-and-whisker
plots below the scatters. Magnified view for <5 kb of genes is shown for |B| (B) and R? (E). Cumulative distribution of |B] (€) and R? (F) of eQTLs are
shown for each division of eQTLs; each division represent a defined distance (kb) from the respective target gene. The number in the parentheses
following each distance range in the legend is the number of cis-eQTLs identified in that range. The X-axis is a log scale. One eQTL located within a
gene (C160rf55) that was assigned function of “downstream” is shown as “unknown”; therefore, the number of “In gene” eQTLs shown in (A) and (D)
is the sum of the numbers of Exonic, Splicing, Intronic, 5" UTR, 3’ UTR, and N.A. in Table 2 plus 1.

doi:10.1371/journal.pone.0100924.g005

Trans-eQTL analysis 2D and Table 1). The number of #ans-eQTLs with |B| values

P values of all tests for distant SNPs were distributed almost larger than 0.3 was 118 for all transcripts, which covers 0.39% of
uniformly with a slight excess of small P values, suggesting that all tested transcripts; additionally, each #ans-eQTL had an R
only a small fraction of distant SNPs affected transcriptional value larger than 0.1 (Table 1). The ratio of the number of zans-
regulation (Figure S1B). With a stringent multiple-testing correc- eQTLs to the number of ¢s-eQTLs at the same cutoff values of
tion (P<1.15E-12) and excluding redundancy due to LD and [B| or R® tend to be smaller as the cutoff value became larger
excluding possible false positives because of cross-hybridization to (Table 1), indicating strong effects are more abundant in cis-

local regions (see Methods), we identified 165 combinations of eQTLs. All the 165 trans-eQTL transcript pairs are provided in
independent trans-eQTLs and transcripts that comprised 114 File S1.

unique transcripts (74 genes) affected by 105 unique #rans-eQTLs, We assigned RegulomeDB classes [19] to #rans-eQTLs, and
and these frans-regulated transcripts represented 0.4% of all tested tested a trend in the same manner as cis-eQT'Ls. Unlike cis-eQTLs,

transcripts (Table 1). Large trans-eftects were identified (Figure 2C,
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we did not observe statistically significant trends in means of R?
values (P=0.99) or in means of |B| (P=0.92).

Multi-regulatory eQTLs

A ¢is-eQTL that is associated with expression of multiple genes
might indicate the existence of a long-range enhancer/repressor
that influences the expression of a cluster of genes in a region. We
identified 6 cis-eQTLs that were each associated with expression
levels of three or more mRNA-coding genes (Table 3). These
multi-regulatory cis-eQTLs were each associated with the regulat-
ed transcripts in the same direction (Figure S4A).

A trans-eQTL that is associated with the expression of multiple
genes is a potential master regulator. Our #ans-eQTL map
indicates that there are some frans-eQXTL hotspots that were
involved in multiple genes across the genome (Figure S3). We
identified 5 #rans-eQTLs that were each associated with three or
more mRNA-coding genes (Table 3). Rs7801498 was also
identified as a c¢is-eQTL for two genes (LRWDI and ORAI2).
Notably, again, these multi-regulatory #rans-eQTLs were each
associated with the regulated transcripts in the same direction

(Figure S4B).

Replication analysis with independent studies

We compared our eQTLs to a meta-analysis of eQTL studies of
whole blood samples conducted by Westra et al. [20]. They
analyzed samples from 5,311 individuals from European popula-
tions. We focused on 15,733 genes that were commonly tested in
both studies. At FDR<0.05, 10.6% of the genes were found c¢is-
regulated in both studies; 60.9% of 2,750 cis-regulated genes in this
study were replicated; and the concordance rate (i.e., consistently
cis-regulated or non-cis-regulated in both studies) was 68.8%. The
concordance rate increased as FDR thresholds became more
stringent up to 74.4% at FDR<1E-06. The replication rate of our
cis-regulated genes was significantly associated with median non-
adjusted expression levels (logistic regression P<2E-16, log
OR =0.14), but not with SD (P=0.14). 45.2% of 3,106 pairs of
our ¢is-eQTLs (including SNPs in 7°>0.8) and genes tested in the
meta-analysis were replicated. For replication of trans-eQQTLs we
found 978 distant SNP-transcript pairs in our results that
corresponded to #rans-eQTL-gene pairs identified in the meta-
analysis. Six pairs were significant at P<5.1E-05, which
corresponds to Bonferroni-corrected P=0.05 for 978 tests (Table
S3). Particularly, trans-eQTL for CALDI was replicated at the
original significance level (P=5.30E-16). Regarding that only the
limited number of SNP-gene pairs were tested in common with the
meta-analysis for trans-eQTLs, we also compared our #rans-eQTLs
with those identified for whole blood samples obtained from 76
Japanese individuals [17]. Over 8.6 billion tests for SNP-gene pairs
were performed in both studies. Of the common tests, 41 and 2
pairs were identified as #rans-eQTLs in the current and previous
studies, respectively. We identified 1 #rans-eQTL-gene pair exactly
consistent between the studies (rs4487686 for POLRZJ4). Regard-
ing the number of performed tests, identifying one consistent result
by chance is extremely unlikely (Fisher’s exact test P<5E-08).

Application of the eQTL map to interpretation of GWAS
results

eQTL maps improve interpretation of GWAS results by linking
SNPs and genes whose expressions are actually altered. We used
previously published GWAS of Crohn’s disease to comprehen-
sively illustrate how our eQTL map improves interpretation of
GWAS results. We identified 12 records for which our eQTL
maps were informative for interpretation among all 220 records
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for Crohn’s disease obtained from the NHRGI GWAS Catalog
(http:/ /www.genome.gov/ gwastudies/) (Table 4). We define the
following four informative cases for results of applying our eQTL
map to GWAS results; a GWAS result is classified into Case 1
when the eQTL map may suggest different possible interpretation
for GWAS, Case 2 when the eQTL map supports the
interpretation provided by GWAS, Case 3 when the eQTL map
helped to prioritize multiple genes inconclusively reported by the
GWAS, or Case 4 when a trans-effect of GWAS-identified SNP
was suggested (see supplementary note in File S3 for detailed
definition).

