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CANCER GENOMICS

Recurrent somatic mutations
underlie corticotropin-independent
Cushing’s syndrome
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Yuichi Shiraishi,® Kenichi Yoshida,” Yasunobu Nagata,! Aiko Sato-Otsubo,!
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Cushing's syndrome is caused by excess cortisol production from the adrenocortical gland. In
corticotropin-independent Cushing’s syndrome, the excess cortisol production is primarily
attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has
been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which encodes the
catalytic subunit of cyclic adenosine monophosphate (CAMP)-dependent protein kinase (PKA), in
more than 50% of cases with adrenocortical adenomas associated with corticotropin-independent
Cushing's syndrome. The L206R PRKACA mutant abolished its binding to the regulatory
subunit of PKA (PRKAR1A) that inhibits catalytic activity of PRKACA, leading to constitutive,
cAMP-independent PKA activation. These results highlight the major role of cAMP-independent
activation of cAMP/PKA signaling by somatic mutations in corticotropin-independent Cushing’s
syndrome, providing insights into the diagnosis and therapeutics of this syndrome.

ushing’s syndrome is a systemic disorder as-
sociated with various constitutive symptoms—
such as hypertension, impaired glucose
tolerance, central obesity, osteoporosis, and

of Cushing’s syndrome (corticotropin-dependent
Cushing’s syndrome), excess cortisol is autono-
mously produced by adrenocortical tumors in
patients with corticotropin-independent Cushing’s

depression—that are ascribed to cortisol
overproduction (Z-8). Cortisol biosynthesis is
primarily regulated by corticotropin secreted from
the anterior pituitary gland. Corticotropin acts
by binding to the melanocortin-2 receptor, in-
creases cyclic adenosine monophosphate (cAMP)
production, and activates cAMP-dependent pro-
tein kinase [protein kinase A (PXA)] (4). While
aberrant corticotropin secretion from pituitary
adenoma or other ectopic sites is the leading cause
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syndrome (2, 5, 6). Although mutations in the reg-
ulatory subunit type I alpha of PKA (PRKARIA)
(7, 8) guanine nucleotide-binding protein subunit
alpha (GNAS) (9), phosphodiesterase-8B (PDESB)
(10, 11) and -11A (PDEI11A) (12), and armadillo
repeat containing 5 (ARMC5) (13) are responsi-
ble for rare syndromic or hereditary disorders
with bilateral adrenocortical hyperplasia, mo-
lecular pathogenesis of cortisol-producing adre-
nocortical adenomas, which account for a large
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portion of corticotropin-independent Cushing’s
syndrome (6), are less studied.

To investigate genetic lesions in corticotropin-
independent Cushing’s syndrome, we performed
whole-exome sequencing (WES) of eight adreno-
cortical tumors and matched normal specimens
(fig. S1 and table S1). We identified a total of 45
validated nonsynonymous and 59 putative syn-
onymous somatic mutations (tables S2 and S3)
(see the supplementary materials). Remarkably, the
gene encoding the catalytic subunit (C subunit)
of PKA (PRKACA) was recurrently mutated in
four out of the eight cases, resulting in an identical
¢.T617G mutation predicted to cause a conversion
of leucine to arginine at amino acid position 206
(p.L206R). Together with a GNAS mutation
(p.R201C), five of the eight cases had somatic
mutations in genes involved in the cAMP/PKA
signaling pathway. No allelic imbalances were
observed at both gene loci in single-nucleotide poly-
morphism (SNP) array analysis (fig. S2), indicating
that these mutations were heterozygous, which
was consistent with the observation that, in exome
sequencing, variant allele frequencies (VAF) of
PRKACA/GNAS mutations were comparable to those
of other somatic mutations (fig. S3). Mutations were
not detected in any other known causative genes,
including PRKARIA, PDEIIA, PDESB, and ARMCS.
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We performed follow-up sequencing of PRKACA
and GNAS as well as previously reported genes
(PRKARIA, PDEIIA, PDESB, and ARMC5) in an
additional 57 cases (see the supplementary mate-
rials). The L206R mutation in PRKACA was found
in 30 out of the 57 follow-up cases, of which 24
cases were confirmed as being somatic, whereas
GNAS mutations were found in 10 cases, with so-
matic origin being confirmed in six cases (table S1,
Fig. 1, and fig. $4). No mutations were found in
the previously reported genes. The eight samples
double-negative for PRKACA and GNAS mutations
were tested for mutations in seven additional
genes that were mutated and expressed in three
double-negative exome cases, but no more recur-
rent mutations were identified. Combined with
the four PRKACA and one GNAS mutations in
the discovery cases, PRKACA and GNAS were mu-
tated in 34 (52.3%) and 11 (16.9%) out of the 65
cases with corticotropin-independent Cushing’s
syndrome, respectively, where both mutations
were completely mutually exclusive (Fisher’s exact
test, P = 946 x 107%) (Fig. 1). The somatic origin
was confirmed for 28 out of 28 PRKACA and 6
out of 6 GNAS mutations thus far tested. In ad-
dition, VAFs of PRKACA and GNAS mutations
in deep sequencing were distributed between
0.08 and 0.35, whereas those of most heterozy-
gous SNPs (83%) were between 0.4 and 0.6 (fig.
S5), indicating that most of these mutations were
somatic in origin.

Patients with mutated PRKACA showed sig-
nificantly higher cortisol levels on the -mg dexa-
methasone suppression test (DST) compared with
wild-type PRKACA and GNAS (¢ test, P = 2.60 x
107%) (Fig. 2A). PRKACA-mutated adenomas had
a significantly smaller tumor diameter than those
with no known mutations (¢ test, P = 4.93 x 107%)
(Fig. 2B), suggesting that PRKACA-mutated ade-
nomas may have higher cortisol production. GNAS-
mutated adenomas also showed higher cortisol
levels on 1-mg DST and have a smaller tumor
size. Seventy-six percent of the patients with clin-
ical Cushing’s syndrome had a mutation of either
gene, whereas only two of nine patients with

Fig. 1. Recurrent mutations in PRKACA and
GNAS. (A) Mutations in PRKACA (top) and GNAS
(bottom) identified in 65 patients with corticotropin-
independent Cushing's syndrome (arrowheads).
Confirmed somatic mutations are indicated in red.
(B) Mutually exclusive distribution of PRKACA and
GNAS mutations.
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subclinical Cushing’s syndrome had mutated
PREACA or GNAS genes (Fisher’s exact test, P =
2.87 x 107%) (Fig. 2C and table $4), indicating
that these mutations were enriched for clinical
Cushing’s syndrome,

PREACA is the catalytic (C) subunit of the
tetrameric PKA holoenzyme, which binds tissue-
specific dimeric regulatory (R) subunits (14-16).
In the native state, the C subunit is kept inactiv-
ated through the binding of the R subunit, which
masks the catalytic site of the C subunit (Fig. 3A).
However, when intracellular cAMP is up-regulated
by external stimuli, each R subunit binds two
cAMP molecules, which causes a conforrational
change in the R subunit to promote dissociation
of the C subunit from the PKA complex (14-16),
allowing for the translocation of the dissociated,
and thereby activated, free C subunit to the nu-
cleus and phosphorylation of its target substrates
therein (17, 18). The highly conserved L206 res-
idue of PRKACA, which resides within the P+1
loop of the C subunit, lies on the surface of the
large lobe of PRKACA and is thought to be es-
sential for the catalytic activity of the kinase (Fig.
3A, and fig. S6) (14-16). In the absence of cAMP,
the inhibitory region of the R subunit docks to
the active site cleft of the C subunit, including the
P+1 loop. The L206 residue is located at the in-
terface between the C subunit and the inhibitory
region in the R subunit to form a hydrophobic
interaction with the 199 residue of the R subunit
(Fig. 3B). Thus, the substitution from the small
hydrophobic leucine to a large hydrophobic ar-
ginine is predicted to cause steric hindrance and
abolish the binding of the C and R subunits
(Fig. 3C), resulting in constitutive, cAMP-independent
activation of PKA.

