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In the past decade, researchers in oncology have sought to develop survival prediction models using gene expression data. The least
absolute shrinkage and selection operator (lasso) has been widely used to select genes that truly correlated with a patient’s survival.
The lasso selects genes for prediction by shrinking a large number of coefficients of the candidate genes towards zero based on
a tuning parameter that is often determined by a cross-validation (CV). However, this method can pass over (or fail to identify)
true positive genes (i.e., it identifies false negatives) in certain instances, because the lasso tends to favor the development of a
simple prediction model. Here, we attempt to monitor the identification of false negatives by developing a method for estimating
the number of true positive (TP) genes for a series of values of a tuning parameter that assumes a mixture distribution for the lasso
estimates. Using our developed method, we performed a simulation study to examine its precision in estimating the number of TP
genes. Additionally, we applied our method to a real gene expression dataset and found that it was able to identify genes correlated

with survival that a CV method was unable to detect.

1. Introduction

In the past decade, researchers have predicted survival in a
cancer patient based on gene expression data [1-4]. Revealing
the relationship between gene expression profiles and the
time to an event of interest (e.g., overall survival, metastasis-
free survival) can improve treatment strategies and establish
accurate prognostic markers. The Cox proportional hazard
model is the most popular method for relating covariates to
survival times [5]. However, due to the high dimensionality
of gene expression data (i.e., the number of genes expressed
exceeds the number of patients), it is not possible to take an
estimation approach based on the Cox log partial likelihood.
To overcome this problem, a penalized estimation approach,
which includes a shrinkage estimation of coefficients, is
frequently taken [6-8].

In penalized estimation approaches, the least absolute
shrinkage and selection operator (lasso) [9, 10] is often
used because of its attractive ability to simultaneously select

the genes correlated with survival and estimate the coef-
ficients in the Cox model. The lasso shrinks most of the
coeflicients towards zero exactly by adding L, norm to the
Cox log partial likelihood, and the amount of shrinkage is
dependent on the tuning parameter. The value of the tuning
parameter is often determined by a cross-validation (CV),
which maximizes the out-of-data prediction accuracy [11].
Several researchers have investigated the operating char-
acteristics of the lasso. Goeman [12] used the lasso to analyze
a publicly available gene expression dataset, obtained from
the articles of van’t Veer et al. [2] and van de Vijver et al.
[3] in which a 70-gene signature for prediction of metastasis-
free survival in breast cancer patients had been established.
This data included 295 patients with 4919 genes that were
prescreened from 24,885 genes based on the quality criteria
in van't Veer et al’s work [2]. The lasso selected 16 genes with
which to develop a prediction model of overall survival when
using the tuning parameter that was determined using a CV.
Goeman [12] also conducted ridge regression using all 4919
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genes to develop a model by adding L, norm to the Cox
log partial likelihood. The prediction accuracy of the lasso
and ridge regression were compared, and the ridge regression
with 4919 genes slightly outperformed the lasso with 16 genes.
Goeman [12] concluded that the lasso potentially passes over
genes that are correlated with survival in order to develop a
simple prediction model. Bovelstad etal. [7] reached the same
conclusion in a review of the survival prediction methods
available for analyzing breast cancer gene expression datasets.
Table 1 summarizes a typical result of gene selection by the
lasso.

The CV method determines the value of the tuning
parameter by considering the trade-off between the number
of true positives (TP) and false positives (FP), and so the
possibility of identifying false negatives (FN) cannot be
eliminated. One solution for identifying more outcome-
predictive genes is to monitor the number of TP in several
values of the tuning parameter and, subsequently, determine
its final value. In this study, we developed a method for
estimating the number of TP for a series of values of the
tuning parameter. We assumed a mixture distribution with
components of TP and FP for the lasso estimates, and these
could be used to estimate the number of TP and FP. It is
possible to generate the solution path that includes the lasso
estimates for a series of values of the tuning parameter using
the methods developed by Goeman [12]. Here, we proposed
an algorithm to sequentially fit the mixture distribution for
this solution path, and we used a simulation study to test the
precision of the algorithm when estimating the number of
TP. We further demonstrated the proposed algorithm using a
well-known diffuse large B-cell lymphoma (DLBCL) dataset
comprising overall survival of 240 DLBCL patients and gene
expression data of 7399 genes [1].

2. Materials and Methods

2.1. Lasso in the Cox Proportional Hazard Model. The Cox
proportional hazard model is the most popular method for
evaluating the relationship between gene expression and time
to an event of interest [5]. The hazard function of an event at
time ¢ for a patient i (i = 1,...,n) with the gene expression
levels x; = (x;,.- ., xip)T is given by

h(t|x)=hy(t)exp(x B), 6

where 8 = (B;,..., ﬁp)T is a parameter vector and h(t) is
the baseline hazard, which is the hazard for the respective
individual when all variable values are equal to zero. In the
general setting where n > p, the coefficients are estimated by
maximizing Cox log partial likelihood as follows:

1(B) =0 |xB-log{ ¥ exp(xB)t|,

i=1 reR(t;)

where §; is an indicator, which is 1, if the survival time
is observed, or 0, if censored. R(t;) is the risk set of the
individuals at t;.
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TaBLE 1: Typical results of gene selection by the lasso.

The lasso
No select

True condition
Select

Genes that are not correlated
with survival
(none-outcome-predictive genes)

False positive  True negative
(FP) (TN)

Genes that are truly correlated
with survival
(outcome-predictive genes)

True positive  False negative
(TP) (FN)

In the lasso for the high-dimensional setting where n <
p, the coeflicients are estimated by maximizing the following
penalized likelihood function [9, 10]:

p
L (B.A)=1(B)-A) |B|. 3)
j=1

where A is the tuning parameter, which determines the
amount of shrinkage.

2.2. Solution Path of the Lasso Estimates. Goeman [12] intro-
duced a method to calculate the solution path of the lasso
estimates as a function of A, B(A), which is based on the
algorithm developed by Park and Hastie [13]. The method
maximizes lp(,B, A) at a fixed A based on a combination
of gradient ascent optimization with the Newton-Raphson
algorithm. B(A) are calculated for Ay > -+- > A, > ++- > A, >
0 successively, starting from A, = max;0l/0f;] B;=0 (which

gives B(),) = 0 because the value has zero gradients). A, is
chosen arbitrarily but is often set to 0.05 x A in analyses of
gene expression data [14]. The lasso estimates at a current step
are set to initial values for calculation of the subsequent step.
Step length A, = A, — A4, is the minimum decrement to
change the number of selected genes m® (= #{j; Ej()tk) #
0}); that is, only one gene is newly selected or excluded from
Af 10 Agyq-

2.3. Mixture Distribution for Estimating the Number of TP
in the Lasso Estimates. To estimate the number of TP in
the lasso estimates at a fixed value of A, we assumed a
mixture distribution developed in our previous study [15]. We
introduced the mixture distribution based on the two features
of the lasso: (i) the lasso selects at most n genes because of
the nature of the convex optimization problem when n <
p [16, 17] and (ii) in the Bayesian paradigm the lasso esti-
mates are the posterior mode with the independent Laplace
prior distribution f;(B;;0,1/7) = (7/2) exp(-7|p;l), where
fi(y;a,b) = 1/2bexp(-|y — al/b) is the probability density
function of Laplace distribution with location parameter a
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and scale parameter b [9]. Therefore, the mixture distribution
assumed for the lasso estimates at A was as follows:

f (B] (A) 37005 > T #c)gc)

n -~ 1 < -
2 {nOfL (ﬁj )0, ;) DYIN( ()L);p,c,acz)}

+(1~§)fL(/§,-(A);o,e),
4)

where 71, and 7, are mixed proportions (7, + Zil T, =
1); fN(Ej(A);yc,af) is the probability density function of
the normal distribution with mean g, (#0) and variance o”
in component ¢; C is the number of components, which is
determined by model selection criteria; and e is the constant
value, which is boundlessly close to 0; for example, € = 1078,
The unknown parameters, 7, 7., T, }4, and o, are estimated
by maximizing the log-likelihood function of (4) by using the
Newton-Raphson method.