For an example of Case 1, an intergenic SNP, rs694739, was
identified in a GWAS of Crohn’s disease (record 3 in Table 4); the
study reported PRDX5 and ESRRA as putative causative genes
[21]. The GWAS-identified SNP was found in LD (*=0.85) with
a cis-eQTL (rs600377) for CCDCE8B in our eQTL map (B =-0.26,
P=1.0E-06). A cis-eQTL was identified for PRDX5, but the cs-
eQTLs for PRDX5 and CCDC88B were not in LD (*=0.01); and
after correcting for the genotypes of the GWAS-identified SNP,
the cis-effect on CCDC88B expression was not significant
(P,=0.51). Therefore, given the eQTL map, the most likely
causative gene was CCDC88B. Based on our analyses, 6 of the 12
records were classified into Case 1, and thus, in each of these
records, the eQTL-suggested gene should also be considered as
another candidate gene.

Four of the 12 records were classified into Case 2. Three
intergenic SNPs (rs7714584, rs11747270, rs13361189) were each
reported in GWAS [21-23]; and in each study, IRGM was
suggested as the candidate gene (records 8-10 in Table 4). All of
these SNPs were each in perfect LD (* =1.00) with a cis-eQTL
(rs1428554) that influenced expressions of IRGM (B=-0.40,
P=3.4E-13). None of the three SNPs were in LD (*>0.8) with
any other ¢is-eQTLs that affected any other gene. Therefore, our
eQTL analysis supported the conclusions of the GWAS.

As an example of Case 3, a GWAS (record 11 in Table 4)
identified rs4656940 (in the intron of CD244) reporting two
candidate causative genes (CD244 and ITLNI) [21]. The reported
SNP was in perfect LD with a cs-eQTL (rs11265498) that
influenced expressions of ITLNI (B=—0.67, P=2.4E-17), where
no cis-eQTL was identified for CD244. Therefore, our eQTL map
indicated that /TLNI was the most likely causative gene. Our
eQTL map helped to prioritize candidate genes for two of 12
records.

Any records for Crohn’s disease were not classified into Case 4. In
all GWAS records, we identified 13 Case-4 records (File S2). For
instance, rs1354034 (in the intron of ARHGEF3, on chr3) was
reportedly associated with platelet counts and mean platelet volume
[24,25], and ARHGEF3 was identified as a putative causative gene.
In our eQTL map, the reported SNP was not associated with the
expression of ARHGEF3 or any other tested gene on the same
chromosome, but with CALDI on a different chromosome, chr7
(B=-0.48, P=5.3E-16). For another example, rs2517713 (interge-
nic, on chr6) was identified in a study of nasopharyngeal carcinoma
[26] and HLA-A was reported as a putative causative gene. In our
eQTL map, the reported SNP was not associated with the
expression of HLA-A or any other tested gene on the same
chromosome, but of NMRSV2 on a different chromosome, chr20
(B=-0.21, P=2.2E-15). Notably, decreased expression of NRSNZ
was reported to be associated with hepatocellular carcinoma [27].

Similarly, we analyzed 10,076 (8,069) GWAS records (unique
SNPs). We identified 386 cases in which cis- or trans-effects were
identified for the reported SNPs, and classified each into one of the
four cases; we found 191 (148) Case-1 records, 97 (80) Case-2
records, 85 (60) Case-3 records, and 13 (6) Case-4 records. We
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Table 3. Multi-regulatory cis-eQTLs and trans-eQTLs.

LD block
eQTL Chr Position MAF ‘HWE-P ~-Start End Length = - Gene Symbol .
cis
rs7522860. e 156,275,281 0.49. - 0.644 © 156,208,230 156,314,627 106,398 TMEM79;SMG5;C10rf85;PAQR6
r56‘4641”03‘ 7 "(50,478,385 ’037V 0.711 ‘ 150,476,888 ‘ 150;478,385 a i,49’3 fMEMI76§;7"MEM776A;ABP1
r54390300‘ 10 60,144,207 -047 0.817: 60,144,207 : 60,'168,003 ; '23,797 IPMK'UBEZDL‘TFAM’
r‘52416'549‘ o ’12 ﬁ,325,864 0.24 0.116 HH,O4VS,’512 11,349;454 3(;’3,943 TA52R74;TA52R30,;PRBT
rs35969491~ S 2 711,339,020 024 Sen0,084 11,045,512 11,349,454 303,943: TASZRIO}PRR4;PRH2;PRB4
rs?226263 - 17 o '44,2514;884 6.32 - O.T;I;I 44,788,3@ 44,853,872 65,563 ' WN‘T3;ARL7V7kB;AF'\’L17'A;N‘SkF‘
trans s po S S o S el : o
rs1 1671‘1 766 ‘ 1‘ ’ 16‘3‘0,‘09?;,‘1 65’ ‘ ‘ 0075 0.‘3‘969 . 160,093,165‘ 160,093,“'I 65’ '1 /’7’"GA7’,‘MC‘1’R;’FAMZZG‘
rs11718621 3 140,362,122 0288 1.0000 40362,122° 40,463,063 100,942~ DIRCI;MAB21L2,PRSS36; ~ -
o : : : : b L - [ L HIST2H2BEKRTAP19-2,FSDI;LRRDT
rSé7739"|7 3 ‘ 4,0,469,254’ . 0492 04881 ‘ 40,373,25§ o 40,’498,845‘ . ‘ 1'25,5’87 DIRCIV;MAB2’1L2;‘PR5336;‘ “
HIST2H2BF;NEURL;KRTAP19-2;FSD1;LRRD1
17801498 .7 . 102,089,595 0368 . 08039 102,089,595 102,089,595 . © 1 MUCHGFRATMIOXGYPA
r‘5‘1’6873’415 ’ ‘ 14 92,‘5’5VS‘,i71 0‘3\80“ o ’0;0097 ’\92,4.34;957 92,558,171 - \123,2i 5 ‘ GA‘DD‘4SGI};"I;S/O)\(73;fFéB;EIF2Ci

Chr, Position: chromosomal positions of eQTLs; MAF: minor allele frequency; HWE-P: Hardy-Weinberg Equilibrium test P value; LD block: range in which SNPs in LD (r*>>0.8) with the eQTLs exist.

doi:10.1371/journal.pone.0100924.t003
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Table 4. Summary of GWAS records associated with Crohn’s disease and eQTL mapping results.

