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Assessing the prediction accuracy of cure in
the Cox proportional hazards cure model: an
application to breast cancer data

Junichi Asano,?* Akihiro Hirakawa,® and Chikuma Hamada°“

A cure rate model is a survival model incorporating the cure rate with the assumption that the population contains both
uncured and cured individuals. It is a powerful statistical tool for prognostic studies, especially in cancer. The cure rate is
important for making treatment decisions in clinical practice. The proportional hazards (PH) cure model can predict the cure
rate for each patient. This contains a logistic regression component for the cure rate and a Cox regression component to esti-
mate the hazard for uncured patients. A measure for quantifying the predictive accuracy of the cure rate estimated by the Cox
PH cure model is required, as there has been a lack of previous research in this area. We used the Cox PH cure model for the
breast cancer data; however, the area under the receiver operating characteristic curve (AUC) could not be estimated because
many patients were censored. In this study, we used imputation-based AUCs to assess the predictive accuracy of the cure
rate from the PH cure model. We examined the precision of these AUCs using simulation studies. The results demonstrated
that the imputation-based AUCs were estimable and their biases were negligibly small in many cases, although ordinary AUC
could not be estimated. Additionally, we introduced the bias-correction method of imputation-based AUCs and found that
the bias-corrected estimate successfully compensated the overestimation in the simulation studies. We also illustrated the

estimation of the imputation-based AUCs using breast cancer data. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: cancer prognosis; Cox proportional hazards cure model; logistic regression; area under the receiver operating

characteristic curve; imputation

1. INTRODUCTION

In cancer studies, some patients with long-term censored
recurrence-free periods may be considered cured, whereas
others may eventually have a recurrence. For example, a sub-
set of primary breast cancer patients treated with neoadjuvant
chemotherapy (NAC) was reported to achieve long-term
disease-free survival (DFS) [1]. These patients did not experience
recurrence, metastases, or death during the long-term follow-up
study (e.g., for over 10years) and were therefore considered to
be clinically ‘cured’ Examples for melanoma and prostate cancer
data are shown in [2].

In cancer prognostic studies involving patients with long-term
censored survival, the clinical variables associated with cure need
to be identified, and the cure probability should be predicted for
each patient. Determining this cure rate is important for making
treatment decisions in clinical practice. In such cases, the propor-
tional hazards (PH) cure model can be useful [3-6]. The PH cure
model contains a logistic regression component for the cure rate
and a Cox regression component for simultaneously estimating
the hazard for uncured patients. Therefore, a measure for quan-
tifying the predictive accuracy of the cure rate estimated by the
PH cure model is required. In addition, a measure for evaluating
the predictive accuracy of the survival data is required. In the ordi-
nary PH model, the c-statistic is a well-known measure [7,8] and
have been widely studied [9-14]. In the cure model, however, the
PH assumption dose not generally hold more often for uncured
patients than any other non-PH assumptions because the hazard

for these patients is zero during the trial; therefore, the c-statistic
cannot be interpreted in the cure model. Thus, although an alter-
native index to the c-statistic is an unresolved research problem
in this field, we focus on measuring the predictive accuracy of
the cure rate in the cure model based on the breast cancer data
analysis presented later.

In general regression modeling strategies, several measures for
quantifying the predictive accuracy have been proposed: (i) an
explained variation measure quantifying the proportion of varia-
tion explained by a covariate [15]; (ii) a calibration measure quan-
tifying the agreement between observed outcomes and predic-
tions [16]; and (iii) a discrimination measure that shows how well
the model can discriminate between those with and those with-
out the outcome. The area under the receiver operating charac-
teristic curve (AUQ) is a well-known measure and has been widely
used [17]. However, a measure for quantifying the predictive
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accuracy of the cure rate estimated by the PH cure model has not
been adequately studied.

In terms of using the cure model, we believe that a key com-
ponent in the assessment of predictive accuracy is the ability to
distinguish between those subjects who will never experience a
recurrence (cured) from those who will eventually experience a
recurrence (not cured). A discrimination measure also needs to
be easy to interpret from a clinical viewpoint. We applied our
method to a dataset of breast cancer patients receiving NAC at the
National Cancer Center Hospital, Tokyo, Japan, between May 1995
and July 2007 [18,19]. We used the Cox PH cure model; however,
the ordinary AUC could not be estimated because many patients
were censored and their cure status was treated as ‘missing’

In this paper, we address the difficulty of AUC calculation in the
presence of missing data by utilizing the method proposed by
Alonzo and Pepe [20]. Specifically, we apply the imputation-based
AUCs developed by them in order to assess the predictive accu-
racy of the cure rate estimated by the PH cure model. We
conduct simulation studies to examine the precision of the
imputation-based AUCs. We also examine the usefulness of these
AUCs using the breast cancer data and discuss its performance.