In fact, when the PKA complex was reconsti-
tuted in vitro using purified proteins (fig. S7),
PRKARIA binds the wild-type C subunit and
suppresses its PKA activity in the absence of
cAMP, and the suppression is recovered in the
presence of cAMP with substantially reduced in-
teraction with the wild-type C subunit (Fig. 4, A
and B). In contrast, the R subunit can no longer

bind the L206R PRKACA mutant with constitu-
tive PKA activation, regardless of the presence
or absence of cAMP (Fig. 4, A and B). The loss of
binding to the R subunit and consequent cAMP-
independent PKA activation for the mutant
PRKACA was also demonstrated in vivo. When
expressed in human embryonic kidney 293T
(HEK293T) cells (fig. S8), wild-type PRKACA,
but not the L206R PRKACA mutant, coimmu-
noprecipitated with PRKARIA (Fig. 4C). Both
mock- and wild-type PRKACA-transduced cells
showed increased PKA activity accompanied by
an elevated phosphorylation of cAMP response
element-binding protein (pCREB), one of the
major downstream targets of PKA activation
(Fig. 4, D and E, and fig. S9), on cAMP induction
by forskolin treatment (see the supplementary
materials), whereas mutant PRKACA-transduced
cells demonstrated a higher basal level of PKA
activity and CREB phosphorylation, regardless of
forskolin treatment (Fig. 4, D and E, and fig. S9).
To confirm the cAMP-independent activation of the
mutant PRKACA, we examined the effect of two
PRKACA inhibitors (H89 and KT5720) and a
competitive inhibitor of cAMP binding for the R
subunit (Rp-cAMPS) on the activity of the L206R
mutant (see the supplementary materials). PKA ac-
tivation in the L206R mutant-transduced cells in
the absence of forskolin was suppressed by H89 and
KI5720 (¢ test, P = 160 x 107 and P = 186 x 107,
respectively) but not in Rp-cAMPS-treated cells,
supporting further that the consequence of the
L206R mutation is constitutive, cAMP-independent
activation of PKA (Fig. 4F and fig. S10).

Finally, as predicted from low stability of free
C subunits, primary PRKACA-mutated tumors
showed significantly lower PRKACA protein ex-
pression compared with unmutated tumors (¢ test,
P = 570 % 107%) and normal adrenocortical tis-
sues (¢ test, P = 2.09 x 107°) (Fig. 4G and fig. S11),
although no significant difference was observed
for downstream signaling, such as pCREB or
steroidogenic acute regulatory protein (StAR).
The reduced intracellular expression of the
mutant PRKACA protein was also observed for
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Fig. 2. Relationship between mutation status and clinical features. (A and B) Serum cortisol level of 1-mg dexamethasone (A) and the diameter of
adrenocortical adenoma (B) according to the mutation status of PRKACA/GNAS genes. (C) Clinical and subclinical Cushing's syndrome as attributed to
mutated PRKACA, GNAS, or other, currently undetected, cause.

Fig. 3. Effect of L206R mutation on three-
dimensional structures of PKA. (A) Three-
dimensional structure of the PKA complex,
composed of C (PRKACA) (pink) and R (PRKAR1A)
(cyan) subunits, is depicted using the University
of California—San Francisco Chimera program,
based on the Research Collaboratory for Structural
Bioinformatics Protein Data Bank (PDB ID: 2QCS).
L206 is shown in red. (B and C) A predicted effect
of the L206R mutation within the P+1 loop on the
interaction with the R subunit (C) in comparison
with wild-type PRKACA (B).

exogenously introduced PRKACA in different cell
types (Fig. 4H and fig. S12). However, compared
with the wild-type protein, mutant PRKACA was
more enriched in the nuclear than in the cyto-
plasmic fraction (Fig. 4H).

In conclusion, frequent somatic mutations
in PRKACA and GNAS genes underlie corticotropin-
independent Cushing’s syndrome (fig. S13). Strik-
ingly, in accordance with a recent report (19)
PRKACA mutations were found in more than
50% of the current cohort. All the mutations were
the identical L206R substitution, which prevents

SCIENCE sciencemag.org
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binding to the inhibitory R subunits and results
in constitutive, cAMP-independent activation of
PKA. GNAS mutations were also detected in a
substantial fraction of the present cohort (11/65
or 16.9%), in which all were confined to the R201
residue. Steroid hormone biosynthesis in steroido-
genic cells is primarily regulated through acti-
vation of the cAMP/PKA signaling pathway (20).
PRKACA and GNAS mutations in adrenocortical
cells affecting this pathway are thus a likely factor
responsible for the excessive production of corti-
sol and together account for as many as 70% of the
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current cohort of the patients. In contrast, the re-
maining 30% of the patients with no mutations
in either gene tended to show lower cortisol
levels on 1-mg DST and had a larger tumor size
compared with PRKACA-mutated patients. In
addition, the identified mutations were con-
fined almost exclusively to patients with clinical
Cushing’s syndrome, suggesting that double-
negative cases have distinct pathogenesis, with
driver mutations still to be identified. It should be
warranted to identify the genetic basis of double-
negative cases in future studies.
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The genomic landscape of nasopharyngeal carcinoma

De-Chen Linb212, Xuan Meng"*!12, Masaharu Hazawa!, Yasunobu Nagata®3, Ana Maria Varela!, Liang Xu!,
Yusuke Sato*?, Li-Zhen Liu!, Ling-Wen Ding!, Arjun Sharma!, Boon Cher Goh!%, Soo Chin Leel®,

Bengt Fredrik Petersson’, Feng Gang Yu®, Paul Macary®, Min Zin O0%, Chan Soh Hal?, Henry Yang'-13,
Seishi Ogawa®>13, Kwok Seng Loh®!3 & H Phillip Koeffler!-211,13

Nasopharyngeal carcinoma (NPC) has extremely skewed ethnic
and geographic distributions, is poorly understood at the
genetic level and is in need of effective therapeutic approaches.
Here we determined the mutational landscape of 128 cases
with NPC using whole-exome and targeted deep sequencing,
as well as SNP array analysis. These approaches revealed a
distinct mutational signature and nine significantly mutated
genes, many of which have not been implicated previously

in NPC. Notably, integrated analysis showed enrichment of
genetic lesions affecting several important cellular processes
and pathways, including chromatin modification, ERBB-PI3K
signaling and autophagy machinery. Further functional

studies suggested the biological relevance of these lesions

to the NPC malignant phenotype. In addition, we uncovered

a number of new druggable candidates because of their
genomic alterations. Together our study provides a molecular
basis for a comprehensive understanding of, and exploring

new therapies for, NPC.

NPC arises from the epithelial lining of the nasopharynx!. This neo-
plasm has remarkable ethnic and geographic distributions, with a
particularly high prevalence in southern China, southeast Asia and
northern Africa?. Genetic susceptibility®*, Epstein-Barr virus (EBV)
infection® and chemical carcinogens®’ have been implicated in the
pathogenesis of NPC. Several studies have identified multiple regions
of chromosomal gains and losses in NPC?-10, Nevertheless, genomic
abnormalities of this disease remain largely obscure, and no targeted
therapy has been established. Therefore, a strong need exists to com-
prehensively characterize the genomic foundations of NPC to guide
the development of new therapeutic regimens.

