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Abstract

Although the olfactory nerve is involved in nasal transport of insulin-like growth factor-1 (IGF-1) to the brain, to our
knowledge there have been no direct assessments of the effects of olfactory nerve damage on this transport. To determine
whether olfactory bulb resection resulted in reduced transport of nasally administered human recombinant {GF-1 (hiGF-1)
to the cerebrum, we measured the uptake of nasally administered iodine-125 hiGF-1 (**I-hIGF-1) in the cerebrum as a per-
centage of that in the blood in male ICR mice subjected to left olfactory bulb resection (model mice) and in sham-operated
male ICR mice (control mice). Phosphorylated extracellular signal-regulated kinase (ERK) 1/2 (Thr202/Tyr204)/(Thr185/
Tyr187) as a percentage of total ERK 1/2 in the left cerebrum was also assessed by using enzyme-linked immunosorbent
assay after nasal administration of hiIGF-1. Uptake of nasally administered "I-hIGF-1 in the cerebrum as a percentage of
that in the blood was significantly lower in the model group than in the control group 30min after nasal administration
of hiGF-1. Unilateral olfactory bulb resection prevented nasally administered hiGF-1 from increasing the phosphorylation
of ERK 1/2 in the mouse cerebrum in vivo. These findings suggest that olfactory bulb damage reduces nasal transport of

hIGF-1 to the brain in vivo.

Key words: extracellular signal-regulated kinase 1/2, insulin-like growth factor-1, olfactory bulb resection, olfactory

transport

Introduction

Magnetic resonance imaging (MRI) has demonstrated that
patients with posttraumatic olfactory dysfunction have
injury to the olfactory bulb and tract (88% of patients), sub-
frontal region (60%), or temporal lobe (32%), but the sites
of these injuries are not well correlated with olfactory test
scores (Yousem et al. 1996) and it is difficult to visualize dam-
age to the olfactory nerve fibers with MRI (Fujii et al. 2002).
Furthermore, MRI often cannot be used on individuals who
have metal in their bodies. It would be useful to have objec-
tive measurements for assessing damage to the olfactory
nerve fibers and predicting the course of traumatic olfactory
impairment. Other neuroimaging techniques therefore need
to be developed to diagnose patients with traumatic olfac-
tory impairment.

To evaluate olfactory nerve connectivity in patients with
impaired olfaction, we previously established a method of
assessing the migration of nasally administered thallium-201
(*"'T1) to the olfactory bulb (Shigaetal. 2011, 2013). However,
it takes 24h to assess "' Tl migration to the olfactory bulb in
subjects. For clinical application, there is therefore a need for
an olfactory nerve tracer that can rapidly enter the central
nervous system.

Nasal administration has been shown in vivo to give rapid
delivery of insulin-like growth factor-1 (IGF-1) to the
brain beyond the blood-brain barrier (Thorne et al. 2004).
However, to our knowledge, the effects of olfactory bulb dam-
age on transport of human recombinant IGF-1 (hIGF-1)
from the nasal epithelium to the brain have not yet been
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directly assessed. IGF-1 receptor is expressed in the olfac-
tory bulb, anterior olfactory mucleus, frontal cortex, and
other parts of the central nervous system (Bohannon et al.
1988). hIGF-1 treatment increases the phosphorylation
of extracellular signal-regulated kinase (ERK) 1/2 in vivo
(Thordarson et al, 2004).

Our aim here was to determine whether unilateral olfac-
tory bulb resection would result in reduced delivery of
nasally administered iodine-125 hIGF-1 ("I-hIGF-1) to
the cerebrum and prevent nasally administered hIGF-1
from increasing ERK 1/2 phosphorylation in the cerebrum
in mice subjected to unilateral olfactory bulb resection. Our
results show that assessment of nasally administered hIGF-1
transport to the cerebrum is useful for detecting olfactory
bulb damage in vivo.

Materials and methods

‘Materials

Male ICR mice aged 8 weeks (CLEA Japan, Inc.) were
housed in a 22 °C air-conditioned room with a 12:12-h light—
dark cycle and freely provided with food (CLLEA Japan, Inc.)
and water. The Kanazawa Medical University animal experi-
ment committee approved all animal experimental proce-
dures in advance.