2. METHODS

2.1. PH cure model

Let Y be an indicator that an individual will eventually (Y = 1)
or never (Y = 0) experience the event, with probability p =
Pr(Y = 1). Let T denote the time to the event, defined only
when Y = 1, with probability density function f(t|Y = 1) and
survival function S(t|Y = 1). For a censored individual, Y is not
observed. We assume an independent, noninformative, random
censoring model, and that censoring is statistically independent
of Y. In the PH cure model, the probability density function of T
can be written as follows:

F(6) = ph(EY = 1)+ (1 —p)H(lY = 0) = ph(lY = 1). (1)

The cumulative distribution function is defined as F(t) =
pfotﬁ (ulY = T1)du, and therefore, the survival function S(t) =
1 — F(t) can be expressed as follows:

5(O) = (1 —p) +ps(tly =1). @)

The survival functions for the overall patient population and
uncured patients fort — coare S(t) - 1—pand S(t|[y = 1) — 0,
respectively. For the probability of cure T — p, numerous studies
[3-6] assume a logistic regression:

Pr(Y =0|x) =1—p(x)
= exp (ﬂo + ,BTX) /{1 + exp (ﬁo + ,BTX)> , (3)

where fg is the intercept, B = (B1,--- ,/SU)T is the vector of
regression coefficient, and x = (xj,--- xu)T is the vector of

exploratory variable.
Next, the Cox regression model is assumed for time ¢t [21]:

A(t]Y = 1,%) = Ao(t]Y = 1) exp (yTx) , @)

where Ao(t|lY = 1) is the baseline hazard function for uncured
patients and ¥y = (y1,---,yu)" is the vector of regression

coefficient. The cumulative hazard function for uncured patients
is defined using Equation (4) as follows: A (t|Y =1,x) = Ao(t|]Y =1)
exp (yTx). Therefore, the cumulative baseline hazard function
can be written as follows: Ag(t|lY = 1) = fot/\o(u|Y = 1)du.
The survival function for uncured patients is S(t|Y = 1,x) =
So(t]y = 1)),

We denote the observed data for patientsj (i = 1,---,n) by
(t;, 8;,x;), where t; is the observed event or censoring time, §; = 1
if tj is uncensored, and §; = 0 otherwise. To clearly explain the PH
cure model, we suppose that common U variables are included
in the logistic and Cox PH models and that variable selection is
performed (in practice, different variables can be included in each
model). We denote the k distinct event times by t(;) < tp) <

- < t(- It follows that if §; = 1, theny; = 1,and if §; = 0,
then y; is not observed. Here, we use the EM algorithm to esti-
mate the parameters (8o, B, ¥, Ao) with the method developed by
Sy and Taylor [6], and obtain the maximum likelihood estimates
(Bo,ﬁ, 7, Ao) [6]. The complete-data full likelihood function of the
PH cure model is as follows:

L(Bo, B,y Aosy,x) = [ [ P (xi) {1 = pOxi)} ™
i=1

T oy = vexe (yx)) ™ g5

=1

X exp {—y,-Ao(t,'|Y =1)exp (yTx;)}
= L1(Bo, By, X)L2(y, Ao;y. X),

wherey = (y1,--- ,yn)T [6].

2.2. Ordinary AUC

Using the estimates of (8o, B), we calculate a cure rate pc(x) =

1—p(x) = exp (ﬁo - BTX) / {1 + exp (ﬁo + ﬁ&)}. Next, let T
be the period that determines the clinical ‘cure’ It follows that (i)
ifti > 7,theny; = O; (i) ift; < rand §; = 1,theny; = 1;and
(iii) if t; < T and §; = O, then y; is missing. Let V be an indicator of
the following: if y; = 0 or 1, then v; = 1, and if y; is missing, then
vi = 0. We define nq as the sum of the number of patients with
vi = 1and y; = 1, and further ng as the number of patients with
vi = 1andy; = 0.The ordinal AUC only includes data from those
patients with a cured status (y; = 0Oand 1).

