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ATIII activity <60% received postoperative prophylactic
treatment with ATTII concentrates (ATIII[4] group), and
the remaining 16 patients with preoperative ATIII activity
>60% did not receive ATIII prophylaxis (ATIII[—]
group). In addition to the difference in ATIII activity,
Child-Pugh score was worse and splenomegaly, as shown
by spleen weight and SVD, was more severe in the
ATIII(+) than in the ATIII(—) group. A higher percent-
age of patients in the ATIII{+) group experienced surgical
difficulties. Postoperative PVT was significanty less
frequent in the ATIII(+) than in the ATIII(—) group
(8.1% vs 43.8%; p = 0.005). Using the initial criteria
based on ATIII activity alone, the overall prevalence of
PVT was 19% (10 of 53 patients).

High frequency of portal vein thrombosis after
splenectomy in the antithrombin lli(—) group
Although we expected that patients in the ATII(—)
group would be at lower risk for PVT, the prevalence of
PVT in this group was 43.8%. We had previously re-
ported that large SVD was associated with PVT after sple-
nectomy in patients with liver cirthosis and portal
hypertension."” We therefore evaluated the occurrence
of PVT based on ATIII activity and SVD (Fig. 2). Portal
vein thrombosis rates in patients with ATIII activity
>60% but <70% and >70% (normal range) were
100% (3 of 3) and 30.8% (4 of 13), respectively. In the
latter group, 66.7% (4 of 6) of patients with SVD >10
mm had PVT, compared with 0% (0 of 7) of patients
with SVD <10 mm. Using ATIII activity <70% or
SVD >10 mm as a threshold to predict the incidence
of PVT had a sensitivity of 100% and a specificity of
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Figure 2. Relationship of portal vein thrombosis (PVT) with anti-
thrombin [l (AT HI) activity and splenic vein diameter in 16 cirrhotic
patients with ATII activity >60% who received no prophylactic
treatment with ATIll concentrates. Splenic vein diameter thresholds
of 9 mm and 10 mm are indicated by dotted and solid lines,
respectively. A threshold of 70% for ATl activity is indicated by a
solid line.

77.8%; using ATII activity <70% or SVD >9 mm,
the sensitivity was 100% and the specificity was 55.6%.

Prevention of portal vein thrombosis after
splenectomy with antithrombin lll concentrates and
its therapeutic limitation

Although 37 patients with ATIII activity <60% and who
received prophylactic ATIII concentrates were thought to
be at higher risk for PVT after splenectomy, PVT devel-
oped in only 3 (8.1%) (Fig. 3). Of the first 21 patients,
treated from April 2008 to December 2009, PVT devel-
oped in 3, despite prophylactic treatment with ATIII con-
centrates. Portal vein thrombosis was detected in these 3
patients by CT on POD 7, followed by immediate intrave-
nous administration of danaparoid sodium (2,500 U/day)
for 14 days followed by warfarin for 3 months, until there
were no indications of PVT. These findings indicated that
prophylactic ATIII cannot always prevent PVT after sple-
nectomy. At a threshold of SVD >15 mm, the sensitivity
and specificity for predicting PVT were 66.7% and
94.4%, respectively; at a threshold of SVD >13 mm, the
sensitivity and specificity were 100% and 77.8%, respec-
tively. These findings indicated that ATIII monotherapy
was not suitable as a primary prophylaxis for patients
with SVD >15 mm. We therefore modified treatment of
these patients, starting with ATTII concentrates (1,500 U/
day for 3 days), followed by danaparoid sodium (2,500
Ulday for 14 days) and subsequent warfarin for 3 months
or until PVT was completely eliminated. Of the 16 patients
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Figure 3. Relationship of portal vein thrombosis (PVT) to splenic
vein diameter (SVD) in 37 cirrhotic patients with antithrombin 1l
(ATIN) activity <60% who received prophylactic treatment with ATIH
concentrates alone (ATl monotherapy) or ATIH concentrates
followed by danaparoid sodium (DA) and warfarin (War) (ATIIl com-
bined therapy with DA and War). Splenic vein diameter thresholds of
13.0 mm and 15.0 mm are indicated by dotted and solid lines,
respectively. White dot, non-PVT; black dot, PVT.
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treated from January to December 2010, four patients with
SVD >15 mm received this schedule of prophylactic treat-
ment, with none having PVT after the operation.

Risk stratification of portal vein thrombosis after
splenectomy in patients with liver cirrhosis and
portal hypertension

Based on the results of the testing cohort, we stratified the
risk level of PVT after splenectomy in patients with liver
cirrhosis and portal hypertension. Low risk was defined as
ATIIL activity >70% and SVD <10 mm; high risk as
ATHI activity <70% and/or SVD >10 mm; and highest
risk as SVD >15 mm (Table 2). Although patients at low
risk received no prophylactic treatment for PVT, those at
high risk received ATIII monotherapy, and those at high-
est risk received ATIII combined therapy, followed by
danaparoid sodium and warfarin.

Validation cohort

Validation of risk stratification of portal vein
thrombosis after splenectomy in patients with liver
cirrhosis and portal hypertension

Table 3 shows the characteristics of the 57 patients in the
validation group categorized by risk level of PVT after sple-
nectomy. Only 2 (3.5%) of these patients had PVT under
the new classification, a prevalence significantly lower than
under the initial criteria (p = 0.013). None of the 14 pa-
tients classified as low risk experienced PVT, despite the
lack of prophylaxis (Fig. 4). Of the 32 patients at high
risk for PVT who received ATIII monotherapy, only 2
(6.3%) experienced PVT. Among the 11 padients at high-
est risk for PVT who received ATIII combined therapy fol-
lowed by danaparoid sodium and warfarin, 8 showed
partial and temporal PVT, extending from the splenic
vein to the splenoportal confluence, on CT by POD 7,
with PVT disappearing in all 8 by 3 months after splenec-
tomy. None of the other 3 patients showed evidence of
PVT after splenectomy, although they were maintained
on warfarin for 3 months after the operation.

DISCUSSION

Our previous study demonstrated that ATIII activity plays
a crucial role in the development of PVT after laparoscopic
splenectomy in cirrhotic patients."® Preoperative ATTII ac-
tivity was found to be an independent predictor of PVT
after laparoscopic splenectomy. The level of ATIII activity
was significantly lower on PODs 1 and 4 than before sur-
gery, but recovered to the preoperative level by POD 7,
consistent with the observation that most PVTs developed
within 7 days after splenectomy. Administration of ATIII
concentrates (1,500 U/day) for 3 days corrected ATIII ac-
tivity to near-normal range, as well as dramatically reduced
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Figure 4. Relationship of portal vein thrombosis (PVT) with anti-
thrombin HI (AT [ll) activity and splenic vein diameter (SVD) in 57
cirrhotic patients who received prophylactic treatment of PVT
according to the risk level of PVT after splenectomy. Fourteen pa-
tients at low risk received no prophylactic treatment, 32 patients at
high risk received ATIIl concentrates, and 11 patients at highest risk
received ATIll concentrates followed by danaparoid sodium and
warfarin. Thresholds of 70% for ATIH activity and 10.0 mm and 15.0
mm for SVD are indicated by solid lines.

the incidence of PVT after splenectomy. Therefore, the
preoperative decrease in ATIII activity and its additional
reduction during the early postoperative phase contribute
o the development of PVT. In liver cirrhosis, hemostatic
balance is fragile and easily tips to either a hypo- or hyper-
coagulable state.”” After surgery, the decrease in hepatic
synthesis of anticoagulants, such as ATIII, and their
increased consumption due to intravascular coagulation
can lead to a hypercoagulable state in the splanchnic and
systemic circulation. Prophylactic administration of ATIII
concentrates can return a hypercoagulable status to equi-
librium between pro- and anticoagulants, but not to a
hypocoagulable status. Therefore, despite being adminis-
tered the day after surgery, ATIII concentrates do not
contribute to bleeding complications.

In the testing cohort, we based the need for PVT prophy-
laxis on a cutoff level of preoperative ATIII activity. As
ATIII activity decreases postoperatively, postoperative
ATIIL activity might be more accurate for predicting
PVT than preoperative activity. However, ATIII activity
could not be monitored on weekends in our hospital, and
administration of ATIII concentrates should be started as
soon as possible after splenectomy. Therefore, it might be
more convenient to measure pre- than postoperative ATIII
activity. Calculating ROC curves for the 25 patients
included in the previous study and increasing the sensitivity
to reduce the likelihood of false negatives resulted in our
initial criterion, in which ATTII concentrates were admin-
istered to patients with ATIII activity <60%. Of the 53
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patients in our testing cohort, 37 had ATII <60% and
received prophylactic treatment with ATIII concentrates,
with PVT developing in only 3 (8.1%). However, of the
16 patients with ATTII >60%, considered at lower risk for
PVT, PVT developed in 7 (43.8%) in the absence of prophy-
lactic treatment. Of the 25 patients in the previous study, 12
had ATIII >60%, PVT developed without ATIII prophy-
laxis in only 1 (8.3%). The discrepancy between the current
and previous studies might result from differences in poten-
tial risk levels, except for ATTII activity, in the 2 patient pop-
ulations. Our other previous study showed that large SVD,
which was associated with a decrease in portal venous flow af-
ter splenectomy, and low white cell counts (<2,000/1LL) were
risk factors for PVT after splenectomy.'” In the current and
previous studies, none of the patients with ATIII activity
>60% had low white cell counts (<2,000/pL), and the
mean spleen weight in patients with ATIII >60% was signif-
icantly greater in this study than in our previous study (473 =+
197 gvs 297 &£ 160 g; p = 0.014), indicating that patients
with ATIII >60% in this study had larger SVDs than in
the previous study. Additionally, 6 of the 37 patients with
ATIHI <60% had low white cell counts (<2,000/pL), but
PVT did not develop after ATTII prophylaxis in any of these
patients. Therefore, this study assessed combinations of
ATII activity and SVD, but not white cell counts as risk fac-
tors for PVT. Using ATTII activity <70% or SVD >10 mm
as a threshold to predict the incidence of PVT yielded a sensi-
tivity of 100% and a specificity of 77.8%, and using ATTII
activity <70% or SVD >9 mm had a sensitivity of 100%
and a specificity of 55.6% (Fig. 2). These findings are consis-
tent with our previous results, showing that SVD >9 mm isa
risk factor for PVT after splenectomy,'” although the cutoff
level in this study is likely between 9 and 10 mm. We there-
fore defined high risk for PVT as ATIII activity <70% or
SVD >10 mm.