Suggested genes ‘ SNPs eQTL statistics Top local SNP for GWAS gene
Case  .Record GWAS - eQTL ) GWAS : eQTL 2 B P P, SNP [ P 7
Case 1 1[21] CCR6* RNASET2 5415890 rs400837 0.99 -0.36 2.7E-39 0.87 Not tested
2121 FADS1 : FADS2 15102275 rs108499 097 016 326100 074 rs174570 017 6.2E-07 0.99
31211 PRDX5  ccocsss 15604730 rs600377 085 -026  10E-06 051  rs2286614 0.42 45E-23 0.01
; ESRRA 15641811 0.06 ns. 0.01
4121 IKZF3  GsDMB 152872507 151008723 098 038  69E38 081  rs56030650 0.05 ns. 0.7
ZPBP2 : : : 1562065216 -009 . ns. 0.01
ORMDL3 151054609 -018  36E-14 0.98
: GSMDL? ! Not tested
522] ORMDL3  GsDMB 152872507 rs1008723 098  —038  69E-38 081  rs1054609 ~0.18  3.6E-14 0.98
611 RTELT : ZGPAT 154809330 156011058 100 009 2.9E-07 100 rs2252258 -0.05 ns. 0.002
SLC2A4RG rs310609 ~0.07 ns. 0.02
; TNFRS-F6B® Not tested
Case2  7[21] pLCLT ' pLCLY 156738825 151866664 098  —025  30E07 081  rs1866664 025 3.06-07 1
: 81 RGM. . IRGM L rs7714584 151428554 100 —040 34E-13 . 098  rs1428554 040 34E13 1
9[22] 1RGM IRGM 1511747270 151428554 100 ~040  34E-13 098  rs1428554 -040  3.4E-13 1
; 100231 - IRGM : IRGM rs13361189 . 151428554 100 —040  34E13 098 51428554 ~040  34E-13 1
Cased 111211 mNe TN 154656940 1511265498 100 —067  24E17 100 rs11265498 -067  24E-17 1
CD244 : : : £ ; 1s574610 -0.12 ns. 0.16
12146]  RNASETZ® RNASET2 152149085 15400837 099  —036  27E-39 087  rs400837 -036  27E-39 1
‘ FGFRIOP. Eh i : e 173039162 068 7.5E-45 0078
CCR6® ‘ o ‘ ‘ Not tested
MIR3939° v e : ' Not tested

*The GWAS-reported gene was not included in our study.

hGWAS-reported genes that match the eQTL-suggested genes in Case 3.

r*: correlation of genotypes for linkage disequilibrium between the GWAS-identified SNP and cis-eQTL (in the “SNPs” column), or between the top local SNP for GWAS gene and cis-eQTL (in the “Top local SNP for GWAS Gene”
column).

P.: P value of a conditional regression on genotypes of GWAS-identified SNP.

Genes suggested by GWAS and our eQTL map are listed in the “Suggested genes” column; eQTL statistics are listed in the “eQTL statistics” column; most significant local SNP for the GWAS-reported gene is shown in the “Top local
SNP for GWAS gene” column.

n.s: not significant.

doi:10.1371/journal.pone.0100924.t004
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identified 6 lincRNAs in the Case-1 records that were most
significantly associated with GWAS-reported SNPs. In summary,
our eQTL map was informative for 3.8% of the GWAS records,
each of which was classified into one of the four cases; 1.9% into Case
1, 1.0% into Case 2, 0.8% into Case 3, and 0.1% into Case 4. We
provide the results of our application of our eQTL map to the
GWAS records in File S2.

Discussion

This study identified the largest number of eQTLs for East
Asian whole blood samples to our knowledge. We identified 3,804
¢cis-eQTLs and 165 trans-eQTLs. Cis-effects were previously found
for 44% (6,418 genes) of tested genes [20] for Caucasian whole
blood samples. In the current study, cis-effects were found for
16.9% of the tested genes, which is in line with estimated powers in
a previous study [28].

We identified 74 genes with trans-effects, which constituted 0.4%
of tested genes. We believe that we underestimated the proportion
of true trans-effects because we used the most stringent corrections
for multiple testing. In fact, the smallest R? for any of the frans-
eQTLs (RQZO.IG) was 2.4-fold greater than the smallest R® for
any identified ¢is-eQTLs (R® = 0.065).

We analyzed and characterized our eQTLs in various aspects;
1) ¢is-eQTLs in terms of gene structure, epigenetic factors, and
distance from genes; 2) multi-regulatory ¢QTLs; 3) eQTLs for
mRNA as compared to those for lincRNAs; 4) application of
eQTL maps to GWAS results; and ) replication with independent
samples.

1) Cis-eQTL analyses

The comparison between the genic and intergenic cis-eQTLs
suggested that factors involved in expression levels are more
enriched and stronger in genic regions (those located within a gene
or within 1 kb of a gene) than intergenic regions (>1 kb from
genes). All genic subcategories were each overrepresented
compared to the intergenic regions (Table 2). We also showed
that upstream and 5'-UTR regions particularly had strong effects
compared to other genic regions. It would be reasonable to
consider that upstream regions are important because transcrip-
tion factor binding sites and transcription regulatory modules are
enriched in 5’ flanking regions of genes. Strong effects in 5" UTRs
would imply that post-transcriptional regulation via 5" UTRs has a
particularly strong impact on expression levels. The significant
association between R* of ¢is-eQTLs and epigenetic classification
indicated that epigenetic factors (e.g., transcription regulatory
modules) have influences on transcription that depend upon
nucleotide sequences. Interestingly, the trend was not observed for
IBI-

92% of ¢is-eQTLs were within their target genes or in 100 kb
flanking regions, which is consistent with previous studies [3,7];
and it was also consistent that most of large-effect eQTLs were
located within 20 kb [29].

2) Multi-regulatory eQTLs

We identified 6 and 5 multi-regulatory c¢is- and frans-eQTLs,
respectively. We note that a pair of multi-regulatory ¢is-eQTLs on
chr12, rs2416549 and rs35969491, and another pair of multi-
regulatory trans-eQTLs on chr3, rs11718621 and rs6773917, each
are likely to indicate the same locus because they were each close
(*=0.99 and 0.39, respectively) and the regulated gene sets are
similar. Multi-regulatory eQTLs may comprise two types of
eQTLs; some may be true master regulators, while others may
each comprise a group of eQTLs in strong LD, each of which
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regulates one gene. Further studies are needed to identify more
multi-regulatory eQTLs so that they would be further analyzed in
terms of LD structure and effect sizes comparing with eQTLs
regulating one gene. Presence of frans-acting master regulators has
been increasingly suggested[30-32]. However, it is very challeng-
ing to identify master regulators because statistical power to detect
trans-eQTLs is low because of multiple testing corrections.
Interestingly, with the stringent threshold of this study, fans-
regulated genes were often associated with multi-regulatory frans-
eQTLs (Figure S5), which may suggest multi-regulatory frans-
eQTLs tend to have large effects.