The mixture distribution defined in (4) is formulated on
the basis of the following concepts: since the lasso selects
a maximum of » genes when p > n, the coeflicients for
p — n genes are exactly zero; therefore, (4) consists of 2 terms
(n/p term and 1 - n/p term). In the n/p term, the Laplace
distribution with location parameter 0 and scale parameter
1/7 was assumed to be the distribution for the FP on the
basis of the lasso feature (ii) discussed above, while the C
component normal distribution with location parameter y,
and scale parameter o> was assumed as the distribution for
the TP. In the 1 — n/p term, the Laplace distribution with
location parameter 0 and scale parameter € was assumed as
the distribution of p — » genes based on the aforementioned
lasso feature (i).

The f; withlocation parameter 0 and scale parameter 1/7
was assumed to be the distribution for the FP on the basis
of lasso feature (i), discussed above. The f,; with location
parameter 4. and scale parameter o7 was assumed as the
distribution for the TP. The f; of the (1 — »n/p) term was
assumed as the distribution of p — # genes based on the
aforementioned lasso feature (ii). Given a cut-off value { (>0),
the estimated proportions of the FP and TP are the area under
the estimated Laplace and normal distribution in the n/p
term of (4), respectively, and can be written as follows:

R - n +00 i
PFP=ﬁOUOOfL(u;O,? )du+JC fu (10,7 )du},

PTP
C - +00
- Y7, U_OO oo (5,87 du+ L i (755) du] .
(5)

FBAY)
7
G1r72%, /%
Vi AN
AN
L < /,/////,//////
L T
-0.3 ~-0.2 -0.1 0 0.1 0.2 0.3

F1GURE 1: Illustration for estimating the number of FP and TP. The
areas denoted by the vertical and diagonal lines are the proportion
of FP and TP, respectively.

Figure 1 illustrates the calculation in (5) when the number of
components, C, is 1. Using (5), the number of TP and FP was
estimated by

R S ©)
Prp + Pep

e B

TP=— xm @)
Prp + Pyp

2.4. Algorithm for Estimating Number of TP in a Series of
Values A. Here, we propose an algorithm to sequentially fit
the mixture distribution in (4) to the solution path of the
lasso estimates, which was described in Section 2.2. In this
algorithm, we assumed that the number of TP changed when
the newly selected or excluded gene from A to Ay, was truly

correlated to survival, based on the maximum log-likelihood

of (4). First, we approximated Pp = 7, and Ppp = Zil 7T,

in (5) by assuming a suitably small cut-off value { (=0). We
then obtained 77, = FP/m and 7. = ﬁc/m (c=1,...,0)
from (6) and (7), respectively, where ﬁc is an estimate of the
number of TP in componentc. Fork = 1,.. ., z, the proposed
algorithm was as follows.

Step 1

Step 11. In this step, we assumed that the newly selected
or excluded gene from A, to A.,; was FP. 71, denotes the
proportion of FP and is set as

==(k)

FP " +1

e, if m® =m® 41,

(k+1)
e LT )
’ B -1
— : (1) _ (k) _
T if m =m 1.

For the other components, ¢ (¢ = 1,...,C), set ﬂékﬂ) =

—(k
TP kD),
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Step 1.2. Given B(Ag,,) and 7D, . 2% calculate the
L(k+1)
o

maximum log-likelihood of (4),
Step 2
Step 2.1. Setc = 1.

Step 2.2. In this step, we assumed that the newly selected or
excluded gene from Ay to A;,; was TP. For the component c,
set

== (k)
P +1 it m*Y =m® 41
k1) _ | mD ’
= 9)
ﬁ(k)
m(k+1) ;i m® =m® -1,

==(k
For the other components, set n(k+1) - ¥ /m%* Y and

2l = TP ) (4 =1, d # o).

Step 2.3. Given B(Ay,,) and n(k“),..., gc+1)) calculate the

maximum log-likelihood of (4), L(kH)

Step 2.4. Set ¢ = ¢ + 1. Repeat Steps 2.2 and 2.3 untilc = C

Step 3. In this step, we determined whether the newly selected
or excluded gene from A to A, was TP or FP based on
the maximum log-likelihood which was calculated in Steps

12 and 2.3. If Lg‘“) was the largest in L(Ck“) (c=0,...,0),
we assumed that the newly selected or excluded gene was
FP; if not, we assumed that it was TP. Therefore, calculate

—(k
Crax = argmax g, C}L(Ck”). If Cpax = 0, update P as
follows:

—®) (10)

—(k
D _ FP( i 1, if m%D =m® 41,
Y o1, it m® = ®

If Cphax > 0, update ﬁg:ﬁx as follows:

Con = Vit (11)
TP(C) —1, if m*Y =m® 1,

‘max

—(k
FpkD) {TP(C) +1, if m* =m® 11,

k
Here, calculate the estimated TP at k + 1 by TP( )

ZC— T‘T)(k'i—l)
3. Results

3.1 Simulation Study. We performed a simulation study to
examine the precision of our estimated TP. In this study, the
number of patients, #, was set to 200. The number of genes, p,
was set to 1000, which included the p; (=5 or 30) outcome-
predictive genes that are randomly chosen from p genes in
each simulation. The coefficient for gene j (j = 1,..., p), B
was set to 1.5 for the p; outcome-predictive genes and 0 for
the remaining p — p; none-outcome-predictive genes. We set
A, to 5 and the number of components, C, to 1 throughout
(although C was determined using a model selection criterion
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in practice). The gene expression levels for patient i, x;, were
generated from the multivariate normal distribution with
mean vector 0 and covariance matrix X so that the variance
was 1 and the correlation p(xy,x;) = 0 or 0.5%7 [18].
The survival time for patient i was generated based on the
exponential model t; = —log(U)/ exp(x; B) where U is the
uniform random variable between 0 and 1 [19]. In order to
evaluate the precision of the estimated TP for various values
of A, we report a number of selected genes, including true TP,
and estimated TP and FP, for A, (k = 5, 10, 50, 100, 150).
Table 2 shows the average of A, a number of selected
genes, true TP and estimated TP and FP, through 1000
repeats. We observed that the precision of estimated TP
varied depending on the value of both p; and k (see Table 2).
When p; =5, the precision of the estimates was sufficient for
k = 10,50,100, and 150, while TP was slightly underestimated
for k = 5. However, when p; = 30, the precision of the
estimates was sufficient for k = 5, 10, and 150, while TP
was overestimated for k = 50 and 100. For example, when
p1 = 30, p = 0.5, and k = 100, the average number of true
and estimated TP was 29.9 and 35.3, respectively. The values
of p did not greatly affect the accuracy of the estimated TP.