The true positive rate (TPR) and false positive rate (FPR) can be
estimated by using

ﬁ(c) L Zi=1 /(p;(x,') < C) -V ,y[, N
D=1 Vi Yi
:Eﬁ?(c) ey Zi=1 /(pc(X,') < c) vi-(1=yp) 2

S vi-(1=yi)

where c is the cut-off point (0 < ¢ < 1). We then estimate the
ordinary AUC by using the nonparametric method [22].

AUC — 2;21 27;1 X {PAC(XI)IPAC(XJ)}, ®)
No - M

where W is a function of two variables: W {pc(x;), pc(xj)} = 1
if pc(xi) > pe(x)), ‘I’{lic(xi)/ljc(xj)} = 1/2if pc(xi) = pc(x)),

Copyright © 2014 John Wiley & Sons, Ltd.
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W {pc(xi), Pe(x))} = 0 if pe(x)) < Pe(x)). This estimate of the
AUC is equivalent to that estimated by using the trapezoidal
method [23].

2.3. Imputation-based AUCs for the Cox PH cure model

In this section, we propose to use two methods for estimating
the AUC for the Cox PH cure model by utilizing the method pro-
posed by Alonzo and Pepe [20]. One is the full imputation (Fl),
which replaces the y; of the ordinary AUC with 1 — p.(x;), and
subsequently calculates the TPR and FPR as follows:

Zl’.7=1 /(ﬁC(xi) < C) i {1 “PAC(XI)}

TPRr/(c) = - ) 9
o Yimr {1 = pelxi)} i
FPRi(c) = Zim ! (Pelx) < ©) - elx) (10)

Z?=1 Pe(x)

The other method is the mean score imputation (MSI) method,
which replaces the y; of the ordinary AUC with 1 — p(x;) for only
censored patients, and subsequently calculates the TPR and FPR
as follows:

Y H(Pexi) <c) - [vi-yi+ (1 —vi) - {1—pc(x)}]

TR (O) =
sl S iy + (0 —v)- {1 = pelx)}]
1)
PRy (€) = S (B <c) - {vi- 1=y + (1 —vi) - Pelx)) }

S {vi- D=y + (1 =v) - Pe(x))}
(12)

Using the trapezoidal method, we estimate the AUCs for the Fl
and MSI methods, respectively.

2.4, Bias-correction using the bootstrap method

In the simulation studies shown in the next section, the proposed
AUCs uniformly and slightly overestimate the true AUC. In this
section, we introduce the bias-corrected estimators of the pro-
posed AUCs using the bootstrap method presented by Copas and
Corbett [24]. Specifically, we first estimated the logistic regression
model, p (x;), from the bootstrap sample, and calculated the pro-
posed AUC by using the p} (x;) and the bootstrap sample, termed
AUChootstrap- Next, we estimated the logistic regression model,
bc(x;), from the original sample. We then calculated the pro-
posed AUC by using the p.(x;), and the bootstrap sample, termed
AUCEootsmp. We repeated this step 200 times and obtained the
mean difference (A) of AUChootstrap — Aucgootmp. Finally, we
calculated the proposed AUC using the original sample, termed
AUCoriginal, and used the AUCqriginal — A as the bias-corrected esti-
mator of the proposed AUC. We also examined the accuracy of the
bias-corrected estimates of the proposed AUCs using simulation;
details are provided in the next section.

3. SIMULATION STUDIES

We evaluated the performance of the ordinary, Fl-based,
and MSl-based AUCs through the simulation studies. We
assumed the PH cure model for a time-to-event outcome t, as
f(t.) = phf(te]lY = 1). In this model, we also assumed the
logistic regression for the cure rateas 1 —p = exp (;30 + ‘Tx) /
{1 + exp (Bo + B"x)}, and the Cox regression hazard for uncured
patients as A(te]Y = 1) = Ao(te]Y = 1)exp (y'x). Thus, the
probability density function of t, is given by the following:

f(te) = [1 — exp (ﬂo +ﬂTX) /{1 T BKp (/30 +‘6Tx)}]

X exp (yTx) exp(—te)@Pr™), (13)

Table I. True coefficients of B4, B2, ¥1, and y, under four scenarios (8o = —1.1
throughout).
AUC=0.6 AUC=0.8

Scenario (B1,v1) (B2, v2) (B1,v1) (B2, 72)