3) mRNA and lincRNA transcripts

The importance of lincRNAs to phenotypic variation is
increasingly recognized; nevertheless, previous eQTL studies
focused only on coding genes, and did not include analyses of
lincRNA transcripts. Here, we examined the genetic causes of
variation in expression of coding genes and of lincRNAs. Coding
genes and lincRNAs exhibited different characteristics; for
example, the proportion of cis-regulated transcripts was 3 times
larger for mRNAs (15.1% vs. 4.8%, Table 1); sequence variations
influence coding gens more than lincRNAs. Nevertheless, eQTLs
for lincRNAs should not be ignored because still 5.3% of
lincRNAs were regulated by either ¢is- or trans-eQTLs, and the
mean R? values of ¢is- or trans-eQTLs regulating lincRNAs were as
large as those regulating mRNAs (Table 1, Wilcoxon’s rank-sum
P=0.094), and |B| values were even larger (Table 1, Wilcoxon’s
rank-sum P=3.2E-14), which might indicate that lincRNAs are
more variable than mRNAs, while the eQTL effects were similar
in terms of R These differences and similarities between coding
transcripts and lincRNAs may indicate interesting mechanisms
underlying the expressional regulations.

4) Application to GWAS results

The rationales behind utilizing eQTL mapping to interpret
GWAS are that evidence from GWAS supports that transcrip-
tional alterations contribute to risks of complex diseases; 1) a
substantial fraction of GWAS-identified SNPs fell intergenic
regions; and 2) eQTLs identified in previous study are enriched
in GWAS-reported SNPs. Indeed, our eQTLs were also enriched
in GWAS-reported SNPs: 1.7-fold for c¢is-eQTLs (one-sample
proportion test P<2.2E-16) and 3.7-fold for #rans-eQQTLs (one
sample proportion test P=3.5E-15). Interestingly, trans-eQTLs
were more enriched than cis-eQTLs. We identified 386 records for
which our eQTL map may provide another evidence to interpret
GWAS results. We emphasize that our results of applying our
eQTL map to GWAS interpretation can only suggest another
possibilities for candidate causative genes based on expressional
variations and that the significant association with expression does
not necessarily indicate the gene is causative (an example was
shown for RPS26 and type I diabetes [33]). Thorough and close
assessment is required for each case to conclude what gene is truly
causative. Still, reviewing previous GWAS results while referring
to ¢QTL maps, not only regarding cis-eQTLs but also frans-
eQTLs, would be worthwhile, and eQTL maps will provide useful
information for interpreting and understanding future GWAS
results as well.

5) Replication

Cis-regulated genes identified in our study were in a good
concordance with those identified by Westra ¢t al. [20]: 60.9% of
our cis-regulated genes were replicated. The 60% replication rate
seems reasonable for whole blood samples because, in the current
study, we replicated 56% of 112 cis-regulated genes identified in a
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previous study [17] for whole blood samples from 76 Japanese
individuals. On the other hand, replication of #rans-eQTLs was
challenging; only <<1% of trans-eQTLs identified by Westra et al.
[20] were replicated in the current study. Variation between
different populations might be important for trans-eQTLs because
we could replicate one of two #rans-eQTLs in the previous study for
the Japanese population [17]. We speculate the reason of low
replication for trans-eQTLs as follows: Mechanisms of trans-effects
of many sequence variations are considered as that a variant
induces transcriptional alteration in a ¢is manner or functional
change by substituting amino acids of proteins that involve in
transcriptional regulation of other genes, and then, the locally
induced change causes changes in expression levels of other genes
[34]. Although frans-regulatory mechanisms are largely unknown,
such a regulatory system may depend on a network of genes in
which the genes interactively and cooperatively work in the same
biological process; consequently, individual out-put gene expres-
sion levels are a cumulative result of a net effect of the whole
network which could involve complex feedback mechanisms. The
state of such a network should change dynamically with cell types,
environmental conditions, and time. This is one of the reasons for
the low reproducibility of #rans-eQTLs. It should be noted that our
trans-eQTLs were identified under just one set of conditions;
therefore, the validity of applying our results to situations that
represent different conditions needs to be carefully evaluated.
However, we believe that our trans-eQTL analysis provides general
insights into trans-eflects, such as how effect magnitudes, B or R,
are distributed.

Methods

Subjects and ethics statement

The study subjects were 301 apparently healthy individuals
residing in Nagahama City, Japan. All participants provided
written informed consent. The study protocol was approved by the
Ethics Committee of Kyoto University Graduate School and
Faculty of Medicine.

SNP genotyping and quality control

We extracted DNA from leukocytes and carried out genome-
wide SNP genotyping with the Infinum HumanOmni5Exome
BeadChip (Illumina, Inc., San Diego, CA, USA). We excluded any
SNP with a missing rate >1%, Hardy-Weinberg equilibrium test P
value<<1E-07, minor allele frequency <5%, or that mapped to a
sex chromosome. Ultimately, we examined a final set of 1,425,832
autosomal SNPs in the analysis. We excluded three samples from
the analysis; one was excluded because of unsuccessful DNA
extraction, and two others were excluded because of kinship with
other sample. The snpStats package (http://www.bioconductor.
org/packages/release/bioc/html/snpStats.html) in Bioconductor
[35] was used to conduct the principal component analysis, and no
subjects were identified as oudiers relative to the HapMap JPT
(Figure S2).