3.2. Real Data Analysis. To illustrate how our proposed
algorithm could be used to determine A, we applied it to
the DLBCL dataset, comprising survival of 240 DLBCL
patients and gene expression data from 7399 genes [1]. In
the gene expression data from the 240 patients, we identified
434 genes with complete sets of gene expression values; all
other genes had missing expression values, with an average
of 24.7 missing values per gene. Here, we used 0.0 as the
missing expression value for descriptive purposes. Similar to
Rosenwald et al. [1], we divided the data into two: training
data consisting of 160 patients and validation data consisting
of 80 patients.

For the training data, we obtained the solution path of
the lasso estimates; B()Lk) (k =0,1,...,2). Ay = 72.5 was
calculated as described in Section 2.2. We set A, = 3.625
(=0.05 xA,) according to Simon et al. [14].

We applied our proposed algorithm to the obtained
solution path. We assumed three mixture distributions on
the lasso estimates with C = 1, 2, or 3 and compared their
goodness of fit for the B(A,) (k = 0,1,...,2) by the Akaike
information criterion (AIC). As a result, we chose C = 1
because it had the best AICforall A, (k=0,1,...,2).

Figure 2 shows the estimated number of TP in a series of
values of A. We found that the lasso selected at most 42 TP,
with the number of selected genes at 96, when A = 7.19 (=0.86
as log,,). Therefore, we selected A = 7.19 as the optimum A,
and the estimated mixture distribution for the value of A was
as follows:

£ (B 019) = 22

@s7xﬁ(ﬁﬂ7w)oo1g+o43
x fn (B;(7.19);0.03,0.11%)}

7239ji(ﬁ] (7.19);0,107°).

7399
(12)
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TABLE 2: Accuracy of the estimated number of true positives (TP) obtained using the proposed algorithm in the simulation study. Average of
a tuning parameter (1), number of selected genes (#{J; ﬁj(/\) # 0}) in the lasso, true number of true positives (True TP), estimated number
of TP (TT’), and false positives (l’:.p) are reported at A, (k = 5, 10, 50, 100, 150) of the solution path.

P P k A #{j; ﬁj(A) # 0} True TP TP FP
47.0 5.0 4.4 2.9 2.2
10 40.8 10.1 8.0 5.8 43
0 50 22.9 48.6 25.6 28.5 20.1
100 12.6 86.7 29.9 321 54.7
30 150 8.6 124.5 30.0 30.7 93.9
5 48.6 5.0 4.1 2.8 2.2
10 42.1 10.0 7:5 5.8 4.2
0.5 50 23.5 48.1 25.2 31.9 16.3
100 12.4 84.9 29.9 353 49.6
150 8.4 121.2 30.0 31.6 89.6
5 66.9 5.0 5.0 3.0 2.0
10 26.3 10.4 5.0 52 52
0 50 17.2 50.1 5.0 5.2 44.9
100 12.7 93.9 5.0 5.0 88.9
5 150 9.8 128.4 5.0 5.0 123.4
5 66.8 5.0 5.0 3.0 2.0
10 26.5 10.3 5.0 52 5.1
0.5 50 16.9 49.5 5.0 5.1 44.4
100 12.4 92.1 5.0 5.0 87.1
150 9.6 125.2 5.0 5.0 120.2
140 TaBLE 3: GenBank accession numbers and descriptions for 4 genes
130 selected by both CV and the model including the 42 genes identified
38 by the algorithm that we developed.
g 188 GenBank accession number Description
& 80 X82240 (AA729003) T-cell leukemia/lymphoma 1A
g 70 Thyroxine-binding globulin
5 60 AAB805575
E 50 precursor
- 4318 LC_29222 -
Cytochrome P450, subfamil
28 X59812(H98765) e ik
05 06 07 0.8 09 1.0 1.1 1.2 1.3 1.4 15 16 1.7 1.8 1.9

log;o(A)

«~—— Number of selected genes
=<«~- Estimated number of TP

FIGURE 2: Trace plot of number of selected genes and estimated
number of true positives (TP) produced by applying the proposed
algorithm to the training data from the diffuse large B-cell lym-
phoma (DLBCL) dataset. We determined A = 7.19 (log,, = 0.86)
as the optimum A based on the estimated number of TP. Using
cross-validation (CV), we determined A = 27 (log;, = 1.43) as the
optimum A.

In order to identify the 42 TP from the 96 selected genes, we
arranged the 96 in descending order of |f;| and identified
the first 42 listed genes with a cut-off value { = 0.084.

Subsequently, the model that included these 42 genes is
identified as the “42 TP-model”

In comparison to the 42 TP-model, we performed CV.
Briefly, the K-fold CV was given by

K
V) =Y 1By M) =l (B M)} (13)
=

where [_,(B) and BH\') are the log partial likelihood and the
lasso estimate with left kth fold out, respectively. The optimal
value of A was obtained by maximizing CV(A). On the basis of
5-fold CV; 12 genes were selected with A = 27 (=1.43 as log ).
Subsequently, the model including these 12 genes is identified
as the “CV-model” Notably, both the 42 TP-model with 42
genes and the CV-model with 12 genes selected 4 genes in
common. Table 3 shows the GenBank accession number and
description for each of the 4 genes selected by both models.
We compared the prediction accuracy of the 42 TP-
model and the CV-model using validation data consisting
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FIGURE 3: Kaplan-Meier curves of overall survival for “better” and “worse” prognostic groups: (a) the model including 12 genes determined
by CV (CV-model) and(b) the model including 42 genes identified by the developed method (42 TP-model).

TABLE 4: Values of the comparison criteria for the model including
12 genes determined by CV (CV-model) and the model including
the 42 genes identified by our developed algorithm (42 TP-model).

Criteria CV-model 42 TP-model
P value of the log-rank test 0.007 <0.001
P value for the prognostic index 0.002 <0.001
Deviance -9.079 —11,297

of 80 patients. For this data, we calculated 3 values that
served as comparison criteria: P values for the log-rank
test and prognostic index and the deviance. The 80 patients
were categorized into 2 groups, the “better” and “worse”
prognostic groups, using the boundary of the median of
prognosticindex7; = x; B. The Kaplan-Meier curves between
the 2 groups were compared with a log-rank test. Next,
we calculated the P value for the parameter o multiplied
by the prognostic index #; in the Cox proportional hazard
model A(t; | x) = hy(t) exp(a#;). Finally, the deviance was
calculated bY _2{l(vahdatlon) (ﬁtraining) _ l(vahdanon)(o)}) where

l(vahdam")(ﬁmmmg) and [192°n) ) are the Cox log partial-
likelihood function for the estimated coefficients by using the
training data and zero vector 0, respectively. For each crite-
rion, the lower value suggested better prediction accuracy.
Table 4 shows the values of the 3 criteria for each model.
We found that the values of all 3 criteria for the 42 TP-model
were lower than those for the CV-model, suggesting that the
model based on the proposed method was more accurate (see
Table 4). Additionally, Figure 3 shows that the Kaplan-Meier
curves for the 42 TP-model distinguished the “better” and
“worse” prognostic groups more definitely than those for the

CV-model (42 TP-model, P < 0.001; CV-model, P = 0.007).
Therefore, by using our proposed algorithm, we determined A
and were able to select important genes, likely to be correlated
with survival, in which the CV was unable to select.