1 (—0.255,0.255)  (0.255,—-0.255) (—0.895,0.895) (0.895, —0.895)
2 (—0.360,0.000) (0.000,—0.360) (—2.000,0.000) (0.000, —2.000)
3 (0.000, 0.360) (0.360, 0.000) (0.000, 1.950) (1.950, 0.0000)
4 (—0.260,0.000) (0.260, 0.000) (—0.980,0.000) (0.980, 0.000)

Table Il. Success rate of AUC calculation for the ordinary AUC (%).
AUC=0.6 AUC=0.8
Ac N 1 2 3 4 1 2 3 4
0.4 100 38 37 37 37 43 58 55 42
400 84 85 84 84 90 96 96 89
0.7 100 2 2 2 2 3 4 4 3
400 11 11 10 11 13 17 17 12
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where Ag(te]Y = 1) is set to 1. Using f(te), Bo, B,y and x, we
obtained the t, for patient as follows:

1
—exp (y'xi)
AL I:Se,i —exp (Bo+ BTxi) / {1+ exp (Bo + ﬂTXi)}:|

1—exp (Bo + Bxi) / {1+ exp (Bo + BTxi)}
14)

tej =

where S is a uniform random number between 0 and 1. The
probability density function of time-to-censor t. is fc(t;)) =
Acexp(—Actc). Given A, we obtained t. for a patient i

1
tei = _A_c log Se,ir (15)

where S is a uniform random number between 0 and 1, and A¢
is set to 0.4 for mild censoring and to 0.7 for a heavy proportion

of censoring. Both time-to-event t,; and time-to-censor t.; were
generated for a patient; if to; < tj, then the time t; was set to t,;
otherwise, the time t; was set to t.;. We considered two variables
X = (x1,x2), which were independently generated from a nor-
mal distribution with mean vector 0, and covariance matrix with
variance 1, respectively. For generating y; and v;, we assumed the
following:if t; > 10,theny; = 0andv; = 1;ift; < 10and §; = 1,
theny; = Tandv; = 1;andift; < 10and §; = 0, then y;is a
missing value and v; = 0.

We performed simulation studies with four scenarios, as shown
in Table I. Given the true AUC of 0.6 (or 0.8), we determined
the corresponding coefficients (81, B2, 1, v2) that satisfied each
target AUC. In scenario 1, x; and x; influenced both the cure
rate and the hazard for uncured patients, respectively. In sce-
nario 2, x1 affected the cure rate, while x; influenced the hazard
for uncured patients. In scenario 3, x1 influenced the hazard for
uncured patients, while x, affected the cure rate. In scenario 4,
x1 and x, influenced only the cure rate, respectively. The num-

Table Ill. Estimates of AUCs based on the Fl and MSI methods.
AUC=0.6 AUC=0.8
Scenario Scenario
Ac n Method 1 2 3 4 1 2 3 4

0.4 100 Ordinal 0.70 0.61 0.64 0.68 0.85 0.78 0.77 0.81
Fl 0.67 0.63 0.63 0.67 0.79 0.84 0.83 0.83
MSI 0.69 0.64 0.64 0.69 0.84 0.85 0.84 0.84
400 Ordinal 0.63 0.59 0.60 0.61 0.84 0.79 0.79 0.80
Fl 0.61 0.60 0.60 0.62 0.78 0.85 0.85 0.81
MSI 0.65 0.62 0.62 0.63 0.85 0.87 0.86 0.84
0.7 100 Ordinal 0.75 0.62 0.67 0.71 0.81 0.70 0.73 0.78
FI 068 063 063 067 080 084 083 081
MSI 0.70 0.64 0.64 0.69 0.84 0.84 0.84 0.83
400 Ordinal 0.69 0.56 0.66 0.63 0.88 0.76 0.80 0.83
Fl 0.62 0.60 0.60 0.61 0.79 0.85 0.85 0.80
MSI 0.66 0.61 0.61 0.63 0.85 0.86 0.86 0.82

Table IV. Estimates of bias-corrected AUCs based on the Fl and MSI methods.