Before the start of this study, we did not consider admin-
istering ATIIT concentrates to all splenectomized patents,
regardless of their potential risks of PVT, but wanted to
identify patients who did not require ATIII prophylaxis,
because of the potential biologic hazards and expense of
ATII concentrates. Although we failed to detect patients
at lower risk for PVT in the testing cohort, none of the
14 patients in the validation cohort considered as at low
risk for PVT according to risk stratification had PVT.
Risk stratification showed that 7 (13%) of the 53 patients
in the testing cohort, compared with 14 (25%) of the 57
patients in the validadon cohort, were at low risk for
PVT. Even in different patient populations, risk stratifica-
tion of PVT can accurately identify patients who do or do
not require ATTII prophylaxis.

Of the 37 patients in our testing cohort with ATTII
<60% who received ATIII concentrates, PVT developed

after splenectomy in only 3 (8.1%). In addition, PVT
developed in only 1 of 30 (3.3%) patients with SVD
<15 mm, compared with 2 of 3 patients with SVD >15
mm (Fig. 3). This result indicated that, in patents with
SVD <15 mm, correction of a hypercoagulable state
with ATIIT concentrates can overcome the effects of
decreased portal venous flow. Of the 3 patients with post-
operative PVT despite prophylactic ATIII monotherapy, 2
had supermassive splenomegaly with SVD >15 mm, and 1
had an SVD of 13.5 mm and huge hepatofugal collateral
vessels of 14 mm in diameter. Doppler US showed that
postoperative portal venous flow was <50% of preopera-
tive flow in these patients, suggesting that patients with
SVD >15 mm or huge hepatofugal collateral vessels are
at highest risk for PVT because ATIII monotherapy
cannot overcome the great decrease in portal venous flow
(Table 2). However, the diameter of collateral vessels pre-
dictive of PVT can be difficult to determine because the
extent of portal venous flow through collateral vessels
can depend on their location, number, size, and/or intra-
hepatic portal vascular resistance. Patients with huge
collateral vessels, >10 mm in diameter, require systematic
screening with repeated Doppler US and/or CT (Table 2).
In the validation cohort, PVT developed in only 2 of 32
(6.3%) patients classified as at high risk for PVT
(Fig. 4). Stratification of PVT risk level using 2 indicators,
ATIII activity, which is associated with a hypercoagulable
state, and SVD, which is related to decreased portal venous
flow, was more specific and more correct than stratification
by ATIII activity alone. In addition, ATIII monotherapy
can prevent PVT in most patients at high risk.

We found that 3 patients in the testing cohort who
were treated early, from April 2008 to December 2009,
had PVT develop despite ATIII monotherapy (Fig. 3).
These patients were started on intravenous danaparoid so-
dium (2,500 U/day) just after detection of PVT. Treat-
ment for 14 days abolished PVT in the portal trunk,
although thrombosis remained in the splenic vein.
Warfarin was subsequently administered for 3 months
until the thrombosis in the splenic vein was eliminated,
preventing the recurrent extension of splenic vein throm-
bosis to the portal trunk. Patients with SVD >15 mm
were considered at highest risk for PVT, with ATIII
monotherapy not always sufficient to prevent PVT. The
15 patients at highest risk for PVT, who were treated
from January 2010 to September 2013, received ATIII
combined therapy, followed by danaparoid sodium and
warfarin (Figs. 3 and 4). Eight of these patients showed
partial PVT transiently extending from the splenic vein
thrombosis to the splenoportal confluence by CT on
POD 7, but disappearing within 3 months after splenec-
tomy. Portal vein thrombosis never developed in the
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remaining 7 patients. These findings suggest that prophy-
laxis for patients at highest risk for PVT is more therapeu-
tic than prophylactic. Although better methods might
prevent PVT, our prophylactic regimen for highest risk
for PVT might be acceptable, eradicating PVT without
any bleeding complications. Additionally, this combined
regimen successfully eradicated PVT in 7 patients who
received no prophylactic treatment and in 5 who received
ATITII prophylaxis. Antithrombin III combined therapy
with danaparoid sodium and warfarin is promising for
the prevention or treatment of PVT after splenectomy,
with an excellent safety profile.

Danaparoid sodium, rather than a continuation of
ATTII concentrates, was used for prophylaxis of patients
at highest risk for PVT or to treat PVT. Our previous
study showed that administration of ATIII concentrates
for 3 days maintained ATTII activity at a near-normal
level (70%) up to POD 7.” Higher-dose ATIII concen-
trates and/or continued treatment, resulting in supranor-
mal activity, did not have beneficial effects in patients
with sepsis or disseminated intravascular coagulation.”'*
As administration of ATTII concentrates to supranormal
levels is associated with a potential bleeding risk and is
very costly, we used the low-molecular weight heparinoid
danaparoid sodium as an anticoagulant. Three classes of
heparins were also available: unfractionated heparin
(UFH), low-molecular weight heparins (LMWHs), such
as enoxaparin and the synthetic pentasaccharide fondapar-
inux. The anticoagulant effects of these drugs depend on
anti-Xa and anti-thrombin activities. The ratios of anti-Xa
to anti-thrombin activity are about 1 for UFH; about 4
for enoxaparin; >22 for danaparoid sodium; and about
7,400 for fondaparinux. The anticoagulation effects of
danaparoid sodium and fondaparinux are characterized
by higher selectivity for factor Xa compared with UFH
and enoxaparin. Direct inhibition of thrombin by UFH
and enoxaparin inhibits thrombus formation and can in-
crease bleeding risk. Low-molecular weight heparins and
especially UFH have potendal risks of heparin-induced
thrombocytopenia, and danaparoid sodium and fonda-
parinux do not. Although there is limited evidence on
the use of these drugs in patients with liver cirrhosis
and PVT, LMWHs such as enoxaparin appear to be
safe and effective in prophylactic or therapeutic treatment
of PVT, even in patients with liver cirrhosis.”** However,
these heparins require ATIII to exert their anticoagulant
effects and their efficacy can be unpredictable in cirrhotic
patients with decreased ATIII activity.”” Using in vitro
thrombin generation assays of plasma from patients
with liver cirrhosis, LMWHs were found to amplify anti-
coagulant effects, despite reductions in ATIII activity,

26.27

especially in patients with Child-Pugh class C.***

Additionally, a reduced anticoagulant response to fonda-
parinux was observed in plasma from patients with live
cirrhosis.”® The ratios of anti-Xa to anti-thrombin activity
and the results presented here suggest that danaparoid so-
dium can be as effective as LMWHs, as well as safer, in
preventing or treating PVT in patients with liver cirrhosis.

Patients with highest risk for PVT or those with substan-
tial PVT require long-term treatment with anticoagulants
until the thrombosis in the splenic vein disappears.
Because long-term intravenous administration of danapa-
roid sodium is inconvenient, patients were switched to oral
warfarin for up to 3 months. Although long-term admin-
istration of warfarin eradicated PVT without bleeding
complications, warfarin has a narrow therapeutic window
and requires frequent monitoring and dose adjustments.
In additdon, warfarin has been associated with a higher
bleeding risk than LMWHs in patients with liver cirrhosis,
especially in those with thrombocytopenia (platelet counts
<50 x 10°/uL).** The optimal warfarin dose in patients
with high prothrombin time and INR is unclear.’
Warfarin can reduce the concentrations of vitamin K-
dependent anticoagulant factors, such as protein C, poten-
tially increasing the risk for thrombosis.® Fortunately, in
our patient population, platelet counts were >100 X
10°/uL on POD 14,” and end-stage liver cirrhosis did
not develop in any patient, as indicated by prothrombin
time and INR >2.0. Two novel oral anticoagulants have
recently been approved for clinical use: rivaroxaban, a
direct inhibitor of factor Xa; and dabigatran, a direct in-
hibitor of factor ITa.” Both drugs are independent of ATTII,
do not require dose adjustment, and have a wider thera-
peutic range in the general population. To date, only 2
case reports have described the successful treatment of
PVT with rivaroxaban of 1 cirrhoticand 1 noncirrhotic pa-
tient.””* In vitro thrombin generation assays using plasma
from cirrhotic patients showed a reduced anticoagulant
response to rivaroxaban and a substantially increased anti-
coagulant response to dabigatran.”® Although both agents
are promising pharmacologic drugs, large cohorts are
necessary to assess their efficacy and safety in cirrhotic pa-
tients with coagulation disorders.

CONCLUSIONS

We optimized risk stratification of PVT after splenectomy
in patients with liver cirrhosis and portal hypertension
and developed prophylactic treatments of PVT centered
on ATIII concentrates. Classification of risk level can
reduce the incidence of PVT after splenectomy and accu-
rately identifies patients who do not require prophylaxis
of PVT. Antithrombin III, as monotherapy or combined
therapy, followed by danaparoid sodium and warfarin, is

—-355-



874 Kawanaka et al

Portal Vein Thrombosis after Splenectomy

J Am Coll Surg

safe and effective for both primary prophylaxis of PVT
and treatment of PVT after splenectomy. These regimens
warrant clinical trials for prevention of PVT after splenec-
tomy or treatment of de novo PVT in patients with liver
cirrhosis.
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Role of per-rectal portal scintigraphy in long-term follow-up of

congenital portosystemic shunt

Yuki Cho', Daisuke Tokuhara', Taro Shimono?, Akira Yamamoto? Shigeaki Higashiyama?, Kohei Kotani?, Joji Kawabe?,

. Yoshiyuki Okano*, Susumu Shiomi® and Haruo Shintaku’

BACKGROUND: Congenital portosystemic shunt (CPSS) has
the potential to cause hepatic encephalopathy and thus needs
long-term follow-up, but an effective follow-up method has
not yet been established. We aimed to evaluate the impor-
tance of per-rectal portal scintigraphy (PRPS) for long-term
follow-up of CPSS.