4. Discussions

In this study, we proposed an algorithm for estimating
the number of TP on the solution path of lasso estimates.
Monitoring and determining the number of TP for a series
of values A are important because they can increase the
probability of uncovering all outcome-predictive genes. The
number of TP should be estimated with appropriate accuracy.
To confirm the accuracy of our TP, we conducted a simulation
study using a typical gene expression dataset. We found that
the precision of our algorithm for estimating the number
of TP was adequate, although an overestimation occurred
with some values of A. However, the overestimation occurred
when the true number of TP was saturated, and so it may not
cause a problem by passing over genes that truly correlated
with survival. In the simulation study where p; = 30 and
p = 0.5, the maximum average estimated number of TP was
353 at A = 12.4 (see Table 2). Using this A to select TP, an
average selection of 29.9 TP within 30 outcome-predictive
genes can be made, with the number of TP genes that are
passed over being negligible in practice.

The data that have been provided in Table 2 showed that
the number of false positives increased, while the number
of true positives increased and then plateaued as the tuning
parameter decreased. To decrease the number of FP identified
while maintaining an adequate number of TP, we should
determine the value of A by monitoring both the number of
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TP and the false positive rate (=FP/(TP+FP)) in the proposed
method.

Additionally, our proposed algorithm was applied to
DLBCL data. We determined the value of the tuning param-
eter based on the maximum number of estimated TP uncov-
ered by the algorithm. We identified 42 TP genes among 96
selected genes based on the ranking of the absolute values
of the lasso estimates. We can also identify TP based on
model evaluation criteria such as AIC among all possible
combinations of 42 genes from 96, that is, ¢5Cy,(>10%)
combinations in total; however, calculation of AIC for all
possible gene combinations is a distant approach. To evaluate
the efficiency of the approach using the ranking of the lasso
estimates, we calculated the AIC for 10,000 randomly chosen
models among all the possible models and subsequently
compared it with the AIC of our approach. From 10,000
models, the AIC of 425 models (4.25%) was better than
that of our approach. This result indicated that our ranking-
based approach has a satisfactory performance in practice
with respect to the identification of 42 genes. Although
investigation of all possible gene combinations is ideal, our
approach is a good alternative.

In the application to DLBCL data, in comparison to a CV
method by which 12 genes were identified, we identified 42
TP genes with our algorithm, and we improved the prediction
accuracy of the model. In practice, some researchers might be
satisfied with identifying a few promising genes and would
not be unduly worried about passing over others. In such a
situation, the CV would be preferable because it developed
the model to uncover a few genes with just a small loss of
prediction accuracy. However, genes that are selected by the
lasso are often investigated with greater scrutiny by genetic
researchers, and so passing over outcome-predictive genes by
the lasso could represent a major problem. Indeed, if the lasso
passes over outcome-predictive genes, some genetic research
may not take place. Therefore, when identifying all outcome-
predictive genes is a priority, our proposed algorithm will be
most useful.

5. Conclusions

We developed a method for estimating the number of true
positives for a series of values of a tuning parameter in the
lasso. We demonstrated the utility of the developed method
through a simulation study and an application to a real
dataset. Our results indicated that our developed method was
useful for determining a value for the tuning parameter in the
lasso and reducing the probability of passing over genes that
are truly correlated with survival.
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Many dose-finding approaches that could evaluate bivariate binary efficacy and
toxicity outcomes have been proposed in recent years. In such designs, the operating
characteristics with finite sample size can be greatly affected by the assumed dose-
toxicity andlor dose-efficacy relationship. However, we do not have much information
about a new agent we investigated at the planning stage of Phase I trials and so always
JSace to the risk of misspecifying the true dose~toxicity andlor dose-efficacy relationship
by arbitrarily and subjectively choosing skeletons. In this article, we proposed
the Bayesian model averaging bivariate continual reassessment method to cope with
above risk.
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1. INTRODUCTION

The primary goal of a Phase I oncology clinical trial is to determine the
maximum tolerated dose (MTD) that should be used during further development
of a new agent. The MTD is defined as the dose of a new agent with toxicity
probability closest to the investigators’ target. As an alternative to the traditional
algorithm-based design such as the 3 + 3 design, the continual reassessment
method (CRM) was developed by O’Quigley et al. (1990). Given the investigators’
prespecified toxicity probability at each dose, CRM updates the estimates of these
dose toxicity probabilities based on the Bayes theorem. The operating characteristics
of the CRM with respect to the estimation of MTD are more favorable than
those of the algorithm-based designs in several works (Chevret, 1993; Faries, 1993;
O’Quigley and Chevret, 1991).

The assumption of a monotonically increasing dose—toxicity curve is almost
always appropriate from a biological perspective; however, a monotonically
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increasing relationship between dose and efficacy has been challenged by the
recent development of targeted agents (e.g., molecular targeted agents, therapeutic
vaccines, and immunotherapy). To meet such a requirement, many dose-finding
approaches that could evaluate bivariate binary efficacy and toxicity outcomes have
been proposed. As described in Mandrekar et al. (2010), most of them are extended
versions of the CRM and are broadly categorized into two types. In the first type
of approach, the joint distribution of binary efficacy and toxicity can be collapsed
into an ordinal trinary variable, such as no toxicity and no efficacy, no toxicity but
with efficacy, and toxicity (Ivanova, 2003; O’Quigley et al., 2001; Thall and Russell,
1998; Whitehead et al., 2006; Zhang et al., 2006). In the second approach, the
bivariate structure of outcomes can be maintained in a joint probability distribution
(Braun, 2002; Thall and Cook, 2004). In this article, we entirely focus on the latter
approach.

In dose-finding approaches based on toxicity and efficacy, operating
characteristics with finite sample size can be greatly affected by the assumed
dose-toxicity and/or dose—efficacy relationship (which we refer to in this work as
skeletons). In practice, we do not have much information about a new agent we
investigated at the planning stage of a Phase I oncology trial. Moreover, it is more
challenging in a situation in which the joint evaluation of efficacy and toxicity
is required. Thus, we always face the risk of misspecifying the true dose-toxicity
and/or dose-efficacy relationship by arbitrarily and subjectively choosing skeletons.

