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urologic features, but not nephrocalcinosis in our patient. Our
case shared similar facial features with previous patients in-
cluding a depressed nasal bridge, short anteverted nose, tented
lip, and downturned corners of the mouth. Low set ears,
micrognathia, malar flattening, and upslanting palpebral fis-
sures were unique to our patient.

Hyperphosphatasia is a characteristic symptom of some
GPI deficiencies, such as PIGV, PIGW, PIGO, PGAP2 and
PGAP3 deficiencies [2-6]. In contrast, hypophosphatasia is a
particularly distinctive feature in the loss of GPI transamidase
function. Murakami at al. suggested that GPI transamidase
abnormalities lead to an inability to hydrolyze the precursor
protein of alkaline phosphatase, resulting in the degradation of
most precursor proteins within the cell and a decrease of
serum alkaline phosphatase levels (hypophosphatasia) [21].
This is supported in our case by the hypophosphatasia. The
patients described by Kvamung et al. showed hypercalcemia
and hypercalciuria following tooth abnormality, craniosynos-
tosis, a delayed bone age, and reduced mineralization, which
is the common features with infantile hypophosphatasia
caused by the mutations in ALPL, the gene encoding tissue
non-specific alkaline phosphatase (TNAP) [22]. AsTNAPisa
GPI-AP, the PIGT deficiency causes decreased surface ex-
pression of TNAP, which would lead to bone abnormalities.
Regardless of hypophosphatasia, our case showed only mild
scoliosis and osteoporosis, but no tooth abnormality nor cra-
niosynostosis. Different mutational effects on the enzyme
activity may account for such different phenotypes. In this
study, mutant PIGT construct harboring Arg488Trp or Glu84*
in strong promoter (pME) vector restored GPI-Aps expres-
sion. In contrast, Kvarnung et al. showed that abnormal phe-
notype of pigt knockdown zebrafish was never restored by the
homozygous mutant (Thr183Pro) PIGT cDNA. Therefore, it
is possible to estimate that the Thr183Pro mutation may affect
the GPI transamidase complex activity more severely than the
Argd88Trp and Glu84* mutations, leading to less severe
phenotypes. However, further functional analysis and cases
with PIGT mutations are needed to elucidate the relevance of
these mutations in PIGT function and full clinical spectram of
GPI deficiency syndromes.
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Numerous BAF Complex Genes are Mutated in
Coffin-Siris Syndrome

NORIKO MIYAKE*, YOSHINORI TSURUSAKI, ano NAOMICHI MATSUMOTO

Coffin-Siris syndrome (CSS; OMIM#135900) is a rare congenital anomaly syndrome characterized by intellectual
disability, coarse face, hypertrichosis, and absence/hypoplasia of the fifth digits' nails. As the majority of patients
are sporadic, an autosomal dominant inheritance model has been postulated. Recently, whole exome sequencing
(WES) emerged as a comprehensive analytical method for rare variants. We applied WES on five CSS patients and
found two de novo mutations in SMARCB1. SMARCBT was completely sequenced in 23 CSS patients and the
mutations were found in two more patients. As SMARCB1 encodes a subunit of the BAF complex functioning as a
chromatin remodeling factor, mutations in 15 other subunit genes may cause CSS and thus were analyzedin 23
CSS patients. We identified heterozygous mutations in either of six genes (SMARCA4, SMARCB1, SMARCA2,
SMARCET, ARID1A, and ARID1B) in 20 out of 23 CSS patients. The patient with a SMARCA2 mutation was re-
evaluated and identified as having Nicolaides-Baraitser syndrome (OMIM#601358), which is similar to but
different from CSS. Additionally, 49 more CSS patients were analyzed as a second cohort. Together with the first
cohort, 37 out of 71 (22 plus 49) patients were found to have a mutation in either one of five BAF complex genes.
Furthermore, two CSS patients were reported to have a PHF6 abnormality, which can also cause Borjeson-
Forssman~-Lehmann syndrome (OMIM#301900), an X-linked intellectual disability syndrome with epilepsy and
endocrine abnormalities. The current list of mutated genes in CSS is far from being complete and analysis of more
patients is required. © 2014 Wiley Periodicals, Inc.