METHODS: We retrospectively examined shunt severity time
course in patients (median: 9.6 y, range: 5.2-16.6 y) with intra-
hepatic (n = 3) or extrahepatic (n = 3) CPSS by using blood
tests, ultrasonography or computed tomography, and PRPS.
Per-rectal portal shunt index (cutoff: 10%) was calculated by
PRPS.

RESULTS: PRPS demonstrated that the initial shunt index was
reduced in all intrahepatic cases (from 39.7+9.8% (mean =+
SD) 10 14.6 +4.7%) and all extrahepatic cases (from 46.2+10.9
to 27.5+12.6%) during the follow-up period. However, ultra-
sonography and computed tomography disclosed different
shunt diameter time courses between intrahepatic and extra-
hepatic CPSSs. Initial shunt diameter (58+3.5mm) reduced
10 20£0.3mm in intrahepatic cases, but the initial diameter
(6.3+0.7mm) increased to 10.6+ 1.0 mm in extrahepatic cases.
All patients had elevated serum total bile acid or ammonia lev-
els at initial screening, but these blood parameters were insuf-
ficient to assess shunt severity because the values fluctuate.
CONCLUSION: PRPS can track changes in the shunt severity
of CPSS and is more reliable than ultrasonography and com-
puted tomography in patients with extrahepatic CPSS.

COngenitaI portosystemic shunt (CPSS), which is a major
cause of neonatal hypergalactosemia without galactose-
metabolizing-enzyme deficiency (1), causes brain manganese
deposition, pulmonary hypertension, and hyperammonemia
leading to hepatic encephalopathy (2-8). CPSS is generally
suspected if serum total bile acid (TBA) and ammonia lev-
els are elevated, and it is diagnosed by using color Doppler
ultrasonography, dynamic contrast-enhanced computed
tomography (CT), and per-rectal portal scintigraphy (PRPS)
(7,9-12). Some shunts close spontaneously, whereas others
need to be closed surgically or with embolization because

of hyperammonemia leading to severe hepatic encepha-
lopathy (7,8,13-15). Therefore, it is important to follow up
CPSS patients carefully with color Doppler ultrasonography,
dynamic contrast-enhanced CT, and blood tests. Despite this,
there is no gold standard for accurately assessing the degree of
shunt. Color Doppler ultrasonography and dynamic contrast-
enhanced CT are useful for detecting shunt location and for
assessing shunt diameter and flow, but these imaging modali-
ties cannot be used to evaluate shunt severity quantitatively.
By contrast, PRPS can be used to calculate a shunt index
(SI) for quantifying shunt severity, as previously reported
(9). Currently, the use of PRPS is limited to the diagnosis of
CPSS, and its application to long-term follow-up of CPSS is
uncertain. Here, we aimed to clarify the role for PRPS in the
long-term follow-up of patients with CPSS by retrospectively
evaluating changes in shunt severity over time as assessed with
PRPS.

RESULTS

Patients

Six patients (mean age: 9.6 y; range: 5.2-16.6 y) were diagnosed
as having CPSS during the first year of life. On the basis of ultra-
sonography and dynamic contrast-enhanced CT, three of the
six patients were identified as having intrahepatic CPSS, and
the remaining three patients were found to have extrahepatic
CPSS (Table 1). None of the six patients had abnormalities in
the abdominal cavity, including hepatic tumors. Two of the
patients with intrahepatic CPSS had shunts between the left
portal vein and the central hepatic vein, and one had a shunt
between the left portal vein and left hepatic vein (Table 1). Of
the patients with extrahepatic CPSS, two had splenorenal shunts
(Table 1; Figure 1a,b), and one had a mesocaval shunt (Table 1;
Figure 1c; Supplementary Video S1 online). All six patients
had normal mental development without hepatic encephalopa-

" thy and showed absence of pulmonary hypertension.

Shunt Diameter

Ultrasonography or dynamic contrast-enhanced CT, or both,
disclosed a difference between intrahepatic and extrahepatic
CPSSs in terms of changes in shunt diameter over time. All three
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Table 1. Profiles of six children with congenital portosystemic shunt

Initial laboratory findings

Age atinitial
examination Galactose? TBA NH, AST ALT
Patient no. (mo) Sex Shunt location (<8mg/dl) (<10pmol/l)  (30-80pg/dl)  (20-701U/1) (10-701U/1)
1 0.5 Male Intrahepatic (LPV-LHV) 14.97 37 178 23 18
2 1 Male Intrahepatic (LPV-CHV) 8.9 44 89 41 28
3 1 Male Intrahepatic (LPV-CHV) 11.6 56 141 30 19
4 1 Male Extrahepatic (SV-LRV) 8.0 92.2 52 24 13
5 1 Male Extrahepatic (SV-LRV) 8.0 184 94 55 40
6 1 Male Extrahepatic (IMV-IIV) 7.4 58 80 38 23

ALT, alanine aminotransferase; AST, aspartate aminotransferase; CHV, central hepatic vein; IV, internal iliac vein; IMV, inferior mesenteric vein; IU, international units; LHV, left hepatic
vein; LPV, left portal vein; LRV, left renal vein; SV, splenic vein; TBA, total bile acid.
Galactose was evaluated within 45 d after birth by newborn mass screening.

Figure 1. Ultrasonography and computed tomography (CT) portal
venography of extrahepatic congenital portosystemic shunt patients.

(a) Splenorenal shunt (arrow) was clearly visualized in the sagittal view
on ultrasonography (16 y). (b) Splenorenal shunt (arrow) on maximum
intensity projection image of CT portal venography (1.5 y). (c) Mesocaval
shunt (arrow) on three-dimensional volume-rendered image of CT portal
venography (5 y).

intrahepatic CPSS patients showed spontaneous shunt regres-
sion. The initial shunt diameter of 5.8 +3.5mm (mean + SD) at
0.7+0.5y of age was reduced to 2.0+ 0.3 mm at 6+2.6 y of age—a
reduction of 59.6 £16.3% over 5.2 +2.8 y (Figure 2a—c). By con-
trast, the shunt diameter increased in all three extrahepatic CPSS
patients: the initial shunt diameter of 6.3+0.7mm at 0.6+0.2 y of
age increased to 10.6+1.0mm at 11.3+5.6 y of age—an increase
of 70.0+25.8% over 10.6+5.6 y (Figure 2d-f).

Shunt Index

PRPS was performed in each patient two to four times at a
median interval of 4.5 y (range: 1.4-6.7 y). For all six patients,
the SI derived from PRPS decreased from 42.9 +9.9% (mean *
SD, cutoff: 10%) at 0.9+0.8 y of age to 21.1+11.1% at 9.3 +4.9
y of age (Figure 2; Supplementary Figure S1 online)—a
decrease of 51.8+18.9% over 8.3+5.2 y. In the patients with
intrahepatic CPSS, the initial SI of 39.7+9.8% at 1.2+1.1 y
of age decreased to 14.6+4.7% at 6.6+2.6 y of age (Figure
2a-c; Supplementary Figure S1 online)—a reduction of
60.7+19.9% over 54+%3.1 y. In the patients with extrahe-
patic CPSS, the initial SI of 46.2+10.9% at 0.6+0.4 y of
age decreased to 27.5+12.6% at 11.8+5.6 y of age (Figure
2d-f; Supplementary Figure S1 online)—a reduction of
42.9+16.3% over 11.3+5.7 y.

Blood Tests
Hypergalactosemia was identified in all six patients by new-

born screening (Table 1). At the initial examination at our

Copyright © 2014 International Pediatric Research Foundation, Inc.

hospital, serum levels of TBA or ammonia were elevated in all
six patients (Table 1). No elevations of aspartate aminotrans-
ferase and alanine aminotransferase levels were found in any
of these patients. During the follow-up period, galactose lev-
els decreased to within the normal range by 2 y of age despite
persistent elevation of TBA and ammonia levels (Figure 3).
The persistently high values of TBA or ammonia suggested
the presence of a shunt, but the values fluctuated because of
intestinal motility and changes in the types of meals consumed
before fasting, limiting the use of these blood parameters in the
quantitative assessment of shunt severity.

DISCUSSION
We retrospectively evaluated the long-term clinical course of
CPSS patients, focusing on the degree of shunt as determined
with PRPS. Various imaging modalities and blood tests indi-
cated that the natural histories of intrahepatic and extrahepatic
CPSSs differed. Intrahepatic CPSS without hepatic tumor has
been reported to spontaneously close or regress, whereas extra-
hepatic CPSS does not spontaneously regress (3,7,8,16-18).
Ultrasonography and dynamic contrast-enhanced CT evalua-
tion showed spontaneous reductions in the shunt size in all of
our patients with intrahepatic CPSS but in none with extrahe-
patic CPSS, strengthening the previous findings. Furthermore,
all of our patients with extrahepatic CPSS showed marked
enlargement in shunt diameter over time. The reason for this
difference between intrahepatic and extrahepatic CPSSs is
unclear; however, one possible explanation is the difference in
the environments surrounding intrahepatic and extrahepatic
CPSSs. An intrahepatic CPSS is tightly surrounded by liver
parenchyma and may be under pressure during growth, per-
haps leading to spontaneous closure. One case report of a child
with intrahepatic CPSS who died of pulmonary hypertension
described an enlarged portal tract with multiple thin-walled
angiomatous vessels; these may be a feature of shunts that tend
to close or regress under pressure (5). By contrast, an extrahe-
patic CPSS is under less pressure from the surrounding tissues
and thus may retain its size, or enlarge, as the patient grows.
The most important finding of our study is the reduction in
SI in extrahepatic CPSS, despite the increase in shunt diameter.
PRPS is a noninvasive method that results in little exposure to
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Figure 2. Time course of shunt index and shunt diameter in patients with congenital portosystemic shunt (CPSS). (a) Case 1 with intrahepatic CPSS
between LPV and LHV. (b) Case 2 with intrahepatic CPSS between LPV and CHV. (c) Case 3 with intrahepatic CPSS between LPV and CHV. (d) Case 4 with
extrahepatic CPSS between SV and LRV. (e) Case 5 with extrahepatic CPSS between SV and LRV. (f) Case 6 with extrahepatic CPSS between IMV and 1IV.
Case number is same as the patient number. Shunt index is shown as open circle, and shunt diameter is shown as solid diamond. CHY, central hepatic
vein; IMV, inferior mesenteric vein; IV, internal iliac vein; LHV, left hepatic vein; LPV, left portal vein; LRV, left renal vein; SV, splenic vein.