To address these issues, we first performed whole-exome sequenc-
ing (WES) of 56 NPC germline and tumor pairs (discovery cohort)
and 5 NPC cell lines with a mean coverage of 86x (Supplementary
Tables 1a and 2a) and interrogated the somatic copy number

variations (SCNVs) of 52 primary tumors with SNP array (of which
50 also had WES data). In addition, we performed transcriptome
sequencing (RNA-seq) on four tumors from this cohort. We identified
1,577 non-silent somatic mutations affecting 1,413 genes (Fig. 1a and
Supplementary Table 3a), revealing a relatively low mutational rate!!
(Supplementary Fig. 1) and wide mutational diversity. Subjects with
NPC at more advanced clinical stages tended to have heavier muta-
tional burdens, albeit not statistically significantly (Fig. 1a; P = 0.059).
Validation of candidate mutations with Sanger sequencing showed that
a true positive rate of 96.6% was achieved (Supplementary Table 3a).
We analyzed intratumor clonal architecture using WES data and
observed both biclonal and multiclonal signatures (Supplementary
Fig. 2). Cross comparing WES with RNA-seq data from the same
tumors revealed that 56% of the mutated genes had detectable tran-
scripts (Supplementary Table 4). Investigators have previously
noticed that tumors associated with human papillomavirus (for exam-
ple, cervical and head and neck cancers) often show mutational spec-
trums caused by the DNA cytidine deaminase APOBEC3B!2-14, To
our surprise, although NPC is invariably associated with EBV infec-
tion (Supplementary Table 2), we discovered a distinct mutational
signature in NPC, which is not contributed by APOBEC3B-induced
mutagenesis (Fig. 1b, Supplementary Fig. 3a,b and Supplementary
Table 5). Indeed, APOBEC3B expression was not significantly altered
in this malignancy (Supplementary Fig. 3c).

Although the SNP array results revealed that copy number altera-
tions were not common in NPC as compared with other types of solid
tumors (Fig. 1¢), this approach identified multiple recurrent SCNVs,
with the most frequent deletion peak spanning CDKN2A on 9p21
(Fig. 2). We also observed additional SCNVs involving established
cancer genes, including CCNDI1, AKT2, MYC and TP53. Notably, we
identified that the gene encoding one component of the SWI/SNF
complex, ARIDIA, was frequently deleted in NPC (Fig. 2).

To determine the mutational events contributing to the NPC malig-
nant phenotype (driver events), we first selected candidate driver
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Figure 1 Somatic mutational rates and signatures and SCNVs in NPC. (a) The number of somatic mutations discovered from each paired NPC case
subjected to WES and key clinical parameters (Supplementary Table 2a) clustered according to the clinical stage. Indel, insertion or deletion.

(b) Trinucieotide contexts of somatic mutations occurring at cytosine nucleotides in NPC. The font size of the nucleotides at the 3 and 5’ positions
is proportional to their frequencies (Supplementary Fig. 3b). (c) Rates of arm-level and focal SCNVs (Online Methods) across different types of
malignancies. Data regarding SCNVs of the following types were summarized from Zack et al.50: RCC, renal cell carcinoma; GBM, glioblastoma
multiforme; UCEC, uterine cervix; COAD, colorectal adenocarcinoma; BRCA, breast; HNSC, head and neck squamous cell; OV, ovary; LUAD, lung

adenocarcinoma; BLCA, biadder; LUSC, lung squamous cell.

genes from the discovery cohort on the basis of the following criteria:
(i) genes with false discovery rates (FDR) <0.4, which was calculated
by CHASM, a widely used algorithm to distinguish driver and pas-
senger mutations!>-17; (ii) genes with detectable transcripts in at least
50% of the tumors examined by RNA-seq (most passenger mutations
have little or no expression!!); or (iii) genes causally implicated in
other solid tumors or involved in the canonical oncogenic pathways
(Cancer Gene Census; see URLs). This process readily included well-
studied cancer drivers such as TP53, KRAS, ERBB2 and PIK3CA and
excluded many common passenger mutations (for example, TTN
and the genes encoding mucins, cytoskeletal dyneins and olfactory
receptors), and we selected a total of 134 such candidate driver genes
(Supplementary Table 6). We next deep sequenced all of the exons
of these genes with an additional 61 NPC germline and tumor pairs
and 5 nonpaired primary tumors (prevalence cohort, mean coverage
297x; Supplementary Tables 1b and 2b). Combining the data from
both cohorts, we discovered that 144 genes were mutated in at least
two cases (Supplementary Table 3), with a number of hot-spot and
double-hit mutations (Fig. 2), indicating their functional relevance.
We identified nine significantly mutated genes through recalculating
the FDR for all the mutations (FDR < 0.2; Fig. 2), and except for TP53
(refs. 18,19) and PIK3CA?%2!, none of these genes has been implicated
previously in NPC.

To interactively understand the genomic alterations in NPC, we
performed unbiased Gene Ontology term enrichment and ingenuity
pathway analysis of the mutational events?>?3 (Online Methods).
The most noteworthy feature of the NPC genome is the presence of
widespread alterations targeting the chromatin modification pathway
(P =0.002). We identified a total of 67 altered genes in 54 cases with
NPC affecting multiple chromatin modification processes, indicating
broad and heterogeneous insults in the epigenome of NPC (Fig. 3a
and Supplementary Table 7). Notably, this category of alterations
showed strong associations with both EBV burden (Supplementary
Table 8a) and poor overall survival in univariate but not multivari-
ate analysis (Fig. 3¢ and Supplementary Table 8b,¢), indicating that
dysregulation of chromatin modification might contribute to the
aggressiveness of NPC. Notably, we also noticed a correlation between

this cluster of mutations and a higher mutational burden, which may
warrant further investigation (Fig. 3b).

The most frequently altered gene within this category was ARIDIA,
with 13 of 128 cases (10%) harboring deletions and/or mutations,
followed by MLL2 (6%), BAPI (4%), MLL3 (4%) and TET2 (4%). We
found Knudson’s double-hit tumor suppressor pattern (mutation and
loss of heterozygosity) in several of these genes, including ARIDIA
(Figs. 2 and 3a). Because loss of ARID1A has also been observed in
a variety of other cancer types?4, we sought to determine its cancer-
related role in NPC cells. Depletion of wild-type endogenous ARID1A
expression with short hairpin RNAs (shRNAs) led to markedly
increased anchorage-independent colony formation, cell migration
and xenograft growth (Fig. 4a-d). To validate the on-target effects of
shRNA-mediated knockdown, we silenced ARID1A expression with
an additional pool of small interfering RNAs (siRNAs) and observed
similar results (Supplementary Fig. 4a,b). These effects were lost
in HONEI1 cells, which have undetectable ARID1A expression
(Supplementary Fig. 4c-f), further confirming the specificity of the
assays. The causes of compromised ARID1A expression in HONE1
cells appear to occur at the post-translational level, as we did not find
deletions or possible hypermethylations in the ARIDIA promoter
region, and ARID1A mRNA levels in HONE1 cells were comparable
to those in other cells (Supplementary Fig. 4h—j). Notably, inhibi-
tion of proteasome but not histone deacetylases markedly enhanced
ARIDI1A protein levels in HONEL cells (Supplementary Fig. 4k).
We next ectopically expressed ARIDIA and found suppression of
both anchorage-independent colony formation and cell migration
(Fig. 4e—g). ARID1A was previously reported to inhibit cell prolifera-
tion through regulating p21WAF! expression?*2%, which we confirmed
in NPC cells (Fig. 4d). We found consistent upregulation of MYC
(also called c-Myc) protein expression after depletion of ARID1A
(Fig. 4d and Supplementary Fig. 4g), indicating that MYC might be
a target of ARID1A in NPC cells.