Gene expression profiles

Whole blood was collected from each participant when in a
non-stimulated state; PAXgene Blood RNA Kits (QIAGEN,
Hilden, Germany) were then used to collect samples of total
RNA. For each participant, we used the Low Input Quick Amp
Labeling Kit (Agilent Technologies, Inc., Santa Clara CA, USA)
according to the manufacturer’s protocol and 100 ng of total RNA
to synthesize each labeled ¢RNA sample. We used Gene
Expression Hybridization kits (Agilent Technologies, Inc.) to
hybridize labeled ¢cRNA to arrays from SurePrint G3 Human
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Gene Expression 8 x60 K Microarray Kits (Agilent Technologies,
Inc., design ID: 028004); Gene Expression Wash Packs (Agilent
Technologies, Inc.) were then used according to the manufactur-
er’s protocols to wash each microarray. Each microarray was
scanned with a DNA Microarray Scanner (Agilent Technologies,
Inc.), and Feature Extraction Ver.9.5.3 (Agilent Technologies,
Inc.) was used to measure signal intensity.

Normalization and exclusion of expression data

The data were processed using the GeneSpringGX11 as follows.
For each set of duplicated probes, the mean signal intensity was
calculated. Signal intensities less than 1 were each set to 1, and
each signal intensity value was transformed by taking the binary
logarithm. Normalization was carried out by a 75th percentile
shift; this normalization procedure was recommended by Agilent.
After this normalization, the 75th percentile signal intensity of
each chip was set to 0, at which point the signal values ranged
from ~7.3 to 12.3 with a median (mean) of 2.6 (-2.1).

We excluded 5,550 probes for which we were not able to obtain
specific positions on the chromosomes of their target genes and
1,488 probes that were mapped on the sex chromosomes. We did
not filter any probes based on expression abundance because the
information that the transcript is not expressed might be of
biological importance. However, signal values for low or non-
expressed genes are often unreliable; therefore, we show median
expression values for our eQTL-regulated transcripts provided in
File S1; and to interpret the expression values Figure S3 shows
how expression values were distributed for expressed or non-
expressed transcripts.

Annotation of expression microarray probes

Annotation for gene expression probes of our chip (Agilent
Technologies, Inc., design ID: 028004) was obtained from eArray
(release date: 2012/04/11, build version: hgl9:GRCh37:Feb2009,
available online https://earray.chem.agilent.com/earray/). We
defined three groups of probes: probes for mRNA transcripts,
probes for lincRNA transcripts, and probes for other transcripts.
Probes were classified into the mRNA group if they had assigned
RefSeq NM accession numbers. lncRNA probes were indicated as
such in Agilent’s annotation. All the other probes were classified
into the other group. The transcription start and end sites of genes
represented by the probes that were classified into mRNA or other
were obtained from a seq_gene.nd file downloaded from the
NCBI website (http://www.ncbi.nlm.nih.gov/accessed on 2013/
02/20); and those represented by lincRNA probes were obtained
from either Agilent’s annotation or lincRNAsTranscripts table
downloaded from the UCSC Genome Browser (http://genome.
ucsc.edu/accessed on 2013/04/09).

Annotation of SNPs

BLAST was used to map probes from the SNP genotyping array
into GRCh37; a rsID was assigned to each SNP based on its
mapped chromosomal position on GRCh37. We defined a
distance between a SNP and a gene as base pairs between the
chromosomal position of the SNP and the position of the nearest
transcription start/end site of the gene. If the SNP was located
within the gene, then the distance was set to 0. Directions of genes
were considered, and the sign associated with each distance
indicated that the SNP was located upstream (negative) or
downstream (positive) of the gene. ANNOVAR version 2013-05-
09 [36] (http://www.openbioinformatics.org/annovar/) was used
to annotate SNPs for classification into gene-structure-based
categories; the RefSeq Gene (build version 19) was used as the
reference. We annotated SNPs with ANNOVAR’s default
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definitions and precedence of SNP functional categories il a SNP
was located within its target gene or within 1 kb-flanking regions
of its target gene, and the gene name in the ANOVVAR
annotation matched the target gene (if the gene name did not
match, no specific functions were assigned); and otherwise, the
SNP was categorized into intergenic (see supplementary note in File
S3 for details). Using this method, we would classify an eQTL as
intergenic if it was located outside its target gene even though it
was located within another gene; in a different example, an eQTL
in an intron of its target gene was classified as intronic even though
it was located in any other category of another gene.

We classified each intergenic SNP into one of the regulatory
potential classes as defined based on epigenetic information
available in public databases by RegulomeDB [19] for dbSNP132
(downloaded from http://regulome.stanford.edu/on 2013/07/
24). We were able to assign a regulatory classification to each of
1,396,242 SNPs (97.9% of the tested SNPs). We considered seven
categories (Category 1-7) of regulatory classes as defined by the
RegulomeDB, but we did not use the 15 subcategories (la—f, 2a—c,
3a~b, 4-7). Briefly, lower scores indicated more evidence for the
SNP being located in a regulatory region. Each known eQTL with
known additional epigenetic functional annotation was assigned to
Category 1. Category 2 requires direct evidence of binding
through ChIP-seq and DNase. Category 3 requires a less complete
set of evidence of binding. Categories 4-6 each comprised SNPs
with minimal evidence of effects on transcription factor binding;
Category 4 SNPs had DNase and ChIP-seq evidence; Category 5
SNPs had DNase or ChIP-seq evidence; and Category 6 had any
single annotation not categorized above. Finally, Category 7 SNPs
had no known evidence of TF binding.

eQTL mapping

We performed surrogate variable analysis [37] to identify
unmodeled latent factors that cause heterogeneity in expression
data. We identified two significant surrogate variables with age
and gender used as known covariates using sva package (http://
bioconductor.org/packages/release/bioc/html/sva.html) in Bio-
conductor [35,38]. We corrected expressions of each transcript for
age, gender, and the two surrogate variables by fitting a multiple
linear model in R version 3.0.2 (http://www.R-project.org/). We
further excluded 4,972 probes that were mapped to regions with
SNPs that was found polymorphic in the HapMap JPT samples or
our study subjects because polymorphisms in such regions can
alter hybridization efficiency; consequently, signal intensities may
not reflect the actual amount of RNA [39-42]. The remaining
30,395 probes were included in the analysis. We assumed an
additive model for all SNPs, and we coded each SNP genotypes as
0, 1, or 2, to represent the number of minor alleles in each
individual. PLINK v1.07 [43] (http://pngu.mgh.harvard.edu/
purcell/plink/) was used to perform the association analysis
between each adjusted transcriptional phenotype and each of
1,425,832 autosomal SNPs with 298 individuals.