KEY WORDS: Coffin-Siris syndrome; copy number analysis; target resequencing; whole exome sequencing; gene identification
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INTRODUCTION

Coffin—Siris syndrome (CSS; OMIM
#135900) was first reported by Dr.
Coffin and Dr. Siris'in 1970. The three
unrelated CSS girls showed intellectual
disability, postnatal growth delay, joint
laxity, and short fifth digits with absent
nails [Coffin and Siris, 1970]. CSS is a
rare congenital disease, and approxi-

© 2014 Wiley Periodicals, Inec.

mately 100 patients were reported
before gene mutations were reported
[Schrier et al., 2012]. As the majority of
the patients were sporadic, an autosomal
dominant inheritance has been postulated.
Furthermore, autosomal recessive inher-
itance has also been suggested, as some
affected siblings have been reported
[Carey and Hall, 1978; Haspeslagh
et al., 1984].

elibrary.com): 31 July 20° 4
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In 2004, we started recruiting CSS
patients for the positional cloning proj-
ect. As the majority of CSS patients were
sporadic, mapping of the gene was rather
difficult. Disease-related chromosomal
abnormalities, including submicroscopic
copy number changes were the most
promising clues in early 2000. Affyme-
trix single nucleotide polymorphism
(SNP) arrays (250K) applied on 11
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typical CSS patients did not reveal any
abnormalities. In addition, one atypical
patient showed 3.7-Mb and 5.5~-Mb
deletions at 6q25.3-g27, but no further
investigation has been done, as their
pathological significance was unknown

because unavailability of parental
samples interfered with de novo
confirmation.

WHOLE EXOME
SEQUENCING

The emerging new technology, next-
generation sequencing [Shendure et al.,
2004, 2008; Shendure and Ji, 2008], has
become a comprehensive genetic analy-
sis tool enabling the identification of
genetic causes of unsolved Mendelian
disorders [Ng et al., 2010a,b]. Especially,
whole exome sequencing (WES) using
genome partitioning technologies has
been established and often used as a
primary method for finding gene muta-
tions causing such genetic disorders [Ng
etal., 2009; Igartua et al., 2010]. As trio-
based (patient, mother, and father) WES
can easily identify de novo mutations,
it is extremely powerful for analyzing
sporadic  patients with monogenic
disorders showing low reproductive
fitness.

We conducted WES on five spo-
radic CSS patients based on the hypoth-
esis that CSS is caused by de novo
mutations. For three of them, parental
samples were available and trio-based
analysis was done. Among 51 variants
in genes commonly found in two or
more patients, two de novo mutations in
SMARCB1? (SWI/SNF related, matrix
associated, actin-dependent regulator of
chromatin, subfamily b, member 1;
isoform 1: NM_003073.3, isoform 2:
NM_001007468.1) were confirmed in
two patients by Sanger sequencing: one
missense mutation (INM_003073.3:
c.1130G > A, p.Arg377His) and one
in-frame deletion (c.1091_1093de-
IAGA, p.Lys364del) [Tsurusaki et al,
2012]. SMARCB1 was fully screened by
high resolution melting curve analysis
and subsequent Sanger sequencing in 23
CSS patients including the two patients
harboring the SMARCBI mutations.
Two more patients showed an identical

in~frame deletion (¢.1091_1093de-
1AGA, p.Lys364del), but their parental

We conducted WES on five
sporadic CSS patients based
on the hypothesis that CSS is
caused by de novo mutations.
For three of them, parental
samples were available and
trio-based analysis was done.
Among 51 variants in genes
commonly found in two or
more patients, two de novo
mutations in SMARCB1
(SW1/SNF related, matrix
associated, actin-dependent
regulator of chromatin,
subfamily b, member 1;
isoform 1: NM_003073.3,
isoform 2: NM_001007468.1)
were confirmed in two patients
by Sanger sequencing: one
missense mutation
(NM_003073.3:
c.1130G > A, p.Arg377His)
and one in~frame deletion
(c.1091_1093delAGA,
p.Lys364del).

samples were unavailable for confirma-
tion of the de novo occurrence. Though
the detection rate of SMARCB1 muta-
tions was only 17.3% (4/23), two de
novo mutations led us to consider that
SMARCB1 mutations indeed caused
CSS. SMARCB1 encodes SMARCB1
protein (also known as SNF5L1, BAF47,
and Inil), which is a subunit of the
SWI/SNF complex that functions
as a chromatin remodeling factor
[Hargreaves and Crabtree, 2011; Wilson
and Roberts, 2011]. As half of the
subunits in the mammalian SWI/SNF
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complex are not present in the original
yeast SWI/SNF complex, the term BAF
(BRG1 and BRM-associated factor)
complex is preferred in  mammals
[Ronan et al., 2013]. Therefore, we
used BAF complex hereafter.