One idea to accommodate the uncertainty in the skeleton specification is
to introduce Bayesian model averaging (BMA), which estimates the posterior
probability for toxicity and efficacy by averaging posterior probabilities (Raftery
et al,, 1997). Yin and Yuan (2009) proposed the Bayesian model averaging CRM
(BMA-CRM) that solves the arbitrariness and subjectivity of the prespecified
toxicity probabilities in the CRM. Similar to the method of Yin and Yuan,
we propose the BMA bivariate CRM (BMA-bCRM) approach for dose finding,
which uses bivariate toxicity and efficacy outcomes in single-agent Phase I trials.
Specifically, we prespecify some sets of skeletons for both dose—efficacy and dose—
toxicity relationships. For each skeleton, we subsequently estimate the posterior
probabilities of toxicity and efficacy at each dose level. We obtain BMA estimates
for the toxicity and efficacy probabilities by averaging the posterior probabilities
of two outcomes for each skeleton. The dose escalation/deescalation decision rules
are defined based on these estimates. Thus, instead of using a single skeleton for
each outcome, we use multiple combinations of skeletons for both dose-efficacy and
dose—toxicity relationships in parallel and rely on the BMA estimator for decision
making. The proposed BMA approach could incorporate multiple assumptions
in terms of a skeleton for efficacy and toxicity. In addition, the proposed BMA
approach allows us to tune the weights of each model adaptively on the basis of the
observed data. Therefore, the proposed BMA approach would provide estimates of
efficacy and toxicity probability that are close to the estimates of the best-fitting set
of skeletons for the observed data among the assumed sets of skeletons.

To examine the utility of the BMA-bCRM approach, we compared the
operating characteristics of the BMA-bCRM approach with those of the ordinal
bivariate continual reassessment method (bCRM) approach, which assumes specific
skeletons for toxicity and efficacy, through simulation studies under various
scenarios.
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We organize the remainder of this study as follows. In section 2, we introduce
the proposed BMA-bCRM approach for dose-finding using bivariate toxicity and
efficacy outcomes. In sections 3 and 4, we compare the operating characteristics
of the proposed BMA-bCRM and bCRM approaches through simulation studies
and examine the operating characteristics of the proposed BMA-bCRM approach
under various scenarios. Finally, in sections 5, we discuss the characteristics of the
proposed approach in further detail.

2. METHOD

2.1. Bayesian Model Averaging Bivariate Continual Reassessment
Method

In general, limited information for a new agent is available at the planning
stage. The investigators might also have different opinions of the skeletons. As
a consequence, our choice of skeletons might be largely arbitrary, subjective, and
of a wide variety. Furthermore, there is more uncertainty than with CRM based
on toxicity when we jointly evaluate the efficacy and toxicity. Thus, the major
issue is that we always face the nonnegligible possibility of misspecification of the
true dose efficacy and/or dose toxicity. To address these difficulties, we adopt the
idea of BMA-CRM, proposed by Yin and Yuan (2009), which could mitigate the
uncertainty of the assumed skeletons for efficacy and toxicity. We prespecify multiple
combinations of skeletons for efficacy and toxicity. Each combination represents
one of the assumptions for efficacy and toxicity probabilities. For each combination
(which we term a working model), we implement the bCRM. To obtain the BMA
estimate of efficacy and toxicity probabilities for dose level j, we estimate the weighted
average of them for the prespecified working models. A weight of each working model
is adaptively estimated according to the fitness to the observed outcomes. The BMA
provides the robust property in terms of misspecifying the true dose efficacy and/or
dose toxicity. The BMA is also known to provide a better prediction than does any
single specific model (Hoeting et al., 1999; Raftery et al., 1997).

Let WM, (7, (Be)> mu;(Buy))s (k=1,2,--- ,K) be the kth working model,
which consists of combination of arbitrary skeletons, where n,,; and m,; are the
estimators of efficacy and toxicity probabilities at jth dose, respectively, and S,
and f, are unknown model parameters for kth working model, respectively. We
assume the power model for dose—efficacy and dose-toxicity relationships in this
study; thus, the working model WM, is given by

T (Bu) = P 1)
s (Bi) = P ¥, )

which consist of the kth skeletons for efficacy probability p,; and toxicity
probability p,;. Suppose that n; patients have been treated and y,; and y,; patients
have experienced efficacy and toxicity, respectively. Under the observed data
D= {(n;,y,,y,),j=1,---,J} and z; defined as the number of patients whose
response is y,; = 1 and y,; = 1 at dose J, the likelihood function for WM, is given by
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which is identical to the bivariate structure of the underlying probability model that
Braun (2002) proposed. Then we can estimate the posterior means of 7,,; and 7,;
at dose level j by the kth working model using Bayes’s theorem along with bCRM.
Specifically,

I ) LD e Braeo Vs WM LB i) S B F )
Tk //; X ek (e //1' k /'/’k Toor I e DOt B Wi WM S Ber) B o) SO 0B e it hudVidPe )
& 1

T, = . ) LDIB ok - Brie Wi WM [ Bt ) F By ) S (i)
ks ‘/ﬁk s (Fie) //3 fw Tt T T, L ek i 9 W0t 7P Pty Pk WP ®)
1 ek k

where f(f,.), f(B.), and f(,), are the independent prior distributions for each
parameter under kth working model, while they are abbreviated the condition
WM, for simplicity. We assume the normal prior distribution N(0, 4%) for gradient
parameters f,, and f,, and we assume the beta distribution Be(2, 2) for association
parameter ¥, to have a prior mean value of 0.5 with sufficiently vague information.

Let Pr(WM,) be the prior probability that represents the prior relative certainty
(or importance) for kth working model with the restriction Y, Pr(WM,)= 1. In this
article, we assume that each working model has equal prior probability. As are the
posterior means of efficacy and toxicity probabilities, these probabilities for each
working model are also adaptively updated as posterior probabilities. The posterior
probability is given by

L(D|WM,)Pr(WM,)

PrMAD) = S T Wty pe(war)
NkoBro
= K 6
Zf<=1 i Bio ©
Mo = Pr(WM,)/Pr(WM,), @)
By = Pr(D|WM,)/Pr(D|WM,)
= L(D|WM,)/L(D|WMy), @®)

where L(D|WM,) is a marginal likelihood of kth working model, 7, is a prior
odds for WM, against the reference working model WM, and B, is a Bayes factor
for WM, against WM,. Using Pr(WM,|D) as a weight for the kth working model,
the BMA estimates for efficacy and toxicity probabilities at the jth dose level are
obtained simply by a weighted average of #,; and 7,; across the K working models:

K

T, = ZﬁeijT(WMHD) )
k=1
K

;= Zﬁ,ijr(WMle). (10)
k=1
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As mentioned before, by weighting the posterior means #,; and #,; with
Pr(WM,|D), which reflects the relative degree of fitness to the observed outcomes, the
proposed BMA-bCRM approach could adaptively maximize the influence of well-
fitting working models and simultaneously minimize the influence of poorly fitting
working models. Consequently, the proposed BMA-bCRM approach could manage
the misspecification of the true dose-toxicity and/or dose-efficacy better than the
ordinal bCRM approach, which assumes only a set of skeleton combinations for
efficacy and toxicity.

The parameter estimation is easy to compute based on the Markov-chain
Monte Carlo (MCMC) method. We estimated the posterior distribution of model
parameters using a random-walk Metropolis algorithm to generate the sample
for generating recursive draws from a particular Markov chain, the stationary
distribution of which is the same as the posterior joint distribution of parameters
using PROC MCMC in SAS, version 9.2 (SAS Institute Inc., Cary, NC). In this
article, we set a burn-in period of 5,000 iterations with a chain length of 50,000,
retaining every fifth sample; therefore, the inference about the posterior distribution
is based on the 10,000 effective samples.