BAP1 has a deubiquitinating function that belongs to the ubiquitin
C-terminal hydrolase subfamily. Recently, BAP1 was shown to deubig-
uitinate histone H2A, which is vital for the function of the Polycomb
group of transcriptional repressors?’. BAPI somatic mutations
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Figure 2 {ntegrated analysis of genetic alterations in NPC. Data matrix showing frequent SCNVs, significantly mutated genes (bold; Benjamini-
Hochberg FDR < 0.2 calculated with CHASM) and their associated pathway or family mutations discovered in cases with NPC analyzed by WES,
targeted deep sequencing (TS) or SNP array (SNP-a). The frequencies of the alterations are plotted on the right. The colors and shapes denoting
different types of somatic events are also applied in Figure 5a. Columns, examined cases; rows, genes; hot spot, identical mutations have been
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amplification in C666 cells has been previously described?20,

have been observed in several types of tumors, including renal cell
carcinoma?®-30, uveal melanoma3! and cholangiocarcinoma32-33,
As BAPI was significantly mutated and deleted in our study, we exam-
ined its functional role in NPC cells. Ectopic expression of wild-type
BAP1 suppressed colony growth in soft agar (Fig. 4h,i). Collectively,
these genetic alterations and biological results strongly suggest that
both ARIDI1A and BAPI encode tumor suppressors that are frequently
lost in NPC.

Another prominently altered pathway in NPC is the ERBB-PI3K
signaling pathway (P = 2.04 x 10~%), with the majority of these somatic
events being mutually exclusive (Fig. 5a). PIK3CA was the most
frequently dysregulated oncogene, activated by both well-characterized

hot-spot mutations (for example, those encoding p.His1047Arg and
p.Glu545Lys) and amplification (6% in total). Mutations in ERBB2 or
ERBB3 were present in four tumors, with two of these mutations hav-
ing been reported previously in other cancers, suggesting their func-
tional relevance. Additional lesions included KRAS amplification and
Gly12 mutation, AKT2 amplification and PTEN deletion. Notably,
subjects with alterations in this pathway tended to have shorter sur-
vival time than subjects without such mutations in univariate but
not multivariate analysis (Fig. 5b and Supplementary Table 8b,c).
This cluster of subjects also presented more advanced clinical stage
(P=0.036; Supplementary Table 9a), suggesting that ERBB-PI3K pathway
activation by genetic alterations exacerbated NPC malignancy. Because
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genomic events with targeted therapeutic

approaches that have either been approved for clinical use or are under  malfunction by mutations and deletions of three critical autophagic

evaluation in clinical trials (Fig. 5a). Our results reveal that a number  genes, namely ATG2A (1%), ATG7 (2%) and ATGI13 (5%). Although

of previously unrecognized candidate therapeutic targets existin NPC  not attaining statistical significance in an enrichment analysis, to our

that need further investigation. knowledge, these results reveal for the first time somatic mutations
Besides prevailing somatic events targeting chromatin modification  directly targeting autophagy machinery factors in human cancers. By

and the ERBB-PI3K pathway, the autophagy machinery was shownto  capturing, digesting and recycling damaged proteins and organelles,
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Figure 4 Identification of ARID1A and BAP1 as NPC tumor suppressors. (a-d) NPC cells stably expressing either negative control shRNA (Scramble) or pooled
shRNAs targeting ARID1A (shARID1A) were subjected to anchorage-independent colony formation assay (a), migration assay (b), xenograft growth assay
(horizontal lines, mean values) and western blot (WB) assay with the indicated antibodies (d). (e~-g) NPC cells either with or without exogenously expressing
ARID1A were examined by anchorage-independent colony formation assay (e), migration assay (f) and WB assay with the indicated antibodies (g). (h,i) NPC cells
either with or without exogenously expressing BAP1 were examined by anchorage-independent colony formation assay (h) and WB assay with indicated antibodies (i).
B-actin was examined as a loading control. The data shown in a, b, e, f and h represent the mean £s.d.; n=3 fora, b, eand f; n=4 for h. *P< 0.05, **P< 0.01.
Student’s t-test was used to calculate statistical significance in a—c, e, f and h; the blots shown in d, g and i are representative of three total blots run.
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Figure 5 Actionable genomic lesions in NPC.

(a) Data matrix showing alterations of genes
involved in the ERBB-PI3K signaling pathway
and their related targeting molecules. Considering
space limitations, the numbers of targeting
agents available for each protein are shown in
parentheses. Drugs currently in phase 2 clinical
trials are marked in blue, those in phase 3 are in
purple, and FDA-approved drugs are in brown (see
URLs). (b) Kaplan-Meier survival curves of NPC
subjects either with or without genetic lesions in
the ERBB-PI3K signaling pathway. Log-rank test
was used to calculate statistical significance.

autophagy is a vital process to maintain cellular homeostasis. The role
of autophagy in cancer is intricate and context dependent. During the
initiation of malignancy, autophagy is tumor suppressive by reduc-
ing chronic tissue damage and oxidative stress (reviewed in ref. 34).
The frequent inactivation of autophagic factors observed in the cur-
rent study also suggests that autophagy might prevent the develop-
ment of NPC tumors. Conversely, in advanced tumors, autophagy
protects cancer cells from chemotherapy-triggered stress and apop-
tosis through induction of either dormancy or quiescence, and thus
inhibition of autophagy becomes therapeutically advantageous®>-%7.
Indeed, combining chemotherapies with either an autophagy-
blocking agent or genetic ablation of autophagy has demonstrated
preclinical success®®40 and is currently under evaluation in clini-
cal trials (see URLs). Notably, we also found that combinational
treatment with cisplatin and chloroquine (an autophagy-blocking
agent) synergistically impaired the viability of NPC cells in vitro
(Supplementary Fig. 5a). Our data suggest that a substantial por-
tion of NPC tumors (8%) were intrinsically defective in the autophagy
pathway and thus might respond sensitively to chemotherapeutic regi-
mens. The identification of such susceptible patients through genomic
approaches before chemotherapeutic treatments might offer particular
clinical benefits.

We found additional noteworthy pathways and gene families that
were frequently targeted by genetic abnormalities in NPC. The epi-
thelial cell differentiation program was dysregulated mostly by SYNEI
mutations (8%) and mutations and deletions of NOTCH family genes
(7% in total; Fig. 2), which have also been noticed in lung*! and head
and neck®243 cancers. The SYNEL protein operates upstream of
NOTCH]1 and promotes NOTCH1-dependent epidermal differen-
tiation*%. G1/S cell cycle transition was affected in 28% of NPCs, with
most of the alterations occurring in CDKN2A and TP53. This proc-
ess was further targeted by amplifications at the CCNDI and MYC
locus (Fig. 2). We also noticed frequent but not statistically signifi-
cant mutations affecting the FAT gene family, including FATI (3%),
FAT2 (2%) and FAT3 (2%). Very recently, loss-of-function mutations
of FAT1 have been reported in glioblastoma, colon and head and
neck cancers®’. We also found that FAT1 was recurrently disrupted
in esophageal tumors through truncating mutations and deletions*.
However, the precise role of FATI in cancer is still inconclusive and
appears to be tissue specific*’+45. Unlike the widespread truncating
mutations reported in other types of malignancies, all of the muta-
tions observed in NPC tumors were missense and were predicted by
PolyPhen-2 (ref. 49) to not be deleterious. Moreover, neither silencing
of endogenous FAT1 expression with siRNA nor ectopic expression of
FAT1 ¢DNA affected the proliferation of NPC cells (Supplementary
Fig. 5b,¢), indicating that the biological relevance of FAT mutations
in NPC might be complex and will require further investigation.

b
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In summary, we performed integrated analysis of the genomic land-
scape of 128 cases with NPC and, together with ARIDIA and BAPI,
identified a number of new driver genes with statistical and/or bio-
logical evidence, We also highlighted pathway derangements involy-
ing chromatin modification, ERBB-PI3K signaling and autophagy
machinery, all of which offer potential avenues for treatments to
address this fatal disease. These data together provide an enhanced
road map for the study of the molecular basis underlying this
deadly malignancy.