We define a local SNP as a SNP located on the same
chromosome and within 500 kb from the nearest transcription
start/end site of the gene that encodes the transcript, and a distant
SNP, otherwise. We defined a cs-eQTL as a local SNP that
significantly affects expression of a gene; similarly we defined a
trans-eQTL as a distant SNP that significantly affects expression of
a gene. We examined 16,986,695 local SNP-transcript pairs
(11,028,260 for mRNAs, 3,485,407 for lincRNAs, and 2,473,028
for other transcripts). The mean number of local SNPs per probe
was 560 (minimum !, maximum 4,630). We examined about 43
billion distant SNP-transcript pairs. To identify cis-eQTLs, we
estimated FDR with the permutation approach as described by
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Westra et al. [20]. Briefly, sample identifiers were permuted for 10
times, and only the local SNP with the smallest P value for each
transcript was used to simulate the null distribution. With this
approach we estimated FDR only for the SNP with the smallest P
value for each transcript, and local SNPs with the FDR smaller
than 5% were identified as cis-eQTLs. Therefore, no more than
one ¢s-eQTL was identified for each transcript. If multiple SNPs
in perfect LD (=1) were the most significant with the same P
value, the middle SNP was used to represent the eQTL. To
exclude possible false discoveries caused by outliers or violation of
normality assumptions, we performed Kruskal-Wallis test [44], a
non-parametric test, and excluded cis-eQTL-transcript pairs with
P value>0.00015 (see supplementary note in File S3).

To identify trans-eQTLs, we used the Bonferroni correction for
multiple comparisons among the approximately 43 billion tests;
only distant SNPs with nominal P values smaller than 1.15E-12,
which corresponds to a family-wise error rate of 5%, were
considered significant. We applied intensive exclusion criteria to
obtain reliable #rans-eQTLs. First, we excluded trans-eQTLs that
may only capture cs-effects because of LD by a conditional
regression on cis-eQ)TL genotypes (i.e., excluded when residuals of
fitting eis-eQTL genotypes were not significantly associated with
trans-eQTL genotypes by P<0.05). This analysis was performed
when a trans-eQTL and its target transcript were located on the
same chromosome, and a cis-eQTL was also identified for the
transcript (cis-eQTLs excluded by Kruskal-Wallis tests were also
considered). Second, we excluded redundant trans-eQTLs because
of LD with other trans-eQTLs by sequential conditional regres-
sions. For each transcript, trans-eQTLs on the same chromosome
were iteratively tested starting from the trans-eQTL of the smallest
Pvalue for the transcript. If significant (£<<0.05), the frans-eQTL is
kept and residuals were used for the next iteration. If not, the #rans-
eQTL was excluded as redundant, and residuals were not taken
for the next iteration. After this procedure, we tested trans-eQTLs
that were found significant in the sequential conditional regression
all together with a multiple linear regression, and non-significant
trans-eQQTLs (P>0.05) were further removed. Third, in order to
confirm that the trans-eQTLs were not false positives because of
cross-hybridization of probes to unexpected transcripts near the
trans-eQTLs, we mapped the probe sequence to the flanking
region (£500 kb) of its trans-eQTL by SHRIMP v.2.2.3 [45] for
each probe-trans-eQT'L combination. The human reference DNA
sequence (GRCh37.p5) was downloaded from the NCBI (http://
www.ncbinlm.nih.gov/). We used the same relaxed settings as
Westra et al. [20] (match score of 10, mismatch score of 0, gap
open penalty of —250, gap extension penalty of —100, and
minimal Smith-Waterman score of 30%); -m 10 -1 0 -q -250 -f-100
-h 30%. We excluded a trans-eQTL if its associated probe was
mapped to its flanking region. Fourth, we excluded low expression
transcripts whose median expression levels were lower than —4.5
because we observed deviation from the distribution of median
expression levels of ¢cis-regulated transcripts (Figure S6). The cutoff
was defined as the 5th percentile of the median expression levels of
the cis-regulated transcripts. Kruskal-Wallis tests for the remaining
SNP-transcript pairs were all significant (P<<0.00015). We used the
remaining #rans-eQTLs in the further analyses.

The approach we used to correct for multiple testing with local
SNPs differed from that used with distant SNPs because the high
peak at low P values observed with local SNPs indicated that a
substantial fraction of local SNPs were truly associated with the
expression phenotype of one or more transcripts, whereas the
uniform distribution of P values observed with distant SNPs
indicated that the null hypothesis was true for most of the tests
(Figure S1).
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Identifying multi-regulatory eQTLs

We defined a multi-regulatory cis-eQTL as a cis-eQTL that is
associated with expression levels of at least three different local
protein-coding genes (assigned RefSeq NM accessions). For this,
we did not count probes that cross-hybridize to other local genes
associated with the same ¢is-eQTL by mapping probe sequences to
the exon sequences with SHRIMP v.2.2.3 [45] using the same set
of options used for detecting cross-hybridization for trans-eQTLs
above.

Similarly, we defined a multi-regulatory trans-eQTL as a trans-
eQTL that is associated with expression levels of at least 3 different
distant protein-coding genes, after excluding cross-hybridized
probes in the same procedure as used for multi-regulatory cis-

eQTLs.

Statistical analysis for eQTLs

For comparison of mean effects of gene-based functional
categories, we excluded SNPs that we were not able to assign to a
specific category; we also excluded categories that comprised fewer
than 5 eQTLs. Values of | B| and R? were log-transformed and then
subjected to the ANOVA; the ANOVA was followed by Tukey’s
HSD test (which performs all pairwise comparisons between two
subcategories for multiple testing correction). The trend of log-
transformed || and R? values with seven RegulomeDB classes
(Classes la-f, 2a—c and 3a-b were grouped as 1, 2 and 3,
respectively) was tested with Jonckheere-Terpstra permutation test
(one-sided, 100,000 permutations) provided in clinfun package
(http://cran.r-project.org/web/packages/clinfun/index.html) in
R version 3.0.2 (http://www.R-project.org/). 7 of LD between
SNPs were computed with PLINK v1.07 [43].

Replication analysis

We downloaded the eQTL map by Westra et al. [20] from their
browser (http://genenetwork.nl/bloodeqtlbrowser/), and annota-
tion files for HT12v3 and Agilent Human Genome 4 x44 K array
from the GEO (http://www.ncbinlm.nih.gov/geo/). We matched
Entrez GenelDs to compare with the replication studies. We
referred to GWAS catalog to obtain SNPs tested for trans-eQTL in
[20] (SNPs reported by 16, July, 2011). We found 978 distant
SNP-transcript pairs in our study that corresponded to rs IDs and
Entrez Gene IDs tested in [20].

