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Table 6 Sensitivity analysis for the proposed BMA-bCRM approach using three different sets of
working models under scenario 2

Selection probabilities (%) for RD at the end of trial

Dose level
Average  Average  Average
Scenario percentage percentage number of
(Pejs Pij) Design 1 2 3 4 5 None of efficacy of toxicity patients
2 (25, 15)(30, 25)(35, 45)(40, 55)(45, 65)
Set 1
WM, (10, 5) (15, 15)(20, 30)(25, 45)(30, 55)
WM, (40, 25)(45, 45)(50, 60)(55, 75)(60, 80)
WM; (40, 5) (45, 15)(50, 30)(55, 45)(60, 55)
WM, (10, 10)(20, 15)(35, 20)(40, 30)(45, 50)
BMA-bCRM 12 539 301 0.2 0.1 3.7 133 12.2 439
Number of patients 12 17.4 18 5.6 43
Set 2
WM, (10, 10)(15, 15)(20, 35)(22, 50)(24, 60)
WM, (25, 25)(30, 30)(35, 40)(38, 45)(40, 50)
WM; (20, 5) (30, 15)(40, 30)(50, 45)(55, 55)
WM, (25, 20)(30, 40)(35, 45)(40, 50)(45, 55)
BMA-bCRM 39 607 305 1.3 0.2 34 13.5 12.9 44
Number of patients 9 203 16.6 7.3 43
Set 3
WM, (10, 10)(20, 15)(25, 20)(30, 30)(35, 45)
WM, (20, 20)(30, 30)(32, 40)(33, 45)(34, 50)
WM, (30, 20)(35, 25)(40, 30)(45, 45)(50. 50)
WM, (30. 25)(32, 35)(34, 40)(36, 42)(38, 44)
BMA-bCRM 1.6 419 522 02 0.3 3.8 14 14.2 43.8

Number of patients 5.4 17.1 205 5.7 4.8

20%, between “Set 2” and “Set 3.” Especially, “Set 3” could not select the true RD
with the highest probability. These results indicated that it was essential for the
proposed BMA-bCRM approach not to lay out misplaced sets of working models,
although this was obvious from its strategic nature.

We examined the operating characteristics of the proposed BMA-bCRM
approach using the logistic model with a fixed intercept of 3. In this sensitivity
analysis, four sets of working models are assumed to have the same efficacy and
toxicity probabilities as in Table 2. The prior distributions for each parameter
are identical to those of the power model because they are also sufficiently
noninformative in this setting. Table 7 shows the results under scenarios 3 and 5.
According to Table 7, the proposed BMA-bCRM approach using the logistic model
is comparable to that using the power model with respect to the correct RD selection
probability.
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Table 7 Sensitivity analysis for the proposed BMA-bCRM approach using the logistic model with a
fixed intercept of 3 under scenario 3 and 5

Selection probabilities (%) for RD at the end of trial

Dose level
Average  Average  Average
Scenario percentage percentage number of
@ejs Pij) Design 1 2 3 4 5 None of efficacy of toxicity patients
3 (15, 5) (20, 10)(25, 15)(40, 20)(45, 25)
WM, 0 0 2 143 775 6.2 16 8.7 43
Number of patients 3.7 32 5 8.5 28.2
WM, 0 1.6 24 26.1 408 7.5 13.6 74 42.7
Number of patients 4.2 6 12 10.7 232
WM, 0 0 0 2 91.8 6.2 16.5 9.1 43.0
Number of patients 3.7 33 32 44 30.9
WM, 0 0 87.1 0 0 12.9 9.8 5.7 414
Number of patients 3.7 32 359 0 0
BMA-bCRM 0 0 1.1 188 739 6.2 159 8.6 43
Number of patients 3.7 33 45 107 264
5 (20, 20)(30, 30)(40, 50)(50, 55)(60, 60)
WM, 9 392 234 03 0 28.1 10.7 144 38.4
Number of patients 7.7 139 165 8.5 59
WM, 14 59.7 1.9 0 0 244 9 11 38.7
Number of patients 14.2  22.7 8.7 4 5
WM, 108 419 214 2 0.2 237 11.7 14.8 38.9
Number of patients 8.7 13.7 109 7.5 8.5
WM, 86 391 136 0 0 38.7 9.8 13.1 36.7
Number of patients 7.8 152 16.7 0 0
BMA-bCRM 9 47.9 18 0.9 0.3 239 10.8 143 39.1

Number of patients 7.9 164 146 85 5.8

5. DISCUSSION

We have proposed the BMA-bCRM approach for jointly evaluating the
efficacy and toxicity in Phase I clinical trials to determine the RD. In practice, it is
also true that investigators have multiple ideas with regard to the true dose-response
relations. The idea of BMA is more natural and acceptable in such a situation.
Furthermore, the operating characteristics of the bCRM approach strongly
depended on the assumed skeletons for efficacy and toxicity according to our
simulation studies. Some skeletons often showed disastrous operating characteristics
under specific scenarios. These facts also motivate our use of multiple combinations
of skeletons and the idea of BMA. The proposed BMA-bCRM approach could
mitigate the risk of underperforming results in terms of the correct RD selection
probability caused by an inappropriate choice of skeletons than the bCRM
approach. According to our simulation studies, the correct RD selection probability
of the proposed BMA-bCRM was relatively close to that of the best-fitting working
model while mitigating the poor RD selection caused by poorly fitting working
models.
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Obviously, the proposed BMA-bCRM approach could be easily implemented
under other dose-response models, such as the complementary log-log model
and hyperbolic tangent model. In the case of targeted agents, monotonically
non-decreasing efficacy with no toxicity or flat efficacy with monotonically non-
decreasing toxicity assumptions within the dose range, what we investigated might
be reasonable from a biological perspective. For such a situation, the idea of BMA-
bCRM might provide a reasonable solution to investigators by incorporating their
assumptions as one of the working models.
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