AUC=0.6 AUC=0.8

Scenario Scenario

Ac n Method 1 2 3 4 1 2 3 4

04 100 Fl 0.63 0.61 0.61 0.65 0.74 0.79 0.78 0.79
MSI 0.67 0.63 0.63 0.67 0.79 0.80 0.80 0.81
400 Fi 0.58 0.59 0.60 0.61 0.75 0.80 0.80 0.79
MSI 0.62 0.60 0.60 0.62 0.80 0.82 0.82 0.82
0.7 100 Fl 0.64 0.61 0.61 0.64 0.75 0.78 0.78 0.77
MSI 0.67 0.62 0.62 0.67 0.79 0.80 0.80 0.79
400 Fl 0.57 0.59 0.60 0.61 0.73 0.76 0.76 0.75
MSI 0.57 0.58 0.58 0.58 0.70 0.73 0.72 0.73
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Figure 1. Kaplan-Meier curve for DFS in patients with histological grades of 1,
unknown, and 2 and 3 respectively. Short vertical lines indicate censored data points.

ber of patients (N) was set to 100 or 400. The simulations were
performed 1000 times for each setting. For the simulations, we
programmed the sAs code accordingly using SAS/IML (version
9.3; SAS Institute Inc.,, Cary, NC, USA).

We investigated the success rates, the proportion of times that
we could calculate the AUC for 1000 simulations, for the ordinary
AUC calculation (Table ) and calculated the average values of the
AUC estimates based on the Fl and MSI methods (Table Ill). The
success rates for the ordinary AUC calculations were 35-50% for
Ac = 0.4and N = 100, 85-95% for A = 0.4 and N = 400, 5% for
Ac = 0.7and N = 100, and 10% for A = 0.7 and N = 400. As
expected, the success rates for Fl-based and MSI-based AUC cal-
culations were 100% for all scenarios. We investigated the average
bias that is the difference between the true AUC and estimates
of Fl-based and MSI-based AUCs in 1000 simulations. As shown
in Table Ill, we found the maximum of bias (0.1) when N = 100,
while the bias was negligibly small when N = 400. The bias for
the MSI-based AUC was slightly larger than that for the Fl-based
AUC in all scenarios.

Additionally, we calculated the average values of the
bias-corrected AUC estimates using the FI and MSI methods
(Table IV). We found that the bias-corrected estimates of the
proposed AUCs successfully compensated the overestimation

Table V. Results of the PH cure models for the breast cancer data using stepwise variable selection (e, = aoyt = 0.15).
Variables Odds ratio (95% Cl) p-value Hazard ratio (95% Cl) p-value
Hormone receptor status <0.001 0.018
Negative 1 1
Positive 0.31(0.18,0.51) 2.83(1.20, 6.69)
Endocrine therapy Not selected <0.001
No 1
Yes 0.06(0.02,0.22)
Age Not selected Not selected
=35
<35
Clinical stage Not selected 0.007
IIA/11B/INA 1
HB/INC 1.90(1.19, 3.01)
Histological grade <0.001 0.082
1 1 1
Unknown 0.38(0.07,2.17) 3.72(0.23,61.14)
2and3 0.65 (0.24, 1.78) 8.26(1.13,60.19)
HER2 0.098 0.005
Negative 1 1
Positive 0.65(0.39, 1.08) 1.87(1.21,2.88)
Clinical response Not selected <0.001
SD/PD 1
PR/CR 0.40 (0.24,0.67)
Number of lymph <0.001 0.019
node metastases
0 1 1
1to3 0.54(0.33,0.91) 1.62 (0.88, 3.00)
=4 0.12(0.06, 0.22) 2.95(1.68,5.19)
Cl, confidence interval; HER2, human epidermal growth factor receptor 2; SD, stable disease; PD, progressive disease;
CR, complete response; PR, partial response.

Pharmaceut. Statist. 2014, 13 357-363

Copyright © 2014 John Wiley & Sons, Ltd.

-211-




Pharmaceutical
Statistics

J. Asano, A. Hirakawa and C. Hamada

1.0 1

0.9

0.8

0.7 A

0.6 1

— FI-based ROC

0.5 ~ — — MSI-based ROC

TPR

0.4

0.3

0.2

0.1 4

0.0 4

00 01 02 03 04 05 06 07 08 09 1.0
FPR

Figure 2. ROC curves for the Fl and MSI methods.

in most cases, but over-corrections were observed in the MSI
methods when A = 0.7 and AUC = 0.8. We also show the
ordinary AUC estimates for reference, although the ordinal AUC
could not necessarily be calculated in each simulation because
many patients were censored and their cure status was treated as
‘missing; as shown in Table II.