CANDIDATE GENE
APPROACH

Assuming that abnormalities in other
BAF complex subunit genes may cause
CSS, 15 other BAF complex subunit
genes were screened in 23 CSS patients
by HRM and Sanger sequenc-
ing: SMARCA4 (NM_001128849.1),
SMARCA2 (NM_003070.3), SMARCC1
(NM_003074.3), SMARCC2 (NM_
003075.3), ARID1A (NM_006015.4),
ARIDIB  (NM_020732.3), BRD7
(NM_001173984.2), ARID2 (NM_
152641.2), PBRM1 (NM_018313.4),
SMARCE1 (NM_003079.4), SMARCD1
(NM_003076.4), SMARCD2 (NM_
001098426.1), SMARCD3 (NM_
001003801.1), ACTL6A (NM_004301.3),
and ACTL6B (NM_016188.4). Surpris-
ingly, mutations in SMARCA4,
SMARCE1, ARIDIA, and ARID1B
were found in six, one, three, and five
patients, respectively [Tsurusaki et al.,
2012], and the mutations were mutually
exclusive. In other words, if a patient had
a mutation in one of the BAF complex
genes, the other genes were all normal.
Retrospectively, we realized that the 3.7-
Mb microdeletion previously found in
the atypical patient indeed included the
entire ARID1B gene. Furthermore, an
SNP array was performed on the three
patients with no apparent mutation in
any BAF subunit genes and an interstitial
55-Kb deletion within SMARCAZ2 was
found in one patient showing atypical
CSS features. We have reported on all
these results as a first cohort with a
mutation detection rate in the BAF
complex genes of 87% (20/23) [Tsur-
usaki et al., 2012].

In the same issue of the journal in
which we published the CSS paper
[Tsurusaki et al.,, 2012], heterozygous
SMARCAZ2 mutations causing Nico-
laides—Baraitser syndrome (NCBRS;
MIM #601358) were reported [Van
Houdt et al., 2012]. Our patient with
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the interstitial deletion in SMARCAZ2
was re-evaluated and diagnosed as
NCBRS by professor Hennekam [Tsur-
usaki et al., 2013]. Therefore, excluding
the NCBRS patient from our first
cohort, the mutation detection rate of
the BAF complex genes was 86.3%
(19/22).

COMPREHENSIVE
ANALYSIS

In the second cohort, targeted sequenc-
ing of 21 BAF complex genes (eight
patients) or WES (44 patients) was
performed on 49 new CSS patients
as well as three patients without any
BAF complex mutations as determined
by HRM in the first cohort. The 21
genes include ACTB (NM_001101.3),
ACTL6A, ACTL6B, ARID1A, ARID1B,
ARID2, BRD7, DPF1(NM_001135156.2),
DPF2 (NM_006268.4), DPF3 (NM_
012074.4), PBRM1, PHF10 (NM_018288.3),
SMARCA2, SMARCA4, SMARCBI,
SMARCC1, SMARCC2, SMARCDI,
SMARCD2, SMARCD3, and SMARCELI.
In the second cohort, we identified
mutations in SMARCA4, SMARCBI,
and ARIDIB in two, three, and 15
patients, respectively [Tsurusaki et al.,
2013]. Combining the two cohorts

Combining the two cohorts
(excluding the NCBRS
patient), we identified

mutations in SMARCA4,
SMARCB1, SMARCEI1,
ARID1A, and ARIDI1B in
eight, seven, one, three, and
20 patients out of 71 (Fig. 1).
The overall mutation detection
rate was 54.9 (39/71), and
30 out of the 39 mutations
were confirmed to have
occurred de novo.

(excluding the NCBRS patient), we
identified mutations in SMARCA4,
SMARCB1, SMARCE1, ARIDIA,
and ARID1B in eight, seven, one, three,
and 20 patients out of 71 (Fig. 1). The
overall mutation detection rate was
54.9% (39/71), and 30 out of the
39 mutations were confirmed to have
occurred de novo [Tsurusaki et al.,
2013].

CSS-related mutations have been
extensively analyzed by two other
groups. Mutations in ARIDIA,
ARID1B, SMARCA4, SMARCBI,
and SMARCE1 were found by Santen
etal. [2013], and mutations in ARID1A,
ARID1B, SMARCB1, SMARCE1,
SMARCA2, and PHF6 were found by
Wieczorek et al. [2013]. SMARCA2
mutations were found in less character-
ized CSS/NCBRS patients; therefore,
it is rather inconclusive whether
SMARCA2 mutations cause CSS

[Wieczorek et al., 2013). PHFé (PHD
finger protein 6, NM_032458.2) muta-
tions are rather interesting. PHF6 inter-
acts with the nucleosome remodeling
and deacetylation (NuRD) complex,
which is also implicated in chromatin
remodeling, but no direct interaction
between PHF6 and the BAF complex
has been shown [Wieczorek etal., 2013].
PHF6 mutations are also known to
cause the X-linked disorder, Botjeson—
Forssman-Lehmann syndrome (OMIM
*300414) [Lower et al., 2002], present-
ing with intellectual disability; epilepsy,
and endocrinological abnormalities. In
our largest cohort study, a PHF6 muta-
tion has never been found. It would be
preferable to find more PHF6 mutations
in CSS patients for better understanding
of the phenotype—genotype correlation
in the PHF6 abnormality.