2.2. Dose-Finding Algorithm

Patients are allocated a specific dose level in cohort, which consists of three
patients. In the proposed approach, the skipping dose level in the escalation or
de-escalation is not allowed. We define the minimum requirement criteria for
the recommended dose (RD) to ensure at least minimum efficacy and maximum
allowable toxicity with high probability. To obtain the probability that satisfies the
minimum efficacy or maximum allowable toxicity, we apply the BMA approach
using Pr(WM,|D). The criteria are given by

K
S Pr(fy, > ¢,)Pr(WM,|D) > 0.9 (11)
k=1

K

S Pr(fy; < ¢)Pr(WM,|D) > 0.9, (12)
k=1

where ¢, and ¢, are set to 0.2 and 0.3, respectively. The trial is terminated when
no dose levels satisfy these criteria. To avoid an inappropriate termination due to
unstable estimates of the probabilities just defined, the criteria are activated after the
outcomes in some cohort of patients become available. Among dose levels satistying
the criteria, the dose level assigned to the next cohort of patients is that which
minimizes the weighted Euclidean distance from the target (¢,, ¢,), using BMA
estimates of efficacy and toxicity probabilities, such that

ED, = \Jun(g, — 7o) + (1= w)(6, — 7, (13)

We assume ¢, = 1 and ¢, = 0 as the target values and w, = 0.5. When the planned
maximum number of patients is reached, then the RD is determined by the BMA
estimates of efficacy and toxicity probability based on all accumulated outcomes.
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3. SIMULATION STUDIES
3.1. Simulation Setting

We investigate the operating characteristics of the proposed BMA-bCRM
approach through simulation studies in eight true scenarios. We assume five dose
levels and four sets of working models for efficacy and toxicity probabilities. Table 1
shows the working models we assumed. The first working model is for the case
in which efficacy increases proportionally in increments of 10% from 20% at the
initial dose level and toxicity increases slowly at the low dose levels but increases
quickly from fourth dose level. The second working model is for the case in
which efficacy increases proportionally in increments of 5% from 25% and toxicity
increases quickly with relatively high toxicity at the initial dose level. The third
working model is for the case in which efficacy increases slowly at the low dose levels
but increases quickly at the fourth dose level and toxicity increases slowly with no
intolerable dose levels. The fourth working model is for the case in which efficacy
increases monotonically at the low dose levels but becomes constant from the third
dose level and toxicity increases proportionally in increments of 10% from 10%.

We expect that the proposed BMA-bCRM approach can effectively capture
these features and appropriately weight each working model based on the observed
outcomes. We refer to the ordinal b(CRM using each working model as WM,, WM,,
WM,, and WM,, and compare the operating characteristics of them with those of the
proposed BMA-bCRM approach. Because the ordinal bCRM could be considered
a special case of BMA-bCRM, that is K = 1, we could implement it by the strategy
introduced in the previous chapter.

Table 2 shows the true efficacy and toxicity probabilities under each scenario
in the first row and the dose selection probabilities for RD at the end of trial and
the average number of patients treated at each dose in the subsequent rows. These
results are displayed according to the employed design, specifically, WM,, WM,,
WM,, WM,, and BMA-bCRM. We also show the probability of no appropriate
dose level at the end of trial, denoted as “None,” the average percentage of patients
experienced efficacy and toxicity, and the average total number of patients. For the
proposed BMA-bCRM approach, we assume no preference for any specific working
model and assign equal prior probability Pr(WM,)= 025 for k=1, --- , 4.

We derived the correlated Bernoulli efficacy and toxicity outcomes using
uniformly distributed correlated outcome between 0 and 1, which is derived by

Table 1 Assumed efficacy and toxicity probabilities (p,;, p,;) (%)

Dose level
Working model 1 2 3 4 5
WM, (20, 5) (30, 10) (40, 15) (50, 30) (60, 45)
WM, (25, 15) (30, 25) (35, 495) (40, 55) (45, 65)
WM, (15, 05) (20, 10) (25, 15) (40, 20) (45, 25)
WM, (20, 10) (30, 20) (50, 30) (50, 40) (50, 50)

Note. (p,;, p,;) means efficacy and toxicity probabilities in percentage, respectively, for jth dose level
in each working model (WM).
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Table 2 Results of simulation studies comparing the proposed BMA-bCRM approach to the bCRMs

with efficacy and toxicity target (®,, ®,)=(100%, 0%)

Selection probabilities (%) for RD at the end of trial

-227 -

Dose level
Average Average  Average
Scenario percentage percentage number of
(Pej: Py) Design i 2 3 4 5 None of efficacy of toxicity patients
1 (20, 5) (30, 10)(40, 15)(50, 30)(60, 45)
WM, 0 0 159  66.4 16 1.7 20.3 11.7 444
Number of patients 3.5 32 10.5 201 16
WM, 0 59 63.3 256 27 2.5 17.3 8 442
Number of patients 4.2 87 206 135 94
WM, 0 0 5.6 50 422 22 21.8 14 443
Number of patients 3.6 33 43 147 207
WM, 0 0 98.3 0 0 1.7 16.5 6.2 444
Number of patients 3.5 32 38.1 0 0
BMA-bCRM 0 0 163 699 114 24 19.8 11.2 44.2
Number of patients 3.8 33 10.3 214 132
2 (25, 15)(30, 25)(35, 45)(40, 55)(45, 65)
WM, 27 322 585 12 0.2 52 14.3 153 43.6
Number of patients 5.5 108 238 10.6 6
WM, 57 803 101 0.3 0 3.6 129 11.1 44
Number of patients 11.3 263  13.8 55 5
WM, 35 398 428 6 0.5 7.4 14.5 159 432
Number of patients 6.3 119 145 9.5 8.1
WM, 27 384 517 0 0 72 13.9 14 434
Number of patients 5.7 13 26 0 0
BMA-bCRM 2 412 506 2.1 0.3 38 14.2 14.9 439
Number of patients 6.5 129 209 9.5 55
3 (15, 5) (20, 10)(25, 15)(40, 20)(45, 25)
WM, 0 0 35 218  69.6 5.1 159 8.6 433
Number of patients 3.6 33 5.8 10.8 274
WM, 0 25 292 227 387 6.9 13.1 7.1 42.8
Number of patients 4.3 7.2 139 102 236
WM, 0 0 0 26 918 5.6 16.6 9.1 432
Number of patients 3.7 32 32 4.6 30.7
WM, 0 0 89.9 0 0 10.1 9.9 5.8 42
Number of patients 3.5 33 36.4 0 0
BMA-bCRM 0 0 1.6 21 71.2 6.2 15.7 8.5 43
Number of patients 4 33 5 118 254
4 (20, 10)(30, 20)(50, 30)(50, 40)(50, 50)
WM, 0.1 52 672 233 1.8 2.4 19.8 13.4 44.2
Number of patients 4.1 53 23.5 17 12.7
WM, 04 636 304 1.7 0.3 3.6 15.2 9.8 43.8
Number of patients 6.8 232 17.3 8.5 8.3
WM, 0.1 83 35 379 154 33 194 15.1 439
Number of patients 4.6 5.7 9.9 149 158
WM, 0 9.5 883 0 0 22 19.5 11.8 443
Number of patients 4.2 6.5 34.5 0 0
BMA-bCRM 0.1 77 653 22 15 34 19.2 12.9 439
Number of patients 4.8 6.1 222 157 102
(Continued)
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Table 2 continued