radionuclide and is an effective method for evaluating portal cir-
culation; it is therefore used to diagnose or evaluate CPSS in chil-
dren and to assess the severity of cirrhosis in adults (9,19-21).
Shiomi et al. (19) reported the usefulness of PRPS in providing
detailed information about changes in portal hemodynamics;
they reported that SI in adults increases as liver cirrhosis pro-
gresses. Uchino et al. (3) reported that the risk of hepatic enceph-
alopathy increases with the degree of portosystemic shunting, as
indicated by the PRPS SI. The SI has also been shown to be use-
ful for evaluating the postoperative course in dogs with extrahe-
patic CPSS (22). In children, a recent study demonstrated that
PRPS is complementary to ultrasonography and endoscopy in
the assessment of portal hypertension associated with chronic
cholestasis (23). We found that SI decreased in all of our subjects

with CPSS during long-term follow-up; this may be a previously -

unrecognized feature of the natural course of CPSS in humans.
However, the change in SI paralleled a reduction in shunt diam-
eter in the children with intrahepatic CPSS but contrasted
with the increase in shunt diameter in patients with extrahe-
patic CPSS. CPSS without spontaneous closure or regression is
considered to reflect an increase in the degree of shunt sever-
ity and is associated with complications (16). In addition, the
enlargement of shunt diameter in our patients with extrahepatic
CPSS may have led physicians to consider that the severity of
the shunt has worsened. However, our study demonstrated that
an increase in shunt diameter, as shown by imaging modalities
such as ultrasonography and dynamic contrast-enhanced CT, is
not an indicator of the severity of the shunt in CPSS, whereas
PRPS can be used to quantify shunt severity by using the SI,
regardless of changes in shunt appearance,

660  Pediatric RESEARCH Volume 75 | Number 5 | May 2014

Imaging modalities such as ultrasonography and dynamic
contrast-enhanced CT are useful for detecting the location and
size of CPSS but cannot provide the degree of shunt severity
as quantitatively as can PRPS. In addition, the image quality
of ultrasonography for extrahepatic CPSS is often influenced
by abdominal conditions (e.g., intestinal contents) because
the shunt is surrounded by the stomach or the small or large
intestine, whereas PRPS is not influenced by abdominal con-
ditions because the radiological agent is instilled through the
rectum. The concentrations of TBA and ammonia are useful
for monitoring the presence of PSS, but because these values
can fluctuate with changes in gut conditions, their use in accu-
rately assessing progress toward shunt closure is problematic.
Therefore, it is important and effective to use PRPS in addi-
tion to ultrasonography, dynamic contrast-enhanced CT, and
blood tests to assess shunt severity in the diagnosis and follow-
up of CPSS.

Surgical repair or embolization may be recommended for
extrahepatic CPSS without closure because of the high risk of
hepatopulmonary syndrome, pulmonary hypertension, and
hepatic encephalopathy (4,7,8,13-16). Stringer (8) described
that CPSS-affected individuals are at risk of developing hepatic
encephalopathy and/or an intrahepatic tumor depending largely
on the volume and duration of the shunt. The risk of hepatic
encephalopathy is related to the degree of portosystemic shunt-
ing, as measured by PRPS (3); therefore, it is rational to take the
SI into consideration when deciding whether surgical treatment
or embolization is indicated. On the other hand, Bernard et al. (7)
recommended that, even when no complication is detected, clo-
sure of shunt should be considered early to prevent complications

Copyright © 2014 International Pediatric Research Foundation, Inc.
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Figure 3. Time course of (a) galactose, (b) TBA, and (c) ammonia levels in children with congenital portosystemic shunt (CPSS). (1) Case 1 with intrahe-
patic CPSS between LPV and LHV. (2) Case 2 with intrahepatic CPSS between LPV and CHV. (3) Case 3 with intrahepatic CPSS between LPV and CHV. (4)
Case 4 with extrahepatic CPSS between SV and LRV. (5) Case 5 with extrahepatic CPSS between SV and LRV. (6) Case 6 with extrahepatic CPSS between
IMV and IIV. Case number is the same as patient number. CHV, central hepatic vein; IIV, internal iliac vein; IMV, inferior mesenteric vein; LHY, left hepatic
vein; LPV, left portal vein; LRV, left renal vein; SV, splenic vein; TBA, total bile acid.
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in cases of CPSS except for small intrahepatic shunt. Therefore,
it remains unclear whether SI affects the indications for closure
of shunt and there are no criteria for initiating treatment based
on PRPS. In our study, the SI of extrahepatic CPSS decreased
even though the shunt diameter increased during the long-term
natural course of the condition. Taking the current and previous
findings together suggests that it is important to determine the
SI to evaluate the risk of hepatic encephalopathy in patients with
extrahepatic CPSS; in addition, SI may be considered an impor-
tant parameter in addition to hyperammonemia, portal pressure,
shunt size, and clinical symptoms suggesting hepatic encepha-
lopathy when deciding whether surgical treatment or emboliza-
tion is warranted in patients with extrahepatic CPSS, although
further clinical study is necessary to support this hypothesis.

In conclusion, our study clearly revealed that PRPS can
provide information about the severity of CPSS beyond that
provided by biochemical tests, ultrasonography, and dynamic
contrast-enhanced CT. SI decreased over time, both in patients
with intrahepatic CPSS, whose shunts decreased in diam-
eter, and in patients with extrahepatic CPSS, whose shunts
increased in diameter. We recommend following up patients
with CPSS by using PRPS.

METHODS

Six patients with CPSS were retrospectively analyzed. Informed con-
sent was obtained, and the study was approved by the Institutional
Review Board of Osaka City University Hospital. All six patients were
found to have hypergalactosemia during newborn screening but did
not have galactose-metabolizing-enzyme deficiency. Each patient was
diagnosed as having CPSS by blood tests, including aspartate amino-
transferase, alanine aminotransferase, galactose, TBA, and ammonia
levels, in addition to ultrasonography, dynamic contrast-enhanced
CT, and PRPS. All patients were followed using the same modalities.
Shunt location, shunt flow, and shunt diameter were evaluated by
using ultrasonography and dynamic contrast-enhanced CT (Table 1).
Chest roentgenography, electrocardiography, and echocardiogra-
phy were undertaken to assess pulmonary hypertension. PRPS was
performed as previously described (9). Briefly, a polyethylene tube
(Nélatonss catheter, French 8-12, Terumo Cooperation, Tokyo, Japan)
was inserted 10cm deep into the rectum, reaching the upper part.
A large-field scintillation camera (Vertex Plus; Adac Laboratories,
Milpitas, CA) was used to generate time-activity curves. The cam-
era had a low-energy, multipurpose, parallel-hole collimator and was
interfaced with a digital computer (Pegasys; Adac Laboratories). The
camera was positioned over the patient’s abdomen so that the field of
view included the heart, liver, and spleen. First, 111 MBq (megabec-
querels) of Tc-99m-pertechnetate (1 ml) was given through the tube,
followed by 10-20 ml of air. Thereafter, time-activity curves for the
areas of the liver and heart were obtained every 4 s. At the end of the
5-min examination, the 5-min summed image, displayed in color, was
recorded. To evaluate the extent of the portosystemic shunt in terms
of an S, we calculated the ratio of counts for the liver to counts for the
heart integrated for 24 s immediately after the appearance of the liver
time-activity curve.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at
http://www.nature.com/pr
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Multidrug resistance (MDR) is a serious problem faced in the treatment of malignant tumors. In this study, we
characterized the expression of non-homologous DNA end joining (NHE]) components, a major DNA double
strand break (DSB) repair mechanism in mammals, in K562 cell and its daunorubicin (DNR)-resistant subclone
(K562/DNR). K562/DNR overexpressed major enzymes of NHE], DNA-PKcs and DNA ligase IV, and K562/DNR
repaired DSB more rapidly than K562 after DNA damage by neocarzinostatin (MDR1-independent radiation-
mimetic). Overexpressed DNA-PKcs and DNA ligase IV were also observed in DNR-resistant HL60 (HL60/DNR)

Keywords:
Mmdmg_resismm cell line cells as compared with parental HL60 cells. Expression level of DNA-PKcs mRNA paralleled its protein level,
Daunorubicin and the promoter activity of DNA-PKcs of K562/DNR was higher than that of K562, and the 5’-region between

NHE] —49 bp and the first exon was important for its activity. Because this region is GC-rich, we tried to suppress
DNA-PKes Sp1 family transcription factor using mithramycin A (MMA), a specific Sp1 family inhibitor, and siRNAs for Sp1
DNA ligase IV and Sp3. Both MMA and siRNAs suppressed DNA-PKcs expression. Higher serine-phosphorylated Sp1 but not
Sp1 transcription factor total Sp1 of both K562/DNR and HL60/DNR was observed compared with their parental K562 and HL60 cells.
DNA ligase IV expression of K562/DNR was also suppressed significantly with Sp1 family protein inhibition,
EMSA and ChIP assay confirmed higher binding of Sp1 and Sp3 with DNA-PKcs 5'-promoter region of DNA-
PKcs of K562/DNR than that of K562. Thus, the Sp1 family transcription factor affects important NHE] component
expressions in anti-cancer drug-resistant malignant cells, leading to the more aggressive MDR phenotype.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Anthracyclines, as exemplified by daunorubicin (DNR), are a class of
anti-neoplastic agents widely used for the treatment of malignancy.
Their cytotoxic mechanism involves the production of DNA damage
through intercalating with DNA and the inhibition of topoisomerase
(topo) 11, finally causing DNA-double-strand breaks (DSBs) and induc-
ing apoptosis [1]. Drug resistance is a major obstacle in the successful
treatment of leukemia and solid tumors and is still a major cause of

Abbreviations: DNR, daunorubicin; NHE], non-homologous end-joining; MDR, multi-
drug resistance; DSB, DNA-double-strand break; EMSA, electrophoresis mobility shift
assay; ChIP, chromatin immunoprecipitation ‘
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death in leukemia and cancer patients [2]. The development of a
resistance mechanism in response to doxorubicin-induced apoptosis |
includes P-glycoprotein and Bcl-2 overexpression, altered topo I activity,
and loss of p53 function, etc. [3). For example, overexpression of P-
glycoprotein confers resistance to a variety of structurally and functionally
unrelated anti-cancer drugs, a function known as multidrug resistance
(MDR).