URLs. dbSNP, http://www.ncbinlm.nih.gov/projects/SNP/; 1000
Genomes Project, http://www.1000genomes.org/; CNAG/AsCNAR,
http/ /www.genome.umin.jp/; COSMIC, http://cancer.sanger.ac.uk/
cancergenome/projects/cosmic/; Cancer Gene Census, http://cancer.
sanger.ac.ul/cancergenome/projects/census/; clinical trials data-
base, http://clinicaltrials.gov/; drugs approved by US Food and Drug
Administration (FDA), http://www.fda.gov/; Picard, htip://picard.
sourceforge.net/; Ingenuity Pathway Analysis (IPA), http://www.
ingenuity.com/products/ipa.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. Digital sequencing and SNP array files have been
deposited into Sequence Read Archive (SRP035573) and Gene
Expression Omnibus (GSE57100), respectively.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Sample collection and assessment. All cases with NPC were diagnosed in
Singapore, and biopsy tissues and paired peripheral blood samples were col-
lected from National University Hospital Singapore. All biopsy tissues were
residual specimens collected after diagnosis, and no patient received preop-
erative treatments. To assess the cellularity of malignant cells and infiltration
of lymphocytes by pathological review, multiple (if applicable) slides of cach
biopsy sample were either stained with hematoxylin and eosin and/or immu-
nohistochemically reacted with antibodies (AE1/AE3, 1:100, DAKO) against
cytokeratins (Supplementary Table 2a,b). To further examine the tumor
cellularity, we analyzed the heterogeneity of all tumors by calculating the vari-
ant allele frequency for somatic mutations of dominant clones (Supplementary
Table 2a,b)5!. Concentrations of circulating EBV DNA in the peripheral blood
of each case are provided in Supplementary Table 2a,b. All patients signed
individual consent forms for the sample collection and molecular analysis.
This study has been approved by the Institutional Review Board of National
University Hospital Singapore.

WES, TS and RNA-seq. For WES, exome capture was performed using
the SureSelect Human All Exon 50M kit (Agilent Technologies) according
to the manufacturer’s protocols. For TS, a customized DNA enrichment
kit (SureSelect, Agilent Technologies) was designed and used to capture all
the exons from 134 genes (Supplementary Table 6). For RNA-seq, librar-
ies were generated using the TruSeq RNA Sample Preparation kit (Illumina)
as described previously??. Captured nucleotides were subjected to massively
parallel sequencing using HiSeq2000 platform (Illumina) with 75- to 100-bp
paired-end reads.

Detection of somatic mutations. Previously described in-house mathematic
algorithms®®52-54 were employed to detect somatic nucleotide variations from
WES and TS. Briefly, massively parallel sequencing reads were first aligned to
hgl9 using Burrows-Wheeler Aligner (V 0.5.8) with default parameters. PCR
duplicates were removed by Picard (see URLs). Next, the statistical significance
of each candidate single nucleotide variant (SN'V) was calculated by enumerat-
ing the number of reference bases and candidate SN'Vs with Fisher’s Exact test,
and those with P < 0.01 were analyzed further. Finally, the following SN'V's were
eliminated: (i) read depth fewer than ten in either the tumor or germline;
(i) SNP identified using sequencing data from paired normal DNA; or
(iii) variants registered in either dbSNP131 or the 1000 Genomes project.

To detect probable somatic mutations of five NPC cell lines and five non-
paired tumors that do not have matched germline DNA, besides all the afore-
mentioned criteria applied, we further removed copy number-neutral variants
with allele frequency between 45% and 55% unless they were registered in
the COSMIC.

SNP array profiling. Genome-wide SCNV analysis (SNP array) was per-
formed using the Affymetrix GeneChip Human Mapping 250K NspI Array
according to the manufacturer’s protocol. SNP array data were analyzed to
determine total and allele-specific SCNVs with CNAG/AsCNAR algorithms
as previously described®>%6. Focal SCNV's (shorter than the chromosome arm)
and arm-level SCNVs (chromosome-arm length or longer) were determined
as previously defined>0.

Analysis of significantly altered pathways. Enriched gene sets reflecting
biological processes annotated by Gene Ontology were calculated using the
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt)?3, In parallel, additional
enriched signaling pathways were identified using IPA (Ingenuity Systems).
Multiple test-corrected P values were calculated when a hypergeometric distri-
bution was applied®”-58, To be more stringent, we assumed that all tumors had
the same mutational rate as tumors with a defective chromatin modification
pathway when calculating the enrichment of this process, considering that the
tumors with mutations targeting chromatin modification had a heavier muta-
tional burden compared to those tumors without such mutations (Fig. 3b).

Cell culture and chemicals. NPC cells and 293T cells were grown in RPMI-
1640 and DMEM with 10% fetal calf serum, respectively. The cell lines CNE1,
CNE2, SUNEL1, 6-10B and HONE1 were generously provided by M.-S. Zeng

(Sun Yat-sen University Cancer Center). All cell lines were recently tested for
the absence of mycoplasma. Vorinostat (SML0061) and chloroquine (C6628)
were purchased {rom Sigma-Aldrich,

WB assay. The whole-cell lysates were prepared with extraction buffer
(50 mM Tris-HCl, pH 7.4, 150 mM NaCl and 0.5% Nonidet P-40) supplemented
with complete protease and phosphatase inhibitor cocktail (Roche). The pro-
cedures for standard WB were performed as described previously®. The anti-
body specific for p21WAF(2947, 1:1,000) was purchased from Cell Signaling
Technology; ARID1A (04-080, 1:1,000) was purchased from Millipore; BAP1
(SC-28383, 1:500), o.-tubulin (SC-8035, 1:250) and MYC (SC-788, 1:250) were
purchased from Santa Cruz Biotechnology; and FAT1 (HPA023882, 1:250) and
B-actin (A5316, 1:5,000) were purchased from Sigma-Aldrich. The intensity
of protein expression was quantified with Image] software.

Short-term cell proliferation assays. 6-10B and HONEI cells were seeded
on the 96-well plates at optimized confluence in triplicate and were grown
for a total of 4 d. To quantify the number of cells, 3-(4, 5-dimethylthiazol-
2-y1)-2, 5-diphenyltetrazolium bromide (MTT) incorporation was performed
as described previously®.

Migration assay. NPC cells were seeded onto transwell inserts (Corning, 3422)
in 24-well plates and incubated for 48 h. The inserts were washed with PBS, and
non-migrating cells were wiped off from the top side. Migrated cells were fixed
with 4% paraformaldehyde and stained with 4',6-diamidino-2-phenylindole
(DAPI), and nuclei were counted.

Anchorage-independent colony formation assay. NPC cells premixed with
0.5% agar in medium were plated on top of 0.65% agar in 12-well plates in
triplicate. Cells were grown for 2-3 weeks to form colonies and were stained
with 0.01% crystal violet and counted.

cDNA vectors, shRNA vectors and siRNAs. Both the human ARIDIA
(Addgene plasmid number 39478) and human BAP1 (Addgene plasmid
number 22539) cDNA expression vectors were obtained from Addgene
under the terms defined by their Material Transfer Agreement, and cells
constitutively expressing Tet repressor were generated to ectopically express
ARID1A2661, The ORF of the human FAT1 transcript was generously pro-
vided by T. Chan (Memorial Sloan-Kettering Cancer Center). The FAT1
ORF was subcloned into the lentiviral-based expression vector SHC003
(Sigma-Aldrich) using Nhel and Fsel cloning sites (the cloning primers used
are shown in Supplementary Table 10a). SHC003-Turbo-GFP served as a
control (Sigma-Aldrich). Lentiviral-based pooled shRNAs (Supplementary
Table 10b) against human ARIDIA were generously provided by
Z.]. Zang (National Cancer Centre Singapore) and used as described beforeS?.
Lentiviral-based scramble shRNA was used as a negative control (Santa
Cruz, sc-108060; Supplementary Table 10b). Pooled siRNAs targeting
human ARID1A (M-017263-01; Supplementary Table 10c) and FAT1
(M-010513-02; Supplementary Table 10d) and scramble siRNA (D-001210-01;
Supplementary Table 10c,d) were purchased from Thermo Scientific.