The overall mutation detection rate
of five BAF complex genes and PHF6in
CSS ranged from 54.9 to 69.5% (Fig. 1)
[Santen et al., 2013; Tsurusaki et al.,

The overall mutation detection
rate of five BAF complex
genes and PHF6 in CSS

ranged from 54.9 to 69.5%.
The genetic causes in the
remaining patients without
the BAF complex abnormality
are still unknown.

Unknown:
45.1% (32/71)

Tsurusaki et al. (2013)

Figure 1.

SMARCA4; 11.3% (8171)
SMARCBT: 9.9% (7/71)
l SMARCET: 1.4% (1/71)

ARID1A: 4.2% (3/71)

SMARCA4: 6.8% (4/59)
SMARCB1: 6.8% (4/59)

Unknown:
30.5% (18/%

PHF: 5.3% (2/38)
Wieczorek et al. (2013)

Santen et al. (2013)

Gene mutation profile of three different CSS cohorts. The percentage of mutated genes in CSS patients is shown in three
cohort studies. The clinically diagnosed as NCBRS-like and the patients with a SMARCA2 mutation were excluded. SMARCA4,
SMARCB1, SMARCE1, ARID1A, ARID1B and PHF6 are represented in pink, blue, green, yellow, orange and brown, respectively.
ARID1B mutations were the most frequent ones in all studies.

SMARGCET: 1.7% (1/59)
ARID1A: 6.8% (4/59)

Unknown:
42.1% (16/38)

SMARCB1: 5.3% (2/38)
SMARCET: 2.6% (1/38)

/ /ARID1A: 2.6% (1/38)
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2013; Wieczorek et al., 2013]. The
genetic causes in the remaining patients
without the BAF complex abnormuality
are still unknown. At least three possi-
bilities have been postulated. First,
mutations in other unknown genes
may contribute to CSS. Second, auto-
somal recessive mutations are possible.
So far, six genes mutated in CSS occur
mostly de novo, in an autosomal domi-
nant fashion at the cellular level. Because
some siblings affected by CSS have been
reported [Coftin and Siris, 1970; Has-
peslagh et al., 1984], recessive mutations
may exist. Third, mutations may be
missed by the current detection meth-
ods. At least, nine complete/partial gene
deletions (one patient in ARID1A and
eight patients in ARID1B) have been
reported [Santen et al., 2012, 2013;
Tsurusaki et al., 2012, 2013; Wieczorek
etal., 2013], and therefore copy number
analysis is recommended for complete
genetic screening of CSS. In-silico copy-
number variation detection programs
such as exome hidden Markov model
(XHMM) and copy number inference
from exome reads (CoNIFER) may be
recommended even in WES [Fromer et
al,, 2012; Krumm et al., 2012]. Eventu-
ally, whole genome sequencing together
with sophisticated informatics analysis
will enable us to find all the causative
genetic changes in CSS.

The genotype—phenotype correla-
tion in CSS, sparse scalp hair, abnormal/

The genotype—phenotype
correlation in CSS, sparse
scalp hair, abnormal/delayed
dentition, ear anomalies, and
absent or hypoplastic fifth
phalanx of the hand are more
frequently observed in
mutation-positive group.

delayed dentition, ear anomalies, and
absent or hypoplastic fifth phalanx of the
hand are more frequently observed in
mutation-positive group (mutations in

SMARCBI1, SMARCE1, SMARCA4,
ARID1A or ARID1B) compared to the
mutation-negative group  [Tsurusaki
et al, 2013]. By causative genes,
SMARCB1, SMARCET, and ARIDI1A
mutations tend to cause severe intellec-
tual disability, while SMARCAZ and
ARID1B mutations would cause vari-
able severity of intellectual disability
[Kosho et al, 2013]. Numbers of
respective groups are still too small to
make solid conclusion, further investi-
gation would be encouraged to demar-
cate clinical features based on mutated
genes.

CONCLUSION

Mutations in BAF complex subunit
genes are involved in several diseases.
ARID1B deletion and mutations were
first described in patients with intellec-
tual disability [Hoyer et al,, 2012].
Then, mutations in five BAF subunit
genes were found in CSS [Tsurusaki et
al., 2012] and SMARCAZ2 mutations
were found in NCBRS [Van Houdt et
al., 2012]. Furthermore, Kleefstra syn-
drome and autism spectrum disorder are
related to BAF complex abnormalities
[Halgren et al., 2012; Santen et al.,
2013; Helsmoortel et al., 2014]. Appro-
priate chromatin regulation by a normal
BAF complex in the central nervous
system is very important, especially for
normal intellectual development in
humans.
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