"1-hIGF-1 nasal administration in normal mice

"I-hIGF-1 saline solution ('*I-hIGF-1, human recom-
binant; 185 kBg/mL) was obtained from the Japan
Radioisotope Association. Ten microliters was carefully
instilled into the left nasal cavity of each normal mouse
(N = 25) via a microinjection pipette; sneezing was pre-
vented by using anesthesia (intraperitoneal administra-
tion of pentobarbital sodium, 0.05mg/g). To determine
the time at which maximum uptake of *’I-hIGF-1 in the
cerebrum occurred, the mice were allocated to 5 groups
and sacrificed under ether anesthesia at different times
after ’I-hIGF-1 nasal administration (10, 30, 60, 180, and
360 min). Tissue samples were obtained from the left cer-
ebrum and the blood. Sample radioactivity was measured
by gamma spectrometry by using the Auto Well Gamma
System (model ARC-380; Aloka) after weight measure-
ment. The uptake (% dose) of the isotope in each sample
(cerebrum or blood) was calculated as a percentage of the
radioactivity of each sample per the radioactivity of 10 pL
of "PI-hIGF-1 solution. *I-hIGF-1 uptake was then cal-
culated as the percentage uptake per gram of wet weight
of sample (% dose/g).

"I-hIGF-1 uptake in the cerebrum as a percentage of that
in the blood was then calculated as the percentage isotope
uptake per gram of wet weight (% dose/g) in the left cer-
ebrum divided by the percentage isotope uptake per gram of
wet weight (% dose/g) in the blood.

Unilateral olfactory bulb resection

The olfactory bulb was resected unilaterally by using
the following method. Under anesthesia (intraperitoneal
administration of pentobarbital sodium, 0.05mg/g), we
resected a portion of the left frontal bone of the mouse
and exposed the left olfactory bulb. The left olfactory bulb
was carefully resected with a sharp curette and totally
removed by aspiration with a vacuum pump. Concurrently,
the left olfactory nerve was resected between the left olfac-
tory bulb and the frontal skull base. The skin incision was
closed with a nylon suture without replacement of the
frontal bone.

"LhIGF-1 uptake assessment in mice subjected to
unilateral olfactory bulb resection or sham surgery

We measured “I-hIGF-1 uptake in the cerebrum and
blood 30min after nasal administration of '*I-hIGF-1.
Fourteen days after surgery, we carefully instilled 10 pL of a
"*I-hIGF-1 saline solution (185 kBg/mL) into the left nostril
of each mouse by microinjection pipette, preventing sneez-
ing by using anesthesia (intraperitoneal administration of
pentobarbital sodium, 0.05mg/g). We waited until 14 days
after surgery to allow the acute postsurgical inflammation in
the injured base of the frontal cranium to settle down before
we performed the procedure.

A blood sample was drawn from the tail vein of the mouse
30min after nasal administration of the '’I-hIGF-1; the
mouse was then perfused through the heart with saline under
ether anesthesia before tissue samples were obtained from
the left cerebrum. In sham-operated mice, the left olfactory
bulb was exposed but not resected.

Phosphorylation of ERK 1/2 in the mouse cerebrum

Thirty minutes after nasal administration of Smg hIGF-1
{(human recombinant; Cell Signaling), we used an ELISA
system (Bio-Plex; Bio-Rad Laboratories) to compare the
phospho-ERK  1/2  (Thr202/Tyr204)/(Thr185/Tyr187)
content as a percentage of the total ERK 1/2 in the left
cerebrum in male ICR mice with resected left olfactory
bulbs with that in sham-operated male ICR mice. Lysate
was prepared by using a Bio-Plex Cell lysis kit (Bio-Rad
Laboratories). Cerebral tissue samples in lysing solution
were frozen at —70 °C and then thawed. The samples were
centrifuged at 4500 X g for 4min and the supernatant was
collected. Duplicate the Bio-Plex assessments were per-
formed by using 22.5 pg of total protein sample for each
well on a 96-well plate. Untreated HeLa lysate (Bio-Rad
Laboratories) was used as a positive control for ERK 1/2.
Phosphatase-treated HeLa lysate (Bio-Rad Laboratories)
was used as a negative control for phospho-ERK 1/2, and
Epidermal growth factor-treated HEK293 lysate (Bio-Rad
Laboratories) was used as a positive control for phospho-
ERK 1/2.
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Statistical analysis

We statistically compared mean values by using an unpaired
t-test or Mann—Whitney U-test. All P values were 2-tailed.
The Kruskal-Wallis test was used to compare nasal *I-
IGF-1 transport to the cerebrum in the 5 groups (Prism 5;
GraphPad). A P value of <0.05 was considered significant.