DNA damage represents a persistent threat to genomic stability. A
critical link exists between DNA mutation, chromosomal rearrangement
and cancer development. In myeloid malignancies, various chromosom-
al translocations and/or mutations increased cellular reactive oxygen
species (ROS), followed by DSBs [4]. The majority of tumor cells have
defects in maintaining genomic stability due to the loss of an appropri-
ate response to DNA damage. Mutations in the genes that encode DNA
damage response proteins are responsible for a variety of genomic in-
stability syndromes. Thus, DNA repair is an important mechanism for
maintaining genetic stability.
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Non-homologous end-joining (NHE]) is the most important DNA re-
pair mechanism in mammalian cells. NHE] repairs DSBs by ligating two
free DNA ends with little or no homology. Several components involved
in NHE]J have been reported, such as Ku70, Ku80, DNA-dependent pro-
tein kinase (DNA-PK), and DNA ligase IV. A DSB is first recognized by
Ku70/Ku80 complex and DNA-PK catalytic subunit (DNA-PKcs), DNA-
PKcs is a 470 kDa serine/threonine protein kinase catalytic subunit
(DNA-PKcs), and Ku proteins are its DNA-binding regulatory compo-
nents [5,6]. Finally, DNA ligase IV heterodimerized with XRCC4, a nucle-
ar phosphoprotein, is recruited to the DSB site and executes the final
rejoining step.

DNA-PKcs mutant mice exhibit congenital bone marrow failure
associated with deficiencies in DNA repair [7]. DNA-PKcs activation is
an essential step in the repair process of DSB [8], and it has been
proposed that DNA-PKcs is a molecular sensor for DNA damage that
enhances cellular response signaling via phosphorylation of many
downstream targets. Compared with another error-free DSB repair
mechanism, homologous recombination (HR) repair, NHE], is error-
prone, leading to more complicated genetic mutations and more malig-
nant phenotypes, including anti-cancer drug resistance [9,10].

The modulation of NHEJ components is expected to affect anti-cancer
drug sensitivity. The relationship between DNA ligase IV expression and
etoposide resistance has been reported in a human leukemia cell line,
CEM [11]. In the case of DNA PKcs, increased expression of DNA ligase
1V confers resistance to adriamycin [12], and inhibition of DNA-PKcs by
wortmannin, an inhibitor of phosphatidylinositol 3-kinase, has been
shown to potentiate the chemosensitivity of multidrug-resistant
human leukemia, CEM cells {13]. However, the mechanism of DNA-
Plcs expression remains to be elucidated, especially its overexpression
in malignant tumors or leukemia cells, Furthermore, the relationship
between DNA ligase IV and the MDR phenotype has not been fully
disclosed.

The present study was performed to characterize the multidrug-
resistant phenotype of daunorubicin (DNR)-resistant leukemia cell
lines by focusing on NHE], and revealed (1) an overexpression of
DNA-PKcs and DNA ligase IV in DNR-resistant cells compared with the
parental leukemia cell lines, and (2) the importance of Sp family
transcription factors for anti-cancer drug resistance by regulating
DNA-PKcs, DNA ligase IV and MDR1, but not Bcl-xL transcription. Our
finding from this study that increased or activated transcription factor
Sp1 is the main regulator of various aspects of the MDR phenotype pro-
vides an informative basis for future therapeutic strategies to overcome
MDR in chemoradiotherapy.

2. Materials and methods
2.1. Cell lines and reagents

Human erythroleukemia cell lines, K562 and its daunorubicin-
resistant subline (K562/DNR), have been reported previously [14].
Human leukemia cell lines, HL60 and its daunorubicin-resistant HL60/
DNR, were obtained from Prof. T. Okazaki (Kanazawa Medical University,
Kanazawa, Japan) [15]. Anti-MDR1 (H-241: sc-8313), anti-Ku70 (A-9:
5¢5309), anti-Ku86 (H-300: sc9034), anti-DNA ligase IV (H-300: sc-
28232), anti-XRCC4 (c-20: sc-8285), anti-Sp1 (PEP 2: sc-59,) anti-Sp3
(D-20: sc-644), rabbit anti-goat IgG-HRP (sc-2768), and goat anti-
mouse IgM-HRP (sc-2973) antibodies were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Anti-DNA-PKcs (Ab-4: MS-
423-P1) antibody was obtained from NeoMarlkers {(Fremont, CA, USA).
Anti-Bcl-xL (#51-9001913), anti-Bcl2 (#51-9001912), anti-Bax (#51-
9001914), and anti-Mcl-1 (#M54020) antibodies were from BD Trans-
duction Laboratories (San Jose, CA, USA). Anti-H2AX (A300-083A) was
purchased from Bethyl Laboratories (Montogomery, AL, USA). Anti-
yH2AX (05-636) antibody was purchased from Upstate Biotechnology
(NY, USA). Anti-B actin antibody (3598-100) was from BioVision.
Mithramycin A (M6891-1MG), NU7026 (DNA-PKcs inhibitor), and

neocarzinostatin (N9162-100UG) were from Sigma-(St. Lois, MO, USA).
The MDR1 (downstream) promoter luciferase vector used in some
preliminary experiments was obtained from Prof. K. Scotto (The Cancer
Institute of New Jersey, University of Medicine and Dentistry of New
Jersey, NJ, USA).

2.2. Quantitative RT-PCR of DNA-PKcs mRNA

Quantitative RT-PCR was performed as reported before [16,17]. The
primer sequences were as follows: DNA-PKcs forward 5'-CATCCAGA
GTAGCGAATACTTCC-3/, reverse 5/-TTGTTTCGCAACCAGTTCAC-3'; DNA
Ligase 1V forward 5/-AACCATCAAGATCTCATTTTACAGC-3/, reverse 5/~
GTGATGAATCTTCTCGTTTAACTGG-3/; MDR1 forward 5-GAATTGGGAT
AAAGAAAGCTATTAC-3', reverse 5/-CCCAATTAATACAGAAAAGAATAC
AG-3’; BCL xL forward 5/~-GGAGATGCAGGTATTGGTGAG-3’ reverse 5'-
CATAGAGTTCCACAAAAGTATCCC-3/; Glucosidase 3 (GUSB) forward
5-GCGTGGAGCAAGACAGTGGGC-3/, and reverse 5/-GGTCCCAGTCCC
ATTCGCCA-3'. The relative expression level was expressed by the ratio
of respective mRNA/GUSB mRNA. The data of control K562 and HL60
cells were regarded as 1.0, respectively.

2.3. Western blotting

Western blotting was performed according to the method described
before [17). Protein samples were dissolved in the lysis buffer and sepa-
rated on 6%, 10% or 15% of SDS-PAGE depending on the molecular weight,
and transferred to PVDF membrane. Membranes were blocked with 1-5%
dry milk in phosphate-buffered saline (PBS), with 0.05% Tween 20 at
room temperature for 1 h. Concentrations of primary antibodies used
were as follows: anti-DNA-PKcs (1:1000), anti-MDR1 (1:500), anti-
Ku70 (1:1000), anti-Ku86 (1:1000), anti-DNA ligase 1V (1:1000), anti-
Bcl-xL (1:500), anti-Bci2 (1:500), anti-Bax (1:500), anti-Sp1 (1:1000),
anti-Sp3 (1:1000), anti-phosphoserine (1:1000), and anti-3 actin
(1:8000). Secondary antibodies were anti-rabbit IgG HRP-linked antibody
or anti-mouse IgG HRP-linked antibody (1:1000-2000). Proteins were
detected by Immobilon Western Chemiluminescent HRP Substrate
(Millipore Corporation, Billerica, MA, USA).

24. siRNA and transfection

siRNAs of Sp1 and Sp3 were purchased from Sigma Genosys
(Hokkaido, Japan). Sequences of human Sp1 and Sp3 siRNA were 5'-
GGAUGGUUCUGGUCAAAUATT-3', and 5/-GUUGGGGGAGGUGGAGCC
UTT-3’, respectively [18]. Allstars Negative Control siRNA (QIAGEN)
was used as the control scramble siRNA. Twenty nmol of siRNA was
transfected using Lipofectamine™ RNAIMAX (Invitrogen, Carlsbad, CA,
USA) as recommended by the manufacturer.

2.5. Cloning of the 5' promoter regions of DNA-PKcs, DNA ligase IV, and the
upward 5' promoter of MDR1

Based on an original report [19] and online information, the 5’ pro-
moter of DNA-PKcs was cloned by PCR method using the primer set de-
scribed below. Forward: 5-GCTCAGTCACGTGCAGAGGGGATGCTTTAG
GCTTTAGGCGTTAG-3/, reverse: 5-GGGAAGCTTGGACCCGGAAATACCCC
TACGCGCGGA-3'. The PCR product was digested by EcoRV and HindIll,
inserted into the pGLA4.10 [luc2] vector, which was also treated with
EcoRV and Hindlll, and named — 1622 bp/luc. Truncated promoter was
prepared by digesting suitable restriction enzymes (described below)
followed by blunting and self-ligation. Their DNA sequences were con-
firmed, and were named — 1033 bp/luc (Sacl and Mlul), — 771 bp/luc
(Sacl and EcoNI), —214 bp/luc (Sacl and Avrl), and —49 bp/luc (Sacl
and Smal), respectively. Reporter vectors, — 161 bp/luc, — 145 bp/luc,
— 113 bp/luc, —76 bp/luc and +1 bp/luc, were prepared by PCR using
a primer set as shown in Table 1. A mutation insertion into the GC-rich
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Table 1
Primer sets for DNA-PXcs promoter.