Transfections, viral particle production and infection. DNA and siRNA
transfections were performed using Lipofectamine 2000 and Lipofectamine
RNAIMAX (Life Technologies), respectively. Lentiviral particles were pro-
duced with the MISSION Lentiviral Packaging System (Sigma-Aldrich). NPC
cells were transduced with the lentiviral particles in the presence of 8 jtg/ml
Polybrene (Sigma-Aldrich) for 48 h.

Methylation-specific PCR assay. Genomic DNA of HONE1 cells was modi-
fied by bisulfite using the EpiTect Bisulfite Kit (59104, Qiagen). Potential CpG
islands within the ARIDI1A promoter region were computationally predicted by
MethPrimer53. Primers specific for the unmethylated (U) and methylated (M)
sequences were designed by MethPrimer® and are listed in Supplementary
Table 10e.

Real-time RT-PCR assay. The real-time RT-PCR was performed using KAPA
SYBR qPCR kits (KAPA Biosystems) in a 7500 real-time PCR system (Applied
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Biosystems) according to the manufacturer’s instructions. The relative mRNA
expression level of ARID1A was calculated using GAPDH as a loading control.
The primers used are listed in Supplementary Table 10a.

Xenograft growth. Male nonobese diabetic severe combined immunodefi-
cient (NOD-SCID) mice (5-6 weeks of age) were purchased from the Cancer
Science Institute of Singapore. Three million NPC cells were mixed with 100 pl
of Matrigel (BD Biosciences) and injected subcutaneously in the upper flanks
of mice, which were randomly allocated. After 4-6 weeks, mice were eutha-
nized to weigh and analyze the dissected tumors. In these experiments, no
statistical methods were employed to determine the sample size, and no
blinding of investigators was performed. The mouse study was performed in
compliance with ethical regulations of the Institutional Animal Care and Use
Committee (IACUC) of the National University of Singapore.

Statistical analyses. The FDR ¢ values for mutated genes were calculated
using CHASM with default parameters!®17:64, Two-tailed Student’s t-test was
used in the statistical analysis of the following assays after verification of the
assumptions (for example, normality): short-term cell proliferation assay,
xenograft growth assay, migration assay and anchorage-independent colony
formation assay. Overall survival probability was analyzed using either log-
rank test (univariate analysis) or a Cox proportional hazards model (multi-
variate analysis).
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Genomic and molecular characterization of esophageal

squamous cell carcinoma

De-Chen Lin!28, Jia-Jie Hao®®, Yasunobu Nagata®®, Liang Xu?$, Li Shang?, Xuan Meng?, Yusuke Sato?,
Yusuke Okuno*, Ana Maria Varela?, Ling-Wen Ding?, Manoj Garg?, Li-Zhen Liu?, Henry Yang?, Dong Yin®,
Zhi-Zhou Shi?, Yan-Yi Jiang?, Wen-Yue Gu?, Ting Gong?, Yu Zhang?, Xin Xu?, Ori Kalid®, Sharon Shacham®,
Seishi Ogawa?, Ming-Rong Wang? & H Phillip Koeffler!>7

Esophageal squamous cell carcinoma (ESCC) is prevalent
worldwide and particularly common in certain regions

of Asia. Here we report the whole-exome or targeted deep
sequencing of 139 paired ESCC cases, and analysis of somatic
copy number variations (SCNV) of over 180 ESCCs.

We identified previously uncharacterized mutated genes
such as FAT1, FAT2, ZNF750 and KMT2D, in addition to
those already known (TP53, PIK3CA and NOTCH?T). Further
SCNV evaluation, immunohistochemistry and biological
analysis suggested their functional relevance in ESCC.
Notably, RTK-MAPK-PI3K pathways, cell cycle and epigenetic
regulation are frequently dysregulated by multiple molecular
mechanisms in this cancer. Our approaches also uncovered
many druggable candidates, and XPO1 was further explored
as a therapeutic target because it showed both gene mutation
and protein overexpression. Our integrated study unmasks a
number of novel genetic lesions in ESCC and provides

an important molecular foundation for understanding
esophageal tumors and developing therapeutic targets.

ESCC is one of the most common malignant diseases in the world and
especially in China, where it is the fourth most common cause of cancer-
related deaths!. Unlike that of cancers that have been extensively
studied, such as breast and colon cancers, the outcome of ESCC remains
unchanged during the last several decades, with a five-year survival
rate ranging from 15% to 25% (ref. 2). We and others have revealed
in ESCC frequent somatic copy number variations (SCNV) involving
3q26 (ref. 3), 9p21 (vef. 4), 11q13.3 (ref. 5) and 8q24.3 (ref. 6), as well
as somatic mutations in PIK3CA7, TP53 (ref. 8) and NOTCH] (ref. 8).
However, in general, understanding of the genomic abnormalities in
this disease is limited to studies of small cohorts#®7°-12, including
a recent whole-exome sequencing approach of 12 ESCCs®. Thus, a
compelling need exists to extensively identify genomic abnormalities

underlying ESCC, elucidate its molecular basis and guide the develop-
ment of effective targeted therapies.

We first sequenced whole exomes (WES) of 20 matched ESCC
germline and tumor pairs (discovery cohort, mean coverage 79x,
Supplementary Tables la and 2a). Transcriptome sequencing
(RNA-seq) was also performed on 4 of these 20 tumors. A total of 1,186
nonsilent somatic mutations (affecting 1,042 genes) were identified
(Supplementary Table 3), a mutation rate comparable to those of
most adult solid tumors!® (Supplementary Fig. 1). We extensively
validated 362 candidate somatic mutations with Sanger sequencing
(true-positive rate = 93.1%, Supplementary Table 3). Intratumoral
clonality analysis showed that both biclonal and multiclonal signa-
tures existed in ESCC (Supplementary Fig. 2). Cross comparing the
WES with RNA-seq data from the same tumors revealed that 61% of
the mutated genes were transcribed (Supplementary Table 4), which
is comparable to the value reported for breast cancer!.

To evaluate the prevalence of these mutated genes from discovery
cohort, we sequenced all of their coding exons with 119 additional
matched ESCC germline/tumors, as well as 10 ESCC cell lines
(frequency cohort, mean coverage 111x, Supplementary Tables 1b
and 2b). To cover more comprehensively the mutational events
in this disease, we also included an additional 277 genes that were
discovered in the previous WES study of 12 ESCCs® or causally impli-
cated in other human cancers (Cancer Gene Census; Supplementary
Table 5). As a result, a total of 1,847 nonsilent somatic mutations
were identified, with an average of 15 mutations per case (true-
positive rate = 96.2%, Fig. 1a; Supplementary Table 6). Notably,
the mutational spectrums from the discovery and frequency cohorts
are almost identical (Supplementary Fig. 3a), suggesting that our
targeted sequencing approach comprehensively unmasked most of
the mutational events in DNA-coding regions in ESCC. Of note,
trinucleotide-signature analysis suggested that DNA cytidine deaminase
APOBEC3B is responsible for ESCC mutagenesis!>~!7 (Fig. 1b and
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Figure 1 Mutation frequencies and signatures, and significantly mutated genes in 139 ESCCs. (a) The number of somatic mutations of each examined
case (top), key clinical parameters (middle, see Supplementary Table 2a,b), and the significantly mutated genes (SMG) colored by the type of mutations
and their mutational frequency (bottom). Columns correspond to examined cases. (b) Trinucleotide contexts of mutations occurring at cytosine
nucleotides in ESCC. Font size of the bases at the 5" and 3’ positions are proportional to their frequencies (Supplementary Fig. 3b). (¢c) APOBEC3B
mRNA expression calculated from two data sets, GSE20347 (ref. 11) and GSE23400 (ref. 54), both of which examined cDNA microarray from matched

normal and tumor ESCC cases.