4. APPLICATION TO BREAST CANCER DATA

We applied our method to a dataset of 368 breast cancer patients
treated with NAC. For example, Figure 1 shows the Kaplan-Meier
curves for DFS in patients with histological grades of 1 and 2-3;
the respective 8-year DFS rates were 94.5% and 62.1%, respec-
tively. The patients with a histological grade of 1 who had not
dropped out were considered clinically ‘cured’ This indicates that
a cure model would fit the data well. We, therefore, applied
the Cox PH cure model to the breast cancer data and calcu-
lated the Fl-based and MSI-based AUCs. The following variables
at baseline were assessed in the model: hormone receptor sta-
tus (Positive versus Negative), endocrine therapy (Yes versus No),
age (<35years versus =35 years), clinical stage at diagnosis (IIA,
1B, or llIA versus lIIB or llIC), histological grading (Unknown ver-
sus 1 versus 2 or 3), human epidermal growth factor 2 status
(Positive versus Negative), clinical response to NAC (complete or
partial response versus stable (SD) or progressive disease), and
the number of lymph-node metastases (0 versus 1-3 versus >4).
We estimated the parameters with an EM algorithm, using the
method developed by Sy and Taylor [6]. Table V shows the results
of the analysis using the PH cure model with stepwise variable
selection (¢jn = aoyr = 0.15) [19]. Using a 10-year as period that
determines the clinical ‘cure; we estimated the ordinary, Fl-based,
and MSI-based AUCs. Figure 2 shows the ROC curves for the Fl
and MSI methods. The estimates of the AUC were 0.756 for the
Fl-based method and 0.755 for the MSI-based method; however,
the ordinary AUC could not be calculated because many patients
were censored and their cure status was treated as ‘missing.

Additionally, the estimates of the bias-corrected AUC were 0.705
for the Fl-based method and 0.703 for the MSI-based method.

5. DISCUSSION

In this study, we proposed to use the Fl-based and MSl-based
AUCs in order to assess the predictive accuracy of cure rates esti-
mated by the PH cure model. We have shown that the Fl-based
and MSI-based AUC can be estimated irrespective of the amount
of censored data (i.e., missing data), although the ordinary AUC
cannot. In addition, simulation studies showed that the precision
of the estimates was satisfactory and the Fl-based AUC was supe-
rior to the MSI-based one in many cases. We would recommend
the use of the Fl-based AUC for assessing the predictive accuracy
of cure rates from the Cox PH cure model. In the application to the
breast cancer data, the estimates of the Fl-based and MSI-based
AUCs were both 0.75, and those values could be interpreted as
the moderate accuracy [25].

We have investigated the properties of the proposed AUCs.
The consistency of the Fl-based and MSI-based AUCs have been
demonstrated by Alonzo and Pepe [20], although these AUCs
seem to be overestimated. Because the proposed AUCs are based
on those of Alonzo and Pepe [20], we would expect to see simi-
lar properties in the two proposed AUCs. Indeed, the simulation
studies showed that the proposed AUCs were overestimated. We
performed simulation studies where the number of patients was
set to 1000 with end-of-study censoring. The proposed AUCs were
identical to their true values when the sample size was as large
as 1000 (data not shown). To correct the overestimation of the
proposed AUC estimates, we also introduced the bias-corrected
estimators of the proposed AUCs using the bootstrap method.
Simulation studies demonstrated that the bias-corrected esti-
mates successfully compensated the overestimation in most
cases, but over-corrections were observed in the MSI-based AUC
when A = 0.7 and AUC = 0.8. When applied to breast cancer
data, the original estimates of the Fl-based and MSI-based AUCs
were both 0.75, while the corresponding bias-corrected estimates
were both 0.70.

As cancer treatments are rapidly developing, therapies that
result in an increased proportion of patients being long-term sur-
vivors (i.e., cured patients) are likely to be encountered more and
more frequently. Although our study focused on breast cancer,
the cure rate model could be useful for other types of cancer.
Therapies for a number of cancer types are believed to induce a
cure among some groups of patients. In such cases, the use of the
Cox PH cure model is preferable to the standard Cox PH model.
The use of the Cox PH cure model in cancer prognostic studies has
been recommended in recent studies [2,26-28]. Therefore, fur-
ther research into regression modeling strategies using the Cox
PH cure model is warranted. We recently developed a stepwise
variable selection method for the Cox PH cure model [19]. The
assessment of model fit, collinearity, identification of overly influ-
ential observations, and the validation of the fitted model should
be evaluated in more detail in future studies.
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