Selection probabilities (%) for RD at the end of trial

Dose level
Average  Average  Average
Scenario percentage percentage number of
(Pej Pij) Design 1 2 3 4 5 None of efficacy of toxicity patients
5 (20, 20)(30, 30)(40, 50)(50, 55)(60, 60)
WM, 114 477 238 03 0 16.8 13.1 15 40.3
Number of patients 8 153 171 8.3 44
WM, 144 723 14 0 0 11.9 11.1 11.5 41.5
Number of patients 15.3 259 8.3 43
WM, 11.7 501 216 1.1 0.2 15.3 13.8 153 40.6
Number of patients 8.8 149 114 7.6 7
WM, 11.5 571 14 0 0 17.4 12.7 14.3 40.7
Number of patients 8.5 18.6 163 0 0
BMA-bCRM 102 59.6 18 0.5 0.1 11.6 13.1 14.7 41.5
Number of patients 8.8 184 151 8.2 5.3
6 (5, 5) (10, 10)(20, 15)(30, 25)(35, 45)
WM, 0 0 39 527 231 20.3 9.9 10.2 38.6
Number of patients 4.3 34 5.4 17 19.3
WM, 0 1.1 26 284 138 30.7 7.5 72 35.6
Number of patients 4.9 5.9 134 13 14.5
WM, 0 0 22 278 461 239 10.1 11.6 374
Number of patients 4.5 32 38 9.2 25
WM, 0 0 64.7 0 0 353 6.1 4.7 353
Number of patients 4 33 32 0 0
BMA-bCRM 0 0 24 453 258 26.5 9.2 9.5 36.4
Number of patients 4.7 33 53 168  18.1
7 (20, 70)(30, 75)(40, 85)(50, 90)(55. 95)
WM, 0 0 0 0 0 100 3.5 9.3 122
Number of patients 5.6 33 39 3 0
WM, 0 0 0 0 0 100 2.7 8.7 12.2
Number of patients 10.6 33 3 3 0
WM, 0 0 0 0 0 100 3.6 9.3 12.2
Number of patients 5.7 33 3.1 3 0
WM, 0 0 0 0 0 100 34 9.3 12.3
Number of patients 5.7 34 5.2 0 0
BMA-bCRM 0 0 0 0 0 100 33 9.3 12.3
Number of patients 6.9 32 32 3 34
8 (5, 20) (8. 30) (9, 40) (12, 50)(20, 60)
WM, 0.1 0.9 54 0.6 0 93 1.6 6.7 20.7
Number of patients 7.3 5.6 1.7 106 7.1
WM, 0.8 4.1 1.5 0 0 93.6 1.3 52 19.7
Number of patients 10.6 9.6 75 5.2 5.1
WM, 0.2 1.1 1.6 22 0.2 94.7 1.7 6.8 19.9
Number of patients 7.6 5.1 6.2 72 10.1
WM, 0.1 0.5 6.3 0 0 93.1 1.5 6.1 19.8
Number of patients 7 5.8 14.8 0 0
BMA-bCRM 0.3 14 43 0.8 0.2 93 1.6 6.4 20.5

Number of patients 8 6.5 10 8.6 6.7
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an inverse function method against correlated bivariate normal outcomes. In
our simulation studies, the true correlation coefficient between these outcomes is
assumed to be 0.5 in the scale of bivariate normal outcomes. The maximum number
of patients is set to 45, and we performed 1,000 simulated trials for each scenario.
These simulation studies were performed by using SAS version 9.2. The SAS code
of the proposed BMA-bCRM approach used in these simulation studies is available
on our website (http://www.rs.kagu.tus.ac.jp/hamada/lab.html).

3.2. Simulation Results

In scenario 1 (WM, was true and the fourth dose level was the true RD), the
selection probabilities at fourth dose level were considerably different among the
four working model using bCRM under different set of skeletons. As expected, WM,
had the highest selection probability, 66.4%. WM, had the lowest probability (0%)
but selected the third dose level with a probability of 98.3% because the assumed
skeleton for efficacy was constant from the third dose level to the fifth dose level.
Thus, the assumed skeletons may dominate the operating characteristics and induce
such an extreme result. WM, also had a poor probability (25.6%) but selected a
third dose level with a probability of 63.3%. In contrast, the proposed BMA-bCRM
approach had a selection probability of 69.7%, which was considerably similar to
the probability under the true working model WM,. The number of patients treated
at each dose level also differed greatly among the four working models. Except for
WM, the most frequent dose patients were assigned was not the fourth dose level,
which was the correct RD. Thus, if we had employed bCRM by WM, or WM, as
a trial design, the incorrect RD was the likely result, which could not achieve the
maximum benefit-risk balance.

In scenario 2 (WM, was true and the second dose level was the true RD),
the correct RD selection probability using the proposed BMA-bCRM approach
was approximately 40%, which was second best among the five designs. The
worst working model was WM,, which had a correct RD selection probability of
approximately 30%. In scenario 3 (WM; was true and the fifth dose level was the
true RD), the worst working model was WM,, which had a correct RD selection
probability of 0%. WM, was also the second worst working model, which had less
than 40% probability. On the other hand, the proposed BMA-bCRM approach had
a probability of greater than 70%, which was the second best among the five designs.
In scenario 4 (WM, was true and the third dose level was the true RD), the proposed
BMA-bCRM approach is the third best among the five designs, having a correct
selection probability of approximately 65%. However, in case of WM, or WM, the
probability reduced to less than 40%.

In scenarios 5 and 6, the second dose level and the fourth dose level were
the true RD, respectively. None of working models was true in these scenarios.
Nevertheless, the proposed BMA-CRM approach was robust with a correct RD
selection probability close to the best-fitting working model. Scenarios 7 and 8
were the cases in which none of the dose levels were appropriate for RD. The
probabilities of selecting the decision “no appropriate dose levels” using different
designs were close and had a high probability among the five designs. Also, the
average number of total patients did not differ among designs.

According to the results of simulation studies, as expected, the proposed
BMA-bCRM approach is robust in terms of misspecifying the true dose efficacy
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and/or dose toxicity. In scenarios 1 to 4, in which one of the working models
was true, the differences in the correct RD selection probabilities between the
most poorly fitting working model and the proposed BMA-bCRM approach were
approximately 10% to 70%. Even in scenarios 5 and 6, in which none of the working
models were true, the differences were approximately 15% to 45%. The correct RD
selection probability using the proposed BMA-bCRM approach was not typically
better than that of the best-fitting working model, but the second best among the
five designs in most of cases. The average number of patients treated at RD was
also almost second best among the five designs, while it was always larger than
that of the poorly fitting working model. The average number of patients treated at
toxic dose levels, which have true toxicity probability over 30%, was not that much
larger than that of other working models. The average number of patients for whom
efficacy was observed and the average number of patients for whom toxicity was
observed were also similar to that of best-fitting working model.