Supplementary Fig. 3b), and indeed, APOBEC3B expression was
clearly upregulated in ESCC tumors (Fig. 1c). We observed that
609 genes were mutated in two or more samples, with 62 genes
mutated at a frequency over 5% (Supplementary Fig. 3¢). To identify
mutations conferring selective growth advantages (‘driver mutations’),
we applied the algorithm MutSigCV*3, which corrects for variation by
incorporating patient-specific mutational spectrum and gene-specific
background mutational burden and also by measuring gene expres-
sion and replication time. As a result, we calculated that 13 genes were
significantly mutated (false-discovery rate g < 0.2). Notably, many of
these mutated genes had not previously been implicated in ESCC.
To interrogate SCNV in ESCC, we examined 22 tumors with a
SNP array (18 from the discovery cohort), as well as 59 samples with
array CGH!8. We further comprehensively analyzed three additional
SNP-array data sets measuring primary ESCCs*11:12 (Supplementary
Table 7), resulting in a total of 184 analyzable primary ESCC
samples. We focused on focal SCNV, defined as narrow regions
(typically <100 kb) showing high-amplitude copy number changes
(Online Methods), which have a higher probability of containing
cancer genes. This approach identified 14 recurrent focal SCNVs,
with the most frequent amplification peak spanning the CCNDI gene
on 11q13.2 (Supplementary Table 7). Additional peaks involving
important cancer genes such as EGFR, MYC, KRAS and CDKN2A
were found. Notably, FGFRI was shown to be frequently amplified,
which has not been reported before in ESCC. To confirm this observa-
tion, we examined an additional 53 ESCC tumors with fluorescence
in situ hybridization (FISH) and found that FGFRI was amplified

in 11 samples (Fig. 2a and Supplementary Table 7). Furthermore,
with immunohistochemistry (IHC), we found that the FGFR1 protein
was upregulated in 17.3% ESCC tumors (Fig. 2b and Supplementary
Table 8a). Given that FGFR amplification is predictive of sensitivity to
targeted inhibitors in several other solid tumors!®, our results suggest
that FGFRI is a potential therapeutic target in ESCC.

We next sought to understand dysregulated pathways in ESCC.
As we previously reported protein alterations in ESCC using
meta-analysis?, here we also took into account protein overexpression
evidence. Mitogen-activated protein kinase (MAPK) (P = 0.0005,
Fig. 2d, Supplementary Table 9a and Online Methods) and phos-
phatidylinositol 3-kinase (PI3K) pathways (P = 0.0004) are augmented
by multiple mechanisms: (i) amplification and overexpression
of RTKs, KRAS and PIK3CA; (ii) activating mutations of ERBB4
and PIK3CA; (iii) inactivating mutations of PTEN, MAP3K13 and
MAP3KI15. In addition, IL7R amplification and JAKI mutations
were identified, which will likely activate JAK-STAT3 signaling
(P = 0.0006).We previously showed that p-STAT3 is elevated in
ESCC?!, which transforms esophageal epithelial cells cooperatively
with amplified SOX2 (ref. 22). Cell cycle progression (Fig. 2e, P=1.63 x
107°) is altered mostly by CCND1 amplification, CDKN2A deletion or
mutation and TP53 mutation. As a negative regulator of c-Myc, fre-
quent FBXW7 mutations were observed in our investigation (Fig. 2¢),
confirming a recent report of this gene in ESCC8. We next examined
FBXW?7 protein expression with IHC and found its mutation led to loss
of the protein (Fig. 2c). Moreover, in an additional cohort (n = 40), we
determined that FBXW?7 protein was downregulated in 33% of tumors
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Figure 2 Dysregulated pathways in ESCC. a
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schematics of protein alterations in FBXW7
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An asterisk (*) indicates those alterations that
were discovered by Agrawal et al.®. Conserved
domains were mapped from UniProt, Bottom
panel, representative FBXW7 [HC results of

an ESCC case carrying FBXW7 mutations
(frequency and additional cohort, all cases

had matched adjacent normal epithelial tissue,
see Supplementary Table 8b). Scale bars,

100 pm. (d-f) Significantly dysregulated

MNormal

LETTERS

< FGFR1 c EBXWT

R278X
S289K

wi
33
B

t

4~ D362N
= R387C

ESCC-F75
Tumor 8344F

Normal

pathways colored by the type of alterations.
Red font denotes a predicted activating
alteration; black font denotes a predicted
inactivating alteration. (d) RTK-MAPK-PI3K

signaling. (e) G1-8 cell cycle regulation.
(f) Epigenetic modification.

(Supplementary Fig. 4 and Supplementary
Table 8b), further demonstrating its relevance
in ESCC. Another prominent enrichment of
mutated genes in ESCC are those implicated
in epigenetic modifications (P = 0.0013,
Fig. 2f and Supplementary Table 9b), such
as members of the SWI/SNF complex (ARID2
and PBRM1), histone methyltransferases KMT2D and KMT2C, and
demethylase KDM6A.

ZNF750 is a poorly studied nuclear protein that is upregulated in
differentiated skin keratinocytes?324. We observed that ZNF750 was
significantly mutated in ESCC (g = 1.24 x 1075, Fig. 3a). Notably,
analysis of public data sets revealed that ZNF750 is largely mutated in
squamous cell carcinomas, with most of them presenting truncating
mutations (Supplementary Fig. 5b). In line with this, ESCC harbors
a much higher mutational burden affecting ZNF750 than esophageal
adenocarcinoma. The similar pattern was also observed when com-
paring lung SCC to lung adenocarcinoma. From Cancer Cell Line
Encyclopedia (CCLE) results, we found that ZNF750 mRNA showed
higher expression in ESCC and upper aerodigestive squamous cell
carcinoma (UASCC) than any other nonsquamous cancer cell lines
(Supplementary Fig. 5a). These data suggest that ZNF750 somatic
mutations are biologically relevant in squamous cell malignancy. In
addition, we found that ZNF750 was focally deleted in 3.4% of ESCC
tumors (Fig. 3b), and ZNF750 mRNA expression was lower in esopha-
geal tumors compared with normal tissue (Fig. 3¢). Moreover, our
IHC approach revealed that in normal esophageal epithelial, ZNF750
protein showed strong nuclear staining in the suprabasal layer of
cells and above; whereas in ESCC tumors, ZNF750 showed much
weaker expression (Fig. 3d and Supplementary Table 8¢). Notably,
in ESCC cells with wild-type endogenous ZNF750 expression,
depletion of ZNF750 promoted cell proliferation (Fig. 3e), asso-
ciated with a decreased expression of the genes implicated in late
epithelial differentiation, whereas ectopic expression of ZNF750
led to the upregulation of these genes (Supplementary Fig. 5c¢).

SWI/SNF

} Histone
modifiers

Moreover, 12-O-tetra-decanoylphorbol-13-acetate (TPA), a well-
characterized differentiation-induction agent which has also been
commonly used to promote ESCC differentiation®>?6, markedly
enhanced ZNF750 expression (Fig. 3f), with a concomitant inhibi-
tion of cell proliferation (Supplementary Fig. 5d). Notably, ectopic
expression of ZNF750 further promoted the TPA-induced growth
suppression (Fig. 3g). Collectively, these results indicate that ZNF750
might function as a tumor suppressor in ESCC through regulating
squamous cell differentiation.