Matching eQTLs with GWAS-identified SNPs

We downloaded 16,541 public GWAS records from the
NHRGI GWAS Catalog (http://www.genome.gov/gwastudies/
accessed on 2014/04/23). We excluded 323 records with reported
P values that were not significant (reported as NS or Pending); we
excluded another 6,142 records because the reported SNPs were
not included in our tested SNPs. Ultimately, we examined 10,076
records for 8,069 unique SNPs reported by 1,436 GWAS. We
matched GWAS-reported SNPs to our ¢QTLs when they exactly
matched or were in LD (*>0.8). We excluded records if
conditional regression on genotypes of a GWAS-identified SNP
was significant £<0.05 (Iile S2) because they might be false
discoveries of trait-eQTL association where eQTL and GWAS-
identified SNP are t(wo different genetic factors [33]. When
matching gene symbols, we also searched their aliases downloaded
from the HGNC BioMart version 0.7 (http://www.genenames.
org/biomart/accessed on 2013/09/28).

Accession numbers
Our expression microarray data are available at the NCBDs
Gene Expression Omnibus under accession number GSE53351.
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Supporting Information

Figure S1 Histogram of P values of all association tests.
A) Histogram of P values obtained from the 16,986,695 association
tests between all autosomal transcripts and local SNPs. The excess
of smaller P values indicates that a substantial fraction of
associations are truly positive. B) Histogram of P values obtained
from about 43 billion association tests between all autosomal
transcripts and distant SNPs. The almost uniformly distributed P
values suggests that most of distant SNPs have no effects on
transcriptional regulation, though a slight increase at the low P
values in frequency indicates a tiny fraction of distant SNPs are
truly positive. Also see File S3 for a comment about influence of
surrogate variable analysis on the distribution.

(TTE)

Figure S2 Principal component analysis of study popu-
lation in comparison with HapMap samples. The first and
second principal components are shown. CEU: Utah residents
with Northern and Western European ancestry from the CEPH
collection; YRI: Yoruba in Ibadan, Nigeria; JPT: Japanese in
Tokyo; CHB: Han Chinese in Beijing, China; Sample: samples of
the current study.

(TTF)

Figure S3 Distribution of normalized expression data.
Distribution of normalized expression data for all 42,405 probes
and 298 samples are shown. “A” (absent) if a foreground signal is
<2.6 SD of background signal; “M” (marginal) if it was saturated,
not uniform in a spot, or not uniform among replicated probes, or
“P” (present) otherwise. The number following each class name is
the number of data classified into the class.

(TIF)

Figure S4 Regression coefficients of multi-regulatory
eQTLs. Regression coefficients, B, of each multi-regulatory cis-
eQTLs (A) or trans-eQTLs (B) are shown. Directions of effects of
each multi-regulatory eQTL are consistent.

(TTE)

Figure 85 Trans-eQTL map. A) Chromosomal positions of
trans-eQTLs are plotted against chromosomal positions of
associated transcripts. B) —logg P values of trans-eQTLs are
plotted against the respective chromosomal positions. (C) ~logo £
values of trans-eQTLs are plotted against the chromosomal
positions of associated transcripts. The horizontal and vertical
dashed lines separate chromosomes; the diagonal dashed line
indicates that the frans-eQTL is located at the same chromosomal
positions as transcripts. mRNA transcripts are shown in red;
lincRNA transcripts are shown in green; and other transcripts are
shown in black. —log|o P values are truncated at 50, and a triangle
indicate truncation.

(T1E)
Figure S6 Median expression levels of cis-regulated or
trans-regulated genes.

(11F)
Table S1 Demographic characteristics of study sub-
jects.

(DOCX)

Table S2 P values of Tukey’s HSD test.
(DOCX)

Table S3 Replicated trans-eQTLs identified by Westra
et al. [20].
(XLSX)
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File S1 Annotations and statistics of cis-eQTLs and
trans-eQTLs.

(XLS)

File S2 Results of our application of eQTL map to
GWAS records. Sheet “Casel—3” shows records classified into
Case 1, 2, or 3; sheet “Case 4” shows records classified into Case
4; sheet “Excluded” shows excluded records because GWAS SNP
and eQTL are not likely to colocalize.

(XLSX)

File $3 Supplementary notes.
(PDI)
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Effects of Smoking and Shared Epitope on the
Production of Anti-Citrullinated Peptide Antibody
in a Japanese Adult Population

CHIKASHI TERAO,' KOICHIRO OHMURA,' KATSUNORI IKARI,> TAKAHISA KAWAGUCHI,"

MEIKO TAKAHASHI," KAZUYA SETOH," TAKEO NAKAYAMA," SHINJI KOSUGI,"* AKIHIRO SEKINE,*
YASUHARU TABARA," ATSUO TANIGUCHI,? SHIGEKI MOMOHARA,? HISASHI YAMANAKA,?

RYO YAMADA," FUMIHIKO MATSUDA," ano TSUNEYO MIMORI,” ON BEHALF OF THE

NAGAHAMA STUDY GROUP

Objective. Anti-citrullinated peptide antibody (ACPA) and rheumatoid factor (RF) are markers to rheumatoid arthritis
(RA). Smoking and shared epitope (SE) in HLA-DRB1 are associated with the production of these autoantibodies in RA.
Detailed distribution and characterization of ACPA and RF in the general population have remained unclear. We aimed
to evaluate positivity of ACPA and RF in a general Japanese population and to detect correlates, including genetic
components.

Methods. ACPA and RF were quantified in 9,804 Japanese volunteers ages 3075 years. Logistic regression analyses were
performed to evaluate the effects of candidates of correlates on the autoantibody positivity. A genome-wide association
study (GWAS) was performed using 394,239 single nucleotide polymorphisms for 3,170 participants, and HLA-DRB1
alleles were imputed based on the GWAS data.

Results. A total of 1.7% and 6.4% of subjects were positive for ACPA and RF, respectively, and the 2 markers showed a
significant correlation (P = 2.0 x 1072°). Old age was associated with ACPA positivity (P = 0.00062). Sex, smoking, SE,
and other candidates of correlates did not have significant effects. Interaction between smoking and SE positivity was not
apparent, but smoking showed a significant association with high levels of ACPA (P = 0.0019).