These robust properties of the proposed BMA-bCRM approach came from
appropriate weights, which reflected the fitness of each working model to observed
outcomes. Figure 1 showed the transition of the average values of the estimated
Pr(WM,|D) for the proposed BMA-bCRM .approach against the accumulating
number of patients in scenarios 1 to 6. In any case, the average weights of well-

Table 3 Sensitivity analysis of the proposed BMA-bCRM approach with different prior distributions
of model parameters under scenario 1

Selection probabilities (%) for RD at the end of trial

Dose level
Average  Average  Average
Scenario percentage percentage number of
(Pejs Pij) Design 1 2 3 4 5 None of efficacy of toxicity patients
1 (20, 5)(30, 10)(40, 15)(50, 30)(60, 45)

g =1,y ~Be(2,2)

BMA-bCRM 0 0 16.6 71.7 117 0 20.5 115 45
Number of patients 3.1 3.1 106 227 129

g = 4,y ~Be(2,2)

BMA-bCRM 0 0 163 699 114 2.4 19.8 11.2 44.2
Number of patients 3.8 3.3 103 214 132

o = 10, § ~Be(2, 2)

BMA-bCRM 0 0 17.1  68.6 123 2 19.9 11.1 443
Number of patients 3.8 33 104 213 133

o = 4, y ~Be(0.5,0.5)

BMA-bCRM 0 0 16.8 70 112 2 19.9 11.2 443
Number of patients 3.8 33 104 214 13

o = 4, i ~Be(10, 10)

BMA-bCRM 0 0 164  69.2 12 24 19.8 11.1 44.2
Number of patients 3.8 33 103 214 131
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Figure 1 Transition of average weights for each working model.

fitting working models were indeed larger than those of poorly fitting working
models in our simulation setting. Although the proposed BMA-bCRM approach
showed a uniformly robust property under various scenarios, it was not only
affected by the well-fitting working model but also by the other working models
because of its strategic nature. In scenario 1, the proposed BMA-bCRM approach
showed a larger correct RD selection probability than that of WM;, which was
true (the fourth dose level was the true RD) because of other working models,
WM,, WM,;, and WM,, assumed RD as second, fifth, and third dose levels,
respectively. In this case, the BMA estimate of RD was more likely to shrink the
upper dose level. On the contrary, this shrinkage somewhat harms the operating
characteristics in scenario 2, in which WM, was true. Therefore, there were some

-231-



BAYESIAN MODEL AVERAGING BIVARIATE CRM 321

differences in the operating characteristics despite the fact that the average weights
for the well-fitting working model and for other working models were almost
the same.

4. SENSITIVITY ANALYSES

To further evaluate the robustness of the proposed BMA-bCRM approach,
we conducted some sensitivity analyses. At first, we evaluated the impact of the
prior distribution for model parameters and association parameter. Instead of
o = 4, which is the deviation parameter of the employed normal prior for the
gradient parameter, we employed either a more informative parameter (¢ = 1) or
a more vague one (¢ = 10). To evaluate the impacts of the prior distribution
for the association parameter, we used Be(0.5,0.5) and Be(10, 10) instead of
Be(2,2) under o = 4. Furthermore, we evaluated the impact of the correlation
coefficient between efficacy and toxicity outcomes, which was assumed to be
p=0.5 in the scale of bivariate normal outcomes. In this sensitivity analysis,
we evaluated the cases in which the true correlation coefficient was assumed to
be p=0.1 or p=0.9. The results of these sensitivity analyses in scenario I,
shown in Table 3 and Table 4, indicated that the prespecified prior distributions
for the model parameters or the strength of underlying correlation between
efficacy and toxicity outcomes did not have a major impact on operating
characteristics.

Next, we evaluated the performance of the proposed BMA-bCRM approach
using a different number of working models. Under scenario 6, we increased or
decreased the number of working models from two to six. For the two working

Table 4 Sensitivity analysis of the proposed BMA-bCRM approach with different values of assumed
strength of correlation between efficacy and toxicity outcomes under scenario 1

Selection probabilities (%) for RD at the end of trial

Dose level
Average  Average  Average
Scenario percentage percentage number of
(Pej» P1j) Design 1 2 3 4 5 None of efficacy of toxicity patients
1 (20, 5)(30, 10)(40, 15)(50, 30)(60,45)
p =01
BMA-bCRM 0 01 172 7.7 17 33 19.5 10.8 43.9
Number of patients 3.9 33 10.6 224 115
p =05
BMA-bCRM 0 0 163 699 114 24 19.8 11.2 44.2
Number of patients 3.8 33 103 214 132
p =109
BMA-bCRM 0 0 152 70 141 0.7 20.3 11.4 44.8

Number of patients 3.6 3.3 10 209 14
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Table 5 Comparison of operating characteristics of the proposed BMA-bCRM approach using two,
three, four, five, and six working models under scenario 6

Selection probabilities (%) for RD at the end of trial

Dose level
Average Average  Average
Scenario percentage percentage number of
(Pejs Prj) Design 1 2 3 4 5 None of efficacy of toxicity patients
6 (5, 5)(10, 10)(20, 15)(30, 25)(35, 45)

Two working models

BMA-bCRM 0 0 56.8 157 0 275 6.9 5.5 36.2
Number of patients 4.7 34 259 145 0

Three working models

BMA-bCRM 0 0 28 45 0 27 7.8 6.4 36.3
Number of patients 4.7 3.3 151 218 0

Four working models

BMA-bCRM 0 0 24 453 258 26.5 9.2 9.5 36.4
Number of patients 4.7 3.3 53 16.8  18.1

Five working models

BMA-bCRM 0 0 39 471 293 19.7 10 10.4 39
Number of patients 4.5 3.7 49 162 187

Six working models

BMA-bCRM 0 0 31 432 30 23.7 9.6 104 37.7
Number of patients 4.5 3.6 4.9 144 198

models approach, we employed the WM, and WM,; for the three working models
approach, we employed the WM,, WM,, and WM,. For the five working models
approach and six working models approach, we add the fifth working model WM,:
{(1, 5), (20, 20), (40, 45), (60, 60), (65, 65)} and sixth working model WMj: {(5, 20),
(8, 30), (9, 40), (12, 50), (20, 60)} in this order. Table 5 shows the results of these
sensitivity analyses. In terms of the correct RD selection probability, there was no
substantial difference among the setting except for the two working models setting.
These results indicate that as long as a sufficiently reasonable working model is
selected, we do not have to prepare many working models; three or four working
models may be sufficient.

Furthermore, we investigated the impact of selected working models for the
proposed BMA-bCRM approach. We prepared three different sets of working
models for the proposed BMA-bCRM approach and compared the operating
characteristics of the proposed BMA-bCRM approaches using different sets of
working models under scenario 2. From the simulation results summarized in
Table 6, there was no critical difference in operating characteristics among the
proposed BMA-bCRM approach using different sets of working models, but there
was some divergence in terms of the correct RD selection probability, approximately
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