The FAT family of proteins is comprised of FAT1, FAT2, FAT3
and FAT4, which are cadherin superfamily members encoded by
genes homologous to the Drosophila gene fat. Very recently, FATI was
reported as a tumor suppressor in glioblastoma, colorectal cancer,
and head and neck squamous cell carcinoma (HNSCC)?’. However,
the precise role of FAT genes in cancer still remains inconclusive and
needs further characterization®®?°. Our data revealed that ESCC har-
bored very frequent, mutually exclusive truncating mutations affecting
FAT1, FAT2 and FAT3 compared to other solid tumors (Fig. 4a,b
and Supplementary Fig. 6a). Among FATI-mutated tumors, two
samples were also analyzed with SNP array, and we discovered loss
of heterozygosity of the FATI gene in both tumors (Supplementary
Fig. 6b), supporting Knudson’s two-hit model. We next found that
homozygous deletions of FATI occurred in 3.4% of ESCCs (Fig. 4c).
Furthermore, IHC staining demonstrated that FAT1 protein expres-
sion was downregulated in ESCC (Fig. 4d). To study the function
of FAT gene inactivation in ESCC, we first silenced wild-type FAT1
expression with siRNA, and observed an increase in cell proliferation
(Fig. 4e). On the other hand, ectopic expression of FAT1 cDNA?7
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domains were mapped from UniProt. (b) Top, IGV (Integrative Genomics Viewer) heatmap showing loss of ZNF750 copy number identified from

149 ESCC SNP-array data; bottom, segmentation map of two tumors with ZNF750 deletions from 59 ESCCs examined with array CGH.

(c) ZNF750 mRNA expression calculated from GSE20347 (ref. 11) and GSE23400 (ref. 54). (d) Representative IHC photos of ZNF750 protein
expression in ESCCs (additional cohort, all cases had matched adjacent normal epithelial tissues, see Supplementary Table 8¢). Scale bars, 400 um.
(e) Short-term cell proliferation assays of EC109 and KYSE3O0 cells transfected with either siRNAs against ZNF750 (si-ZNF750) or control siRNA
(Scramble). Data represent mean + s.d.; n = 3. (f) ESCC cells were treated with TPA (100 nM) for 24 h and lysates were analyzed by protein blot.
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represent mean + s.d.; n = 3. Immunoblots of ZNF750 protein expression are

shown with B-actin as a loading control. *P < 0.05.

significantly inhibited both cell proliferation (P = 0.001) and colony
formation in soft agar (P = 0.019, Supplementary Fig. 7). Depletion
of FAT2 with shRNA promoted ESCC growth in vivo (Fig. 4f.g).
Together, the presence of mutations and alterations in protein expres-
sion with functional consequences strongly suggest that FATI and
FAT2 likely encode tumor suppressors that are frequently disrupted
in ESCC.

In mammalian cells, the chief mediator of protein nuclear export
is exportin 1 (XPO1). Because XPO1 exports a number of tumor
suppressors, targeting it has been considered as an antineoplastic
approach3). We found one missense substitution, D624G, affecting
XPOI. Notably, this mutation is identical to the one discovered
in chronic lymphocytic leukemia3!. Structural modeling analysis
revealed that Asp624 is part of the site at which XPO1 binds con-
ventional cargo, such as Snurportin®233; for example, Asp624 forms
a salt bridge with Snurportin’s Lys144 (Fig. 5a). D624G substitution
presumably reduces the affinity of interactions owing to loss of the salt
bridge. This alteration may accelerate the turnover of XPO1 from the
‘bound’ to ‘unbound’ state and enhance its exporting efficiency. We
next analyzed the expression of XPO1’s mRNA and protein and found
that they were frequently overexpressed in ESCC tumor samples
(Fig. 5b,c). Moreover, XPO1 overexpression positively correlated with
larger tumor size (P = 0.016, Supplementary Table 8d). Notably, the
XPO1-mutated tumor also showed upregulated protein expression
compared with the matched adjacent normal esophageal epithelium,

indicating a gain-of-function phenotype (Fig. 5b). We next silenced
XPOI gene expression with shRNA, and noticed the induction of
apoptosis (as evidenced by cleaved PARP) and retardation of cell
proliferation (Fig. 5d,e). To explore whether XPO1 is druggable
in ESCC, we treated ESCC cells with a newly developed oral, small-
molecule inhibitor, KPT-330, which specifically blocks XPO1
function by binding to the active-site Cys528 (refs. 34-36).
Submicromolar concentrations of KPT-330 inhibited ESCC cell
proliferation and induced marked apoptosis (Fig. 5f,g). Inhibition
of XPO1 with either shRNA or KPT-330 altered the expression
of its known cargos (such as P53), as well as indirect targets includ-
ing Cyclin D1, c-Myc, PUMA and BIM, which might be a result of
various mechanisms that we and others have recently identified37-43
(Fig. 5e,h). Given that frequent overexpression of XPO1 protein is
clinically relevant#4-47 and functionally contributes to the cellular
malignant phenotype, targeting XPO1 in those patients with XPO1
upregulation might offer potential benefits in ESCC.

In an effort to identify therapeutic targets in ESCC, we correlated
genomic mutations, amplifications, and mRNA and protein upregu-
lation*8-51 in both primary tumors and cancer cell lines, with novel
targeted therapeutic approaches. We chose those targeting approaches
that have been approved for clinical use2-%3 or are under evaluation
in clinical trials (see URLs section below). As a result, we identi-
fied 31 genes with alterations that can potentially be targeted for
therapy in ESCC. Recurrent candidate druggable targets included
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149 ESCC SNP-array data; bottom, segmentation map of two tumors with FATI deletions from 59 ESCC array-CGH data. (d) Representative IHC photos
of FAT1 protein expression in ESCCs (additional cohort, all 18 cases had matched adjacent normal epithelial tissues, see Supplementary Table 8e).
Scale bars, 400 pum. (e) Short-term cell proliferation was measured in EC109 and KYSE150 cells transfected with either siRNAs against FAT1 (si-FAT1)
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g-PCR in either Scramble or shFAT2 KYSE150 cells. Value represent mean +s.d.; n=3. *P < 0.05.

ERBB, HDAC and PI3K family, XPO1, FGFR1, TP53, JAK-STAT3
and MTOR-RPS6K signaling (Supplementary Tables 10-12).
Importantly, most of the targets and pathways discovered here have
not previously been considered as targets in ESCC. These results
suggest that many potential therapeutic targets exist in ESCC that
need further investigation.

In summary, we report the mutational landscape of 139 ESCCs as
well as an SCNV overview of 184 ESCC cases. A number of mutated
genes and altered pathways not previously associated with ESCC were
identified with statistical and biological evidence of growth selection,
indicating that they likely contribute to esophageal tumorigenesis.
In addition to XPO1, our analysis proposes many potential therapeu-
tic targets, which offer opportunities to address a typically chemo-
resistant cancer.

URLs. dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/; 1000
Genomes Project, hitp://www.1000genomes.org/; Copy Number
Analyzer for Affymetrix GeneChip, http://www.genome.umin.jp/;
MutSigCV, http://www.broadinstitute.org/cancer/cga/mutsig;

TCGA, http://cancergenome.nih.gov/; COSMIC, http://cancer.
sanger.ac.uk/cancergenome/projects/cosmic/; Clinical trials database,
http://clinicaltrials.gov/; CCLE, http://www.broadinstitute.org/ccle/
home; Tumorscape, http://www.broadinstitute.org/tumorscape/
pages/portalHome.jsf; Integrated Genomics Viewer, http://www.
broadinstitute.org/igv; UniProt, http://www.uniprot.org/; BRB-CGH
tools, http://linus.ncinih.gov/BRB-ArrayTools.html; MD-SeeGH,
http://www.flintbox.com/public/project/579; Sequence Read Archive,
http://www.ncbinlm.nih.gov/sra.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. Deep sequencing files have been deposited into
Sequence Read Archive under accession number SRP033394.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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