Results

51LhIGF-1 nasal administration in normal mice

To examine the rate of '“I-hIGF-1 nasal transport to the
cerebrum, we assessed '“I-hIGF-1 uptake percentage (left
cerebrum/blood) 10, 30, 60, 180, and 360min after instil-
lation of I-hIGF-1 into the left nostril in normal mice.
I-hIGF-1 uptake percentage (left cerebrum/blood) was
significantly higher 30min after nasal administration than
at the other time points after administration (Figure 1;
N = 5 for each group; Kruskal-Wallis test for comparison
among 5 groups, P = 0.002; unpaired #-tests for comparing
2 groups; 10 vs. 30min, P = 0.03; 30 vs. 60min, P = 0.04; 30
vs. 180min, P = 0.04; 30 vs. 360min, P = 0.03). ’I-hIGF-1
uptake percentage (left cerebrum/blood) 60, 180, and 360 min
after nasal administration did not differ significantly from
that 10min after administration (Figure 1; ¥ = 5 for each
group; unpaired #-test; 10 vs. 60 min, £ = 0.22; 10 vs. 180min,
P=0.17; 10 vs. 360min, P = 0.42). In our subsequent experi-
ment, we therefore assessed mice 30min after "*I-hIGF-1
administration.

Unilateral olfactory bulb resection and changes in
"51-hiGF-1 uptake percentage (left cerebrum/blood)

To determine the effects of unilateral olfactory bulb resec-
tion on '“I-hIGF-1 uptake percentage (left cerebrum/blood),
we first exposed and resected the left olfactory bulb in model
mice via resection of a panel in the left frontal bone; in
the control mice we simply exposed the left olfactory bulb.
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Figure 1 "5|-hiGF-1 uptake percentages (left cerebrum/blood) 10, 30,
60, 180, and 360min after instillation of "*I-hIGF-1 into the left nostril
in normal mice (N = 5 for each group; unpaired t-test, *P = 0.03; 10 vs.
30min). Bars indicate means = standard deviation.
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We then compared the ~I-hIGF-1 uptake percentage (left
cerebrum/blood) in the mice subjected to left olfactory bulb
resection with that in the sham-operated mice. Thirty min-

utes after administration of the isotope, the percentage was

significantly higher in the sham-operated mice than in the
mice with left olfactory bulb resection (Figure 2; N = 6 for
each group, Mann-Whitney U-test, P = 0.005).

Phosphorylation of ERK 1/2 in the cerebrum of mice with
unilateral olfactory bulb resection or sham-operated mice

To determine the effects of unilateral olfactory bulb resec-
tion on the phosphorylation of ERK 1/2 in the mouse cer-
ebrum, we compared phospho-ERK 1/2 (Thr202/Tyr204)/
(Thr185/Tyr187) as a percentage of total ERK 1/2 in the
left cerebrum in mice subjected to left olfactory bulb resec-
tion with that in sham-operated mice 30 min after intranasal
instillation of hIGF-1. The percentage in the left cerebrum
was significantly higher in sham-operated mice than in mice
with unilateral olfactory bulb resection (Figure 3; N = 6 for
each group, Mann-Whitney U-test, P = 0.009; raw data
used in the Bio-Plex analysis are shown in Supplementary
Table 1).

Discussion

Thirty minutes after nasal administration of hIGF-1, we
found significant differences in '*I-hIGF-1 uptake percent-
age (left cerebrum/blood) and phospho-ERK 1/2 (Thr202/
Tyr204)/(Thr185/Tyr187) as a percentage of total ERK 1/2
in the cerebrum between sham-operated mice and mice with
unilateral olfactory bulb resection. In mice, olfactory nerve
resection between the olfactory bulb and frontal skull base
results in reduced intranasal olfactory transport of antero-
grade neuronal tracer to the olfactory bulb (Kinoshita et al.
2008). These results indicate that nasally administered IGF-1
is transported to the cerebrum along afferent fibers of the
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Figure 2 Unilateral olfactory bulb resection and changes in '#I-hIGF-1
uptake percentage (left cerebrum/blood). *-hiGF-1 uptake percentage
(left cerebrumvblood) was significantly higher in sham-operated mice than
in mice with left olfactory bulb resection (N = 6 for each group, Mann—
Whitney U-test, **P = 0.005). Bars indicate means = standard deviation.
OB, offactory bulb.
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Figure 3 Phosphorylation of ERK 1/2 in the cerebrurm in mice with uni-
lateral olfactory bulb resection and in sham-operated mice. Phospho-ERK
1/2 (Thr202/Tyr204)/(Thr185/Tyr187) as a percentage of fotal ERK 1/2 in
the left cerebrum was significantly higher in sham-cperated mice than in
rice with unilateral olfactory bulb resection (N = 6 for each group, Mann—
Whitney U-test, **P = 0.009). Bars indicate means + standard deviation.
0B, olfactory bulb.

olfactory nerve. Nasal administration of PI-hIGF-1 may be
thus useful for analyzing olfactory bulb damage in animal
models of traumatic olfactory impairment.