Conclusion. ACPA and RF could be detected in 1.7% and 6.4% of the Japanese adult population without RA, respectively.
ACPA and RF were suggested to share mechanisms even in healthy populations. Old age was associated with increasing
ACPA positivity. While positivity of ACPA and RF was not associated with SE and smoking, an association between high
ACPA and smoking was observed.

INTRODUCTION found to show high specificity to RA and was able to

. . . distinguish RA from other connective tissue diseases with
Rheumatoid factor (RF), an IgM autoantibody against the higher accuracy compared with RF (1,10). Although some
Fe fraction of IgG, is a serum marker of rheumatoid arthri- studies reported functional pathogenicity of ACPA (11),
tis (RA).(l,Z). In spite pf its spec1ﬁc%ty to RA, RF appears in pathogenicity and production mechanisms of ACPA and
other diseases, especially connective tissue diseases, he- RF are largely unknown. Vigorous studies that address
patic disorders, and even in healthy populations (3-9). associations with the positivity and levels of ACPA and
Recently, anti-citrullinated protein antibody (ACPA) was RF in patients with RA identified a wide range of fac-

tors. Some are disease-specific factors, such as disease
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Distribution and Correlates of ACPA and RF in Japan

1819

Significance & Innovations

e Positivity of anti-citrullinated peptide antibody
(ACPA) in the general population is associated
with aging and high C-reactive protein level.

e Smoking and shared epitope do not have compa-
rable effect in the general population on the pro-
duction of ACPA and rheumatoid factor (RF) as
with patients with rheumatoid arthritis.

e Smoking may be associated with a high level of
ACPA, even in healthy subjects.

e Correlates should be taken into account for RF and
ACPA positivity in the general population. Novel
findings of RF and ACPA production in general
populations would provide clues to uncover the
pathophysiology of the production of these auto-
antibodies.

activity and extraarticular symptoms (12—14) and others
are disease—non-specific factors such as age, smoking, and
common variants of HLA alleles (8,15-17). Smoking was
shown to have an effect on the susceptibility to seroposi-
tive RA, especially in men (18). HLA-DRB1 is the strong-
est susceptibility locus to RA and is associated with ACPA
or RF positivity in patients with RA (19). In particular,
shared epitope (SE), an allelic group with a common
amino acid pattern from the 70th to the 74th amino acid of
the HLA-DRB1 protein (20), is strongly associated with
RA susceptibility and production of ACPA and RF in
patients with RA (15,17).

However, the distribution of these antibodies and
whether the correlates are associated with positivity of
ACPA or RF in the general population is largely unknown.
There are no reports where ACPA levels were quantified
and correlates of ACPA were analyzed in a large-scale
study of healthy individuals. Although there are reports
suggesting that the positivity of RF in healthy individuals
is influenced by age and smoking in a European popula-
tion (8,21-25), the positivity of RF and its correlates in
healthy individuals is not known in Asian populations. If
the likelihood of having RA based on positivity of ACPA or
RF is different between subgroups with and without cor-
relates, determining the distribution and correlates of
ACPA and RF in a healthy population would lead to effi-
cient screening to identify subjects at risk of RA. Moreover,
determining the distribution and correlates would give
clues for novel insights of mechanisms of production for
ACPA and RF.

Here, we quantified circulating levels of ACPA and RF
in 9,804 healthy Japanese subjects, identified prevalence,
and estimated correlates, including genetic factors, of
these 2 autoantibodies.

PATIENTS AND METHODS

Study population. This study was conducted as a part
of the Nagahama Prospective Genome Cohort for Compre-

177

hensive Human Bioscience (The Nagahama Study) (26), a
community-based prospective multiomics cohort study
conducted by Kyoto University. A total of 9,804 volunteers
in Nagahama City, Shiga Prefecture, Japan were recruited
in this study from 2008 to 2010. All participants were
asked to complete a detailed questionnaire about their
present symptoms, present illness, past history of illness,
family history, and smoking status. Written informed con-
sent was obtained from all of the participants. This study
was approved by Kyoto University Graduate School and
Faculty of Medicine Ethics Committee.

Exclusion of samples. We excluded volunteers from the
association studies if they had or have had autoimmune
diseases. Individuals who were judged from their answers
to the questionnaire to possibly have autoimmune diseases
were also excluded from the analyses. As a result, a total of
9,575 subjects were recruited for the analysis.

RA patients. A total of 2,067 patients with RA in Tokyo
Women’s Medical University, whose age at onset, sex, and
data of ACPA and RF were available, were registered in
this study. A total of 1,237 patients with RA in Kyoto
University were used for correlation analysis of genetic
components.

Quantifying of circulating autoantibody. Serum sam-
ples were obtained from all the participants. ACPA was
quantified as second-generation anti—cyclic citrullinated
peptide (anti-CCP) antibody by MesaCup CCP enzyme-
linked immunosorbent assay kit (Medical and Biological
Laboratories) (27,28). IgM-RF was quantified by latex tur-
bidimetric immunoassay, Iatro-RF II (Mitsubishi Kagaku
Medience) (29). Both autoantibodies were quantified by
SRL for healthy individuals and in Tokyo Women’s Med-
ical University for patients with RA. The cutoff levels of
the autoantibodies were according to manufacturer’s in-
structions (ACPA <4.5 units/ml, RF =20 IU/ml).

Candidates of correlates for ACPA and RF. Age, sex,
smoking status, Brinkman index (BI; number of cigarettes
a day X smoking years) as a quantitative measure of smok-
ing, alcohol consumption, body mass index (BMI), and
serum level of C-reactive protein (CRP) were selected as
candidates of correlates for ACPA and RF. They were
selected based on the previous reports of significant asso-
ciation between RA and smoking and a study from the US
analyzing correlates of anti—nuclear antibody in the gen-
eral population (30). We classified all the included partic-
ipants into 5 groups according to their age at 10-year
intervals. Logistic linear regression analysis or chi-square
test was performed to analyze the influence of candidates
of correlates on the positivity of autoantibodies. The ef-
fects of smoking in conditions with alcohol consumption
were also analyzed.

Genome-wide association study (GWAS). GWAS was
performed for 3,710 samples of participants who joined
the Nagahama Study during 2008 to 2009. A series of
BeadChip DNA array was used for the genotyping and