DNA-PKcs Forward primer Reverse primer
promoter region
—161 bp 5/-AACACCAAGTAGCCCAAACTAC 5/-CTGGGCCCTTCITAAT
CTC-3' GTITTTGGCATCT-3
—145 bp 5'-CAAACTACCTCCGCAGGTCAGACG  5'-CTGGGCCCTTCTTAAT
TTTTIC-3/ GTTTTTGGCATCT-3/
—113 bp . 5'-TTAGGTTTCCATGTTGATTCGGGC  5'-CTGGGCCCTTCITAAT
CA-3' GTTTTTGGCATCT-3"
—76 bp 5/-TACTGGCCAGGCCTTCCCGCA-3'  5/-CTGGGCCCITCITAAT
GTTTTTGGCATCT-3
1bp 5/-GGGGCATTTCCGGGTCCAAGC-3'  5'-CTGGGCCCTTCTTAAT
GTTTTTGGCATCT-3/
—49 bp/mutation  5-GGGAAAGTTCCT 5/-CTGGGCCCITCITAAT
GCttCCGCGCCCCGL-3/ GTTTTTGGCATCT-3
—49 bp/mutation2  5’-GGGAAAGTTCCTGCCG 5/-CTGGGCCCITCITAAT
CCtataCCCGCA-3' GTTTTTGGCATCT-3"
—49 bp/mutation3  5-GGGAAAGITCCTGCCGCCGCGCCC  5/-CTGGGCCCTTCITAAT
CGCAGCaaaaCCTCCGCG-3/ GTTTTTGCCATCT-3'

Small letters denote the mutated sequences,

region of the 5’ promoter was performed using primer sets as shown in
Table 1.

The 5’ promoter region of DNA ligase IV (variant 3) was cloned by
PCR method using the primer set described below. Forward: 5'-AAAA
CTCGAGTGGTGCAATGGAAAGGAGACAGTG-3/, reverse: 5'-AAAAAAAG
ATCTTCCGGCACCTCTTCACCACG-3'. The PCR product was digested by
Xhol and Bglll, inserted into pGL4.10 [luc2] vector, which was also treat-
ed with Xhol and Bglll, and named — 1834 bp/luc. Reporter vectors,
— 1426 bp/luc, — 744 bp/luc, —68 bp/luc, and + 1 bp/luc, were pre-
pared by PCR using respective primer set as shown in Table 2.

We also performed 5’ RACE experiments with MDR1, because recent
online information suggests the possibility that another exon 1 might
exist far upstream from the conventional exon 1. We did confirm its
presence in the preliminary experiments. The downstream MDR
promoter luciferase vector was derived from Dr. Scotto (University of
Medicine and Dentistry of New Jersey). For the upstream promoter,
we cloned this promoter region using the primer set described below.
Forward: 5'-GGGGGTACCTAAAGAATTACTCATCCCCATGT-3', reverse:
5/-GGGAAGCTTAGTGTTTATCCCAGTACCAGAGG-3’. The PCR product
was digested by Kpnl and HindIll. It was inserted into the pGL4.10
[luc2] vector, which was also treated with Kpnl and HindlIll, and was
named — 1112 bp UP/luc, as shown in Supplementary Fig. 3.

2.6. Promoter analysis

Promoter analysis was performed as described previously with
minor modifications [20]. One microgram of various lengths of firefly lu-
ciferase vectors and 0.2 pg of renilla luciferase control reporter vectors
were cotransfected using Lipofectamine 2000 (Invitrogen) and Dual lu-
ciferase reporter system (Promega). The relative promoter activity was
calculated as firefly luciferase/renilla luciferase activity, and the relative

Table 2
Primer sets for DNA ligase IV promoter.
DNAligase IV Forward primer " Reverse primer
promoter
region
—1426 bp 5/-AAAACTCGAGTCCTGCCACC  5-AAAAAAAGATCTTCCG
CATTCCACATTC-3" GCWordBreale>
ACCTCTTCACCACG-3'
—744 bp 5-AAAACTCGAGTTTACTTTIC  5'-AAAAAAAGATCITCCGGC
ATGTCTGTGTGGGAGGG-3’ ACCTCTTCACCACG-3
—68 bp 5-AAAACTCGAGCCTGTICICC  5'-AAAAAAAGATCITCCGGC

GTCTCCGCTCC-3/ ACCTCTTCACCACG -3/
1bp 5’-AAAACTCGAGTGCCAGTGAG  5'-AAAAAAAGATCTTCCGGC
Ccceeeae 3 ACCTCTTCACCACG -3/

promoter activity of + 1 bp/luc (DNA-PKcs, DNA ligase IV and MDR1
upstream and downstream promoters, respectively) was regarded as
1.0. The mean +/— SD was then calculated from three independent
experiments.

2.7. Phosphorylated Sp1 detection

Whole cell lysate was prepared with RIPA buffer (150 mM Nacl, 1%
NP-40, 0.05% deoxycholic acid, 0.1% SDS, and 50 mM Tris (pH 8.0)).
Dynabeads® Protein A (Invitrogen) was added to anti-Sp1 antibody (1
yg) diluted in 200 pl phosphate-buffered saline (PBS(—)) with 0.05%
Tween 20 and rotated for 10 min at room temperature. After washing,
the sample (500 pg/500 pl RIPA) was added to the beads—antibody com-
plex and rotated for 10 min at room temperature. After three washes
using PBS(—), the sample was eluted by 20 il of sample buffer and heat-
ed for 5 min at 95 °C. Western blotting was performed using anti-
phosphoserine antibody (1:1000) as described above.

2.8. Sp1 transcription factor activity assay

To examine the different potentials of Sp transcription factors
between K562 and K562/DA cell lysates, EMSA was performed as de-
scribed previously [20] using the consensus Sp1 EMSA probe (Panomics,
CA, USA) according to the manufacturer's recommendations or the
probe containing the 5’-proximal GC-rich region of the DNA-PKcs ge-
nome, The labeled probe used was 5/-GTTCCTGCCGCCGCGCCCCGCAGC
CCCGCCTCCG-3'. A cold competitor was used 10, 100 and 300 times as
much as the labeled probe.

2.9, Chromatin immunoprecipitation (ChIP) assay

~ ChIP assay was performed as described previously [17]. For the im-
munoprecipitation, anti-Sp1 or Sp3 antibody (Santa Cruz, 1 pg/sample)
was added to Dynabeads® Protein A (Invitrogen, Carlsbad, CA, USA) and
rotated overnight at 4 °C. Normal rabbit IgG was used as a control IgG.
After cross-linking cells with formaldehyde and sample preparation,
the antibody and beads complex was mixed with samples and rotated
for 6 h at 4 °C. After DNA extraction, the promoter region containing
Sp1 motifs was amplified by the PCR method using the primer set de-
scribed below. The primer sequences were as follows: DNA-PKcs fol-
lowing primers, forward 5'-CCAAGTCCAACACCAAGTAGCCACCCA-3;
and reverse 5/-CCGCCATGCCGCCGAGTCCC-3’. DNA ligase 1V forward
5/-CTGTTCTCCGTCTCCGCTCCC-3; reverse 5/~-CCGCCGAGGTATCTTTTC
CGT-3'.

2.10. Statistical analysis

Statistical significance was analyzed using Student's t-test, or one-
way factorial analysis of variance and multiple comparison test (Fisher's
method) using Excel software (Microsoft).

3. Results

3.1. DNA-PKcs, DNA ligase IV, and Bcl-xL in daunorubicin-resistant
leukemia cell lines

Daunorubicin (DNR)-resistant subclones of K562 and HL60 cells were
highly resistant to DNR as compared with parental cell lines (Supple-
mentary Fig. 1). Both MDR1 protein and mRNA were overexpressed in
K562/DNR cells (Supplementary Fig. 1a right). We analyzed multidrug-
resistant phenotypes in these cell lines mainly focusing on the compo-
nents of NHE]. Fig. 1 shows that DNA-PKcs and DNA ligase IV, but not
Ku70 and Ku86, were overexpressed in DNR-resistant subclones. Fur-
thermore, Bcl-xL was overexpressed in both DNR-resistant cells. We
found that mRNA levels of DNA-PKcs and DNA ligase IV in K562/DNR
and HL60/DNR were significantly higher than those. of the parental
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Fig. 1. NHE] and apoptosis-related protein expression of DNR-resistant cell lines.(a) Western blotting of NHEJ components (Ku70, Ku80, DNA PKcs, and DNA ligase IV, XRCC4) and
apoptosis-related proteins (Bcl-xL, Bax and Mcl-1) of K562, K562/DNR, HL60 and HL60/DNR cells; Western blotting was performed using respective antibody described in Materials
and methods. Bel2 could not be detected in our assay condition. B-Actin was illustrated as the internal control. (b) Quantitative RT-PCR of DNA-PKcs, DNA ligase IV, and Bcl-xL mRNA;
quantitative RT-PCR was performed as described in Materials and methods. The relative mRNA levels of K562 and HL60 cells were regarded as 1.0, respectively. The mean +/— SD
was calculated from three different samples. Statistical significance was evaluated, Experiments were repeated three times with similar results,

K562 and HLG0 cells. We also measured Bcl-xL mRNA. DNR-resistant cell
lines also exhibited higher mRNA levels than the parental K562 and HL60
cells (Fig. 1b).

3.2. Recovery from DNA double strand breaks (DSBs)

Fig. 2 illustrates the recovery of a DSB from a short-term
neocarzinostatin treatment, a radiomimetic which is not transported
from cells with ABC transporters, in K562 and K562/DNR cells. Similar
DSBs (as detected by y-H2AX) were observed when treated with the
same dose of neocarzinostatin (NCZ) for a 1 h exposure, but K562/DNR
cells’ recovery from DSB (decreased y-H2AX) was faster than that of
K562 cells (Fig. 2a). siRNA treatment for DNA-PKcs and NU7026, an in-
hibitor of DNA-PKcs, enhanced DNR-induced cell death of K562/DNA
(Fig. 2b and c), suggesting the involvement of DNA-PKcs in the recovery
phase from DSB and the sensitivity of DNR cytotoxicity.