"I-hIGF-1 uptake percentage (left cerebrum/blood) was
significantly higher 30 min after nasal administration than at
other time points in normal mice, even though the error bar
for the result was relatively large 30min after nasal admin-
istration. Intranasal transport of IGF-1 to the cerebrum is
faster than that of manganese ion, which takes 24h to be
transported to the brain after nasal administration in nor-
mal mice (Kanayama et al. 2005). Manganese ion enters the
nerve terminals via calcium channels (Narita et al. 1990).
Intranasal transport of IGF-1 to the cerebrum may depend
on mechanisms different from those for manganese ion.

Meredith and O’Connell (1988) used histochemistry to
investigate horseradish peroxidase (HRP) uptake from the
nasal cavity to the brain in mammals. In contrast, B1-hIGF-1
uptake in samples can be counted by gamma spectrometry;
therefore, using 1”°I-hIGF-1 may be simpler and more quan-
titative than HRP. Furthermore, if 'I-hIGF-1 uptake by the
cerebrum could be visualized with a gamma camera in live
animals, follow-up would be available in vivo without sacri-
fice after olfactory nerve transection.

Currently, we can use ' Tl imaging to visualize the connec-
tion between the olfactory epithelium and olfactory bulb in
vivo (Shiga et al. 2009). Nasally administered **'T1 migrates
to the olfactory bulb 24 h after administration, as has been
shown in healthy volunteers by using a combination of sin-
gle-photon emission computed tomography (SPECT), X-ray
computed tomography (CT), and MRI (Shiga et al. 2011).
The rate of nasal **'T1 migration to the olfactory bulb is lower
in patients with olfactory impairment from major causes
(head trauma, upper respiratory tract infection, or chronic

rhinosinusitis) than in healthy volunteers (Shiga et al. 2013).
Patients have to return to hospital for SPECT-CT analysis
24h after nasal administration of "' T1. *'Tl migrates to the
olfactory bulb, where it decays. It is thus difficult to assess
the disconnection between the olfactory bulb and the central
nervous system in patients with olfactory damage by using
“'Tl-based imaging, If we could adapt an isotope-conjugated
hIGF-1 nasal administration technique for use in patients
with head injuries resulting in anosmia, the decrease in odor
sensitivity due to disconnection of the olfactory tract could
be validated when damage to the brain is assessed with MRI.

Here, we used commercially available ’I-hIGF-1 for our
analysis. We are planning to test a new isotope-conjugated
hIGF-1 instead of nasal administration of '“I-hIGF-1,
because the half-life of iodine-125 (60.1 days) is too long
for clinical application. Unlike intravenous administration
of radiopharmaceutical agents, which delivers only small
amounts of radiation to the nasal cavity, nasal administra-
tion of an isotope delivers a high radiation dose. Iodine-123,
which has a short half-life (13.2h), could be used with the
hIGF-1-conjugated agent; its use warrants further investiga-
tion in an animal study.

Recovery from chemosensory deficits can occur up to

2-18 months after a traumatic event (Reiter et al. 2004).
However, the recovery rate in humans with traumatic olfac-
tory impairment is less than 30% (Fujii et al. 2002). Patients
who have intact olfactory nerves and are candidates for
long-term treatment of olfactory dysfunction may be
selected accurately by using new isotope imaging techniques.
Molecular imaging via nasal administration of isotope-con-
jugated molecules may be useful for analyzing the efficacy of
treatment with new medications in patients with posttrau-
matic olfactory impairment.

In conclusion, unilateral olfactory bulb resection in mice
results in reduced delivery of nasally administered "’I-hIGF-1
to the cerebrum and prevents phosphorylation of ERK 1/2 in
the cerebrum after intranasal hIGF-1 administration in vivo.

Supplementary material

Supplementary material can be found at http://www.chemse.
oxfordjournals.org/
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