3.3. Importance of GC-rich promoter region of DNA PKcs

DNA-PKcs 5/-promoter was analyzed using various lengths of trun-
cated promoter luciferase vectors. We focused on K562 and K562/DNR
from the transfection efficiency. In both K562 and K562/DNR cell lines,
the promoter activity increased depending on the promoter lengths
(detailed data not shown), indicating involvemnent of various transcrip-
tion factors. Online search of this region revealed several transcription
binding motifs. It has been reported that a drug-resistant human breast
cancer cell line, MCF-7, exhibits increased AP-1 activity [21]. Further-
more, NF«B has been shown to stimulate MDR1 transcription [22]. In-
terestingly, in all promoter vectors used, higher promoter activities
were observed in K562/DNR cells (Fig. 3b and data not shown).

‘We were interested in the most proximal 49 bp region, because the
higher promoter activity of K562/DNR was still preserved in this small
region. This region between —49 bp and the first exon of DNA-PKcs
was highly GC-rich, and was expected to be the binding site of the Sp1
family transcription factor and related transcription factors (Fig. 3a).

Insertion of three mutations into three GC-rich regions diminished the
promoter activity considerably in both K562 and K562/DNR cells, but
some variations were seen in their inhibition levels (Fig. 3c). K562
cells possess BCR/ABL translocation, which might affect the MDR pheno-
type. Thus, we established BaF3 cells stably transfected with p210 BCR/
ABL, and also T315I-mutated p210 BCR/ABL, which is imatinib-resistant.
Supplementary Fig. 2 showed that increased DNA-PKcs expression was
observed in T315[-P210-transformants but not in P210 (BCR/ABL)-
overexpressed cells, suggesting that the overexpressed DNA-PKcs ob-
served in K562/DNR were not due to BCR/ABL translocation.

3.4. Activated Sp1 in K562/DNR cells

Sp family members have been regarded as the housekeeping genes
and their expression has been well observed in various cell lines and tis-
sues. Sp1 and Sp3 protein levels did not differ between parental and
doxorubicin-resistant K562 and HL60 cells (Fig. 4a). Sp proteins have
been reported to be activated by phosphorylation [23]. It has also been
noted that Sp1 of K562/DNR and HL60/DNR was more phosphorylated
than in their parental cell lines (Fig. 4b). In case of phosphorylated Sp3,
we could not detect a significant difference between K562 and K562/
DNR cells under our experimental condition. Using three-tandem repeats
of Sp1 consensus sequence as the EMSA probe (Promega), a higher Sp1
transcription activity was detected in K562/DNR cells rather than K562
cells (data not shown).

3.5. Sp family protein modulates DNA PKcs, DNA ligase 1V, and MDR1
expression

We tried to modulate Sp1 and Sp3 protein function and expression
levels by Sp family-specific inhibitor, mithramycin A (MMA), and
siRNAs for Sp1 and Sp3. Both MMA and siRNAs for Sp1 and Sp3 reduced
DNA-PKcs protein expression (Fig. 5a and b). We also examined the ef-
fect of Sp1 and Sp3 on DNA ligase IV, MDR1 and Bcl-xL protein expres-
sion. Interestingly, MMA and siRNA for Sp1/5p3 inhibited DNA ligase IV
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Fig. 2. Recovery from DNA damage by neocarzinostatin of 562 and K562/DNR cells and effects of DNA-PKcs modulation of DNR sensitivity. (a) K562 and K562/DNR cells were treated with
100 ng/ml of neocarzinostatin (NCZ) for 1 h, and then NCZ was removed from the culture medium. Cells were collected sequentially, and Western blotting was performed using anti-y-H2AX
or anti H2AX antibody, respectively. 3-Actin was used as the internal control. (b) Upper part denotes the effect of DNA-PKcs siRNA (10 and 20 nM) on DNA-PKcs protein expression, Lower
part illustrated the effect of SIRNA on NDR-treated K562/ADR cell viability. K562/DNR was transfected with either control siRNA (control) or DNA-PKcs SiRNA (20 nM) for 24 h, and treated
with or without DNR for another 24 h. Viable cells were counted by trypan blue dye exclusion test. Viable cell number of control K562/DNR cells treated with control siRNA was regarded as
1.0.(c) In a similar way as (b), effect of NU7026 was examined, Upper part shows the effect of NU7026 on DNA-PKcs protein expression, Lower part; K562/DNR cells were treated with either
DMSO (vehicle) or NU7026 (20 pM) for 2 h; and then DNR was added for another 24 h, Viable cells were counted. DMSO-treated control K562/DNR cells were regarded as 1.0.

and MDR1, but not Bcl-xL expression of K562/DNR cells (Fig. 6a and b),
suggesting a similar regulatory mechanism of DNA ligase IV and MDR1
but, not Bcl-xL, in K562/DNR cells. An online search indicated that a GC-
rich region, where Sp1 family can bind, was also present in the promoter
region of DNA ligase IV and MDR1. In the case of Bcl-xL, NFkB, GATA and
ETS have been reported as the responsible transcription factors in differ-
ent tumor types [24-26]. However, the involvement of Sp1 in Bcl-xL has
been reported to be relatively small [27], supporting our present results.
At present, we cannot explain the reason why MDR1 of HL60/DNR was
not overexpressed, but it could be possible that another important fac-
tor other than Sp1 for MDR1 transcription is lacking in HL60/DNR cells.

We next examined the MDR1 promoter to know whether the Sp1
transcription factor in K562/DNR stimulates MDR1 transcription. The
transcription mechanism of human MDR1 gene has been previously
studied extensively. However, it has recently been reported that
another transcription start site exists [28]. Thus, two different promoters
(upstream and downstream) are present depending on the cellular con-
text. Previous studies mostly analyzed downstream promoter (DSP)
[29,30]. Our preliminary 5’ RACE analysis of K562/DNR cells confirmed
these two transcription start sites described above (data not shown).
Thus, we examined the upstream promoter (USP) and DSP of K562/
DNR separately, and showed that mithramycin A inhibited both DSP

and USP promoter activities, suggesting that Sp1 bindingl motifs are
important in both USP and DSP of MDR1 (Supplementary Fig. 3).

3.6. EMSA and ChIP analysis of the 5’ promoter region of DNA-PKcs

In vitro binding of Sp family proteins from nuclear lysates with the 5/
promoter of DNA-PKcs was analyzed by EMSA using the region covering
this GC-rich sequence (Fig. 3) as the probe (Fig. 7a). K562/DNR cells ex-
hibited higher binding activity against the 5/ GC-rich promoter region of
DNA-PKcs (Fig. 7b left). Because the supershift assay using anti-Sp1 and:
anti-Sp3 antibodies did not exhibit reproducibility in our assay, we
analyzed the effect of siRNA for Sp1 and SP3. Nuclear extracts from
cells treated with either siRNA for Sp1 and Sp3 or a Sp1 inhibitor,
mithramycin A, reduced all the shifted bands 1, 2 and 3 (Fig. 7b right).
Fig. 7c shows the results of the ChIP assay covering this GC-rich region.
Increased binding of Sp1 and Sp3 was observed in K562/DNR cells.
siRNA for Sp1 decreased the band intensity (data not shown).

We also examined DNA ligase IV, which has been shown to possess
three different transcription start sites, We focused on one small region
having a sequence conserved among species and also possessing one
GC-rich region (Supplementary Fig. 4). Promoter analysis revealed the
importance of a Sp1 site of the 5’promoter region of DNA ligase IV
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Fig. 3. Promoter analysis of the 5’-promoter region of DNA-PKcs genome. (a) GC-rich promoter region located within —49 bp/luc was illustrated. Inserted mutations were also described
ina small letter. (b) and (c) The 5’-promoter region of DNA PKcs was illustrated in the left part. Circles and ovals mean putative Sp1 binding sites. Various lengths of promoter vectors were
used to measure promoter activity. Cross mark (X) indicates the mutation insertion (in (c)). Primer sets used in experiments were shown in Table 1. Transfection into K562 cells and lu-
ciferase assay were described in Materials and methods. The solid column denotes K562/DNR cells and the open column represents K562 cells, The mean +/— SD was shown from three

independent experiments,

(Fig. 8a). MMA inhibited the promoter activity of — 68 bp/luc, which

contains one Sp1 binding site (Supplementary Fig. 4 lower part). ChIP-

analysis of this region revealed increased Sp1 and $p3 (although less
distinct) binding in K562/DNR cells (Fig. 8b), suggesting the positive
role of the Sp family transcription factor in DNA ligase IV transcription.
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Fig.4. Western blotting of Sp1 family proteins. (a) Sp1 and Sp3 proteins of K562, K562/DNR,
HL60 and HL60/DNR were shown. B-Actin was used as the internal control. (b) Serine
phosphorylation of Sp1 in K562 and K562/DNR was illustrated. Each cell lysate was
immunoprecipitated with anti-Sp1 antibody followed by anti-phosphoserine antibody or
anti-Sp1 antibody according to Materials and methods,

4. Discussion

It has been reported that a correlation between DNA-PK and radio-
sensitivity exists in lung carcinoma cell lines and cervical cancer cells
[9,31]. Cytotoxic drug resistance such as that of daunorubicin (DNR) de-
pends on the loss or recovery from DNA damage and it at least partially
results from overexpression of DNA-PKcs [12,32,33]. It has also been re-
ported that DNA-PK is a therapeutic target and an indicator of poor
prognosis in B-cell chronic lymphocytic leukemia [34]. The tumor/
normal tissue expression ratio of ATM and DNA-PKcs is useful for eval-
uating non-small cell lung cancer patients {35]. Moreover, down-
regulation of DNA-PKcs and Ku70 increased chemo-sensitization of
Hela cells [36]. It has been reported that CML stem cell and progenitor
cells exhibit higher DNA-PKcs expression [37] than their normal coun-
terparts, suggesting that they have better error-prone DNA repair.
Rapid repair from DNA damage by error-prone NHE] as shown in
Fig. 2 is expected to make these cells more resistant to anti-cancer
drugs and also to induce further genomic changes such as complex
chromosomal abnormality.

In the present study, we mainly analyzed the CML-derived K562 cell
and its subline, K562/DNR. Overexpression of NHE] components, DNA-
PKcs and DNA ligase IV, was observed in two different DNR-resistant
leukemia sublines, K562/DNR and HL60/DNR, suggesting that these
overexpressions were commonly induced during their establishing pro-
cess by the continuous exposure of anthracyclines.

The promoter of human DNA-PKcs has not been fully analyzed.
Although the presence of a GC-rich region was reported, the direct anal-
ysis of DNA-PKcs promoter activity has not been performed [19,38]. Our
promoter analysis revealed that various factors and promoter areas are
involved in its transcription and that the proximal short GC-rich
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Fig. 5. Effects of Sp family transcription factor inhibition on DNA-PKcs expression. (a) Effect of mithramycin A (MMA) on DNA-PKcs was examined using K562/DNR cells. Cells were treated
with various concentrations of MMA for 24 h. DNA-PKcs and -actin were analyzed by Western blotting. (b) K562/DNR cells were treated with siRNA for Sp1 and Sp3 (20 nM) for 24 h
respectively as described in Materials and methods, Control siRNA was also used as the negative control, Sp1, Sp3, DNA-PKcs and (3-actin expression were examined by Western blotting.

promoter region plays an important role in DNR-resistance, Although it
has been reported that CML cells have altered DNA repair processes,
including error-prone HR and different NHE] mechanisms [39], overex-
pression of NHE] components was also observed in HL60/DNR, suggest-
ing that this overexpression could be induced regardless of initial
genomic changes. Our analysis using p210 (BCR/ABL) and T3151 mutat-
ed p210-overexpressed BaF3 cells (Supplementary Fig. 2) supports this
interpretation.

Sp family protein has been regarded as the housekeeping gene and is
ubiquitously expressed. Although Sp family expression is regulated

a K562 K562/DNR
control MMA control MMA
MDR1 | : [~ 170 kDa
DNA ligase TV — 96 kDa
Bel-xL ! T T ——— l*—- 26 kDa
B-actin ’ S e - S S——— |f—~ 44 kDa
b siRNA
control Spl Sp3
MDRI | <mmssese e |~ 170 kDa
DNA ligase IV l : ml*— 96 kDa
Bel-xLL 26 kDa
Sp1 112 kDa
< 100 kDa
Sp3
<~ 60 kDa
B-actin = <~ 44 kDa

Fig. 6. Effect of MMA and siRNAs for Sp1 and Sp3 on DNA ligase IV, MDR1 and Bcl-xL ex-
pression of K562 and K562/DNR cells. (2) K562 and K562/DNR cells were treated with or
without 0.5 tM of MMA for 24 h, and MDR1, DNA ligase IV, and Bd-xL protein levels were
analyzed by Western blotting, (b) siRNAs for Sp1 and Sp3 siRNA (20 nM) were used to
suppress respective transcription factor as described in Materials and methods. Control
siRNA was also used as the negative control. Twenty-four h after transfection, MDR1,
DNA-ligase IV, Bcl-xL, Sp1, Sp3, and B-actin expression were examined by Western
blotting.

with some stimuli [17,20], the total Sp family protein levels are not
changed in most cases, as observed in our present study (Fig. 4). Consti-
tutive binding of the low mobility forms of Sp1 and AP-1 has been
observed in araC-resistant HL60 cells [40], and the involvement of Sp1
in response to DNA damage has been reported before [41,42]. In fact,
DNA-PKcs inhibition with NU7026 and siRNA for DNA-PKcs enhanced
the sensitivity to DNR in K562/DNR cells (Fig. 2). Moreover, genes
actively transcribed by DNA damage such as Gadd45, DDB1/2 and
XRCC1 have been shown to possess Sp1 sites in their promoter region
[43-45]. We and others have reported that doxorubicin influences
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Fig. 7. EMSA and ChIP assay. (a) The schematic presentation of EMSA and ChIP assay
probe, Localization of EMSA probe and the PCR primer set used for ChIP assay were illus-
trated. (b) Left: EMSA was shown using the probe illustrated in (a). N.E. denotes nuclear
extract of K562 and K562/DNR. Cold means cold competitor. Free means free labeled
probe, Right: effects of siRNA and Sp1 inhibitor, mithramycin A (MMA), were shown.”
K562/DNR cells were treated with siRNA for Sp1, Sp3, control siRNA or MMA (0.5 M)
for 24 h. ESMA was performed for these nuclear extract. (c) ChIP assay was performed
as described in Materials and methods. After immuneprecipitation of K562 and K562/
DNR cells with either non-specific IgG, anti Sp1 or anti-Sp3 antibody followed by protein
digestion and DNA extraction, PCR analysis was performed using the primer set described
in Materials and methods. The PCR product was 234 bp long,
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anti-Sp1 or anti-Sp3 antibody, respectively, Primer set was described in Materials and methods and in Supplementary Fig. 4. The PCR product was 117 bp in length.

the expression of neutral sphingomyelinase 2 (NSMase2) and
glucosylceramide synthase (GCS) through the Sp1 site of respective
promoters [17,46]. Up-regulation of both DNA-PKcs and Sp1 protein
of colorectal cancer has been demonstrated only by a clinical immu-
nohistochemical study [47].

Sp1 is a zinc-finger protein constitutively activating housekeeping
genes, however, it has been recently reported that Sp1 mediates the in-
ducible gene regulation [48]. Furthermore, Sp1 is phosphorylated in re-
sponse to DNA damage by Ataxia Teleangiectasia-Mutated kinase [49]
or other kinases. Phosphorylation of Sp1 serine 101 residue was report-
ed by UV-irradiation or hydroxyurea treatment [50]. Although it has
recently been reported that Sp1 facilitates DSB repair through a non-
transcriptional mechanism [51], the regulatory mechanism of DNA-
PKcs by activated Sp1 transcription factor was, for the first time,
described in the present study. Considering the inhibitory effect of
MMA and siRNAs for Sp1 and Sp3 on DNA-PKcs expression, increased
Sp1 phosphorylation in K562/DNR was at least partially responsible
for the observed increase of DNA-PKcs expression. Similarly, we have
previously reported that activated Sp1 but not total Sp1 is responsible
for NSMase2 transcription in ATRA-treated MCF-7 cells [52].

DNA ligase IV expression was also enhanced in DNR-resistant
subclones (Fig. 1). KU80- and DNA ligase IV-deficient plants are report-
edly sensitive to ionizing radiation [53). The regulatory mechanism of
DNA ligase IV has not been reported yet. Sp1 expression reduced by
siRNA and Sp1 inhibitor suppressed DNA ligase IV expression (Fig. 6).
Online information indicates at least three transcription start sites, but
the relative contribution of these transcription start sites has not been
elucidated. One promoter type we focused on contained one Sp1 bind-
ing site and its promoter analysis revealed the positive involvement of
this site on DNA ligase IV transcription (Fig. 8a and Supplementary
Fig. 4). Furthermore, in our ChIP assay, increased direct binding of Sp1
to the Sp1 binding site of the 5/ promoter region of the variant 3 DNA li-
gase [V was shown in K562/DNR cells (Fig. 8). However, further analysis
is needed to elucidate the DNA ligase 1V transcription mechanism in
chemo-resistant cells. .

MDR1 and Bcl-xL overexpressions were also observed in K562/DNR
cells (Fig. 1). DNR has been demonstrated to induce MDR1 expression in
K562 cells [54]. As shown in Fig. 6b, modulation of Sp1 and Sp3 affects
MDR1 but not Bcl-xL expression of K562/DNR cells. The importance of
Sp1in MDRI1 transcription has been reported previously [29]. Regula-
tion of the MDR1 promoter has been shown to be dependent on the
cyclic AMP-dependent protein kinase and the transcription factor, Sp1

[55]. We also demonstrated higher promoter activity of K562/DNR cells
against both MDR1 USP and DSP (Supplementary Fig. 3), supporting
the theory that the Sp transcription factor is responsible for MDR1 over-
expression of K562/DNR cells. In addition to Sp1, other transcription fac-
tors including FOX0O3a and STAT5 have been demonstrated to cause
MDR1 overexpression of K562 cells [54,56,57], suggesting the presence
of heterogeneous pathways that induce MDR1 transcription.

The involvement of FOXO03 and STATS in DNA-PKcs and DNA ligase
IV has not been reported before, and the search by the ECR browser
(http://ecrbrowser.decode.org) revealed that 1 kb of the 5’ promoter
of DNA-PKcs possesses 4 STAT (—908 bp to —901 bp, — 676 bp to
—656 bp, —533 bp to —526 bp and —66 bp to —59 bp) and no
FOXO binding site, whereas the 5/ promoter of DNA ligase IV we
analyzed possesses no STAT or FOXO binding sites. The effect of STAT
binding site (— 66 bp to — 59 bp) was negligible (Fig. 3b), however,
our preliminary analysis revealed that other two sites (—676 bp to
—656 bp, and — 533 bp to —526 bp) were responsible for some pro-
moter activity (data not shown). However, the important point is that
the difference in the DNA-PKcs promoter activity between K562 and
K562/DNR was derived from the region between —49 bp and the
first exon. The reason for the absence of MDR overexpression in HL60/
DNR cells is not known but the absence of an important transcription
factor would be suspected.

Inhibitors against DNA-PKcs, ATM and MDR1 protein have been re-
ported to overcome fludarabine resistance in CLL cells [57]. Thus, it
seems likely that components of NHE] including DNA-PKcs and DNA li-
gase IV or their common transcription factor, Sp1, are the medicinally
treatable target for overcoming the MDR phenotype. However, further
work is needed to rule out unexpected adverse effects by inhibiting
housekeeping transcription factors such as Sp1.

Taken together, our analysis revealed that NHE] is one of the plausi-
ble mechanisms of drug resistance and that Sp1 transcription factor
induces several important gene transcriptions leading to the MDR

phenotype.
5. Conclusion

In this study, Enzymes of NHE], DNA-PKcs and DNA ligase IV were
overexpressed in MDR-phenotype leukemnia cell lines, which increased
double strand break repair, and also their overexpression was due to the
activated Sp1 transcription factor bound with respective 5 promoter
region. These overexpressed enzymes play a role in the MDR phenotype
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and might enhance further genetic abnormality by repeated anti-cancer
drug treatment. )

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbagrm.2014.02.004.
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