Understanding the pathological manifestations of AEXS

well as combinations of these mutations. There are at least
two other families in which the use of a cryptic promoter
was demonstrated, but no corresponding genomic mutation
was defined (56]. Furthermore, we came across additional
cases/families in which AEXS was clinically suspected, but no
causative mutation was identified. Current cutting-edge tech-
nologies, especially second-generation (or ‘next-generation’)
DNA sequencing technologies employing paired-end map-
ping or split-read analysis, could reveal hitherto unrecognized
recombination events as they have sufficient power to detect
even inversions, which are not detectable by currently avail-
able arrays, comparative genome hybridization, single-
nucleotide polymorphism genotyping assays or read-depth
analysis using a next-generation sequence analyzer [46]. Next-
generation technologies may prove useful to identify novel
gene murtations, other than those to CYPI9AI, as causative
mutations of AEXS, if any others exist.

Recent progress in high-throughput DNA technology has
also shown that genomic rearrangement causing submicro-
scopic (<5 Mb) copy number variations (CNVs) is far more
common in the human genome than previously suspected
and can cause hereditary diseases because of a Mendelian ot
more complex trait as seen in neurogenic disorders and
autism. Even if CNVs are identified, it is often difficult to
determine a precise genetic mechanism conveying each phe-
notype because disease phenotypes are complex and the CNV
region may harbor multiple genes that function in the pro-
gression of disease.

In this context, AEXS provides a unique model to study
how these structural variations confer new functions to the
human genome. The phenotype highly specific to CYPI19A1
function (estrogen excess) is relatively simple; thus the pheno-
type—genotype correlation is direct and easy to analyze. This
is probably because of the coincidence that estrogen, as a
gene product, acts powerfully and specifically, and there
exists no neighboring genes that show haplo-insufficiency.
Moreover, the alternative promoter structure of CYPI9AI
features
namely deletion- and inversion-based adoption of cryptic

novel genetic mechanisms of gain-of-function,

promoters.

Key issues
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A future 5-year study should be designed to address ques-
tions raised by the AEXS study. For example, the inversion-
based mechanism of gain-of-function has never been
reported except for AEXS; therefore, it would be interesting
to determine whether this mechanism is actually exclusive
to AEXS, or whether this mechanism is more commonly
used for other diseases not previously identified because
of technical limitations. Previous studies of mutations in
AEXS have revealed that the 15q21 region, especially of
upstream of CYP19A1I, is unstable, suggesting that the num-
ber and types of mutations may be more frequent than
previously thought. There is considerable diversity in the
severity of pubertal gynecomastia, as some cases are
phenotypically indistinguishable from mild AEXS. There-
fore, it is important to determine whether there exist
structural variations or polymorphisms relevant to pubertal
gynecomastia. Given that CYPI9AIrecombinations occur
as a replication error, somatic cells may also be affected
and cause pathologies relevant to excessive estrogen, such as
breast cancer and polycystic ovary syndrome; however,
such a murtation has not been identified till date [9). Mam-
malian CYPI9AI has evolved through the sequential acqui-
sition of promoters. Thus, it would also be beneficial to
determine whether any recombination events found in
AEXS are relevant to such evolutionary potential and the
history of such mutations in particular cases of familial

AEXS 47).
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TO THE EDITOR:

Human chromosome 14q32.2 imprinted region carries several
paternally expressed genes (PEGs) such as DLKI and RTLI and
maternally expressed genes (MEGs) such as MEG3 (alias, GTL2)
and RTLlas (RTLI antisense), together with the germline-derived
primary DLKI1-MEGS3 intergenic differentially methylated region
(IG-DMR) and the postfertilization-derived secondary MEG3-
DMR (Fig. 1) [da Rocha et al, 2008; Kagami et al., 2008a].
Consistent with this, paternal uniparental disomy 14 (UPD(14)
results in a unique phenotype characterized by facial abnormality,
small bell-shaped thorax, abdominal wall defects, placentomegaly,
and polyhydramnios [Kagami et al., 2005, 2008a,b]. In this regard,
we have recently reported that heterozygous microdeletions and
epimutations (hypermethylations) affecting unmethylated DMR
(s) of maternal origin also lead to UPD(14)pat-like phenotype
[Kagami et al., 2008a, 2010, 2012]. Indeed, after studying 26
patients with UPD(14)pat-like phenotype, we identified UPD
(14)pat in 17 patients (65.4%), microdeletions in 5 patients
(19.2%), and epimutations in 4 patients (15.4%) [Kagami et al.,
2012]. Importantly, although there is no report describing recur-
rence of UPD(14)pat and epimutation in familial members with a
normal karyotype, microdeletions can be transmitted recurrently
from mothers with the same heterozygous microdeletions to off-
springs [Kagami etal., 2008a]. Here, we report on our experience of
a prenatal genetic testing for a microdeletion at the chromosome
14932.2 imprinted region.

A 33-year-old Japanese woman came to us with her husband
seeking for prenatal diagnosis of a fetus at 9 weeks of gestation.
The first child and the mother have been reported previously as
cases 3 and 11 of Family B in Kagami et al. [2008a]. In brief, the
child had upd(14)pat-like phenotype and a maternally derived
411,354bp microdeletion involving WDR25, BEGAIN, DLKI,
MEG3, RTL1/RTLlas, and MEGS8 (Fig. 1). The mother had
UPD(14)mat-like phenotype and the same microdeletion on
the paternally derived chromosome 14. The parents hoped to
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63

How to Cite this Article:

Sasaki A, Sumie M, Wada S, Kosaki R,
Kuroswa K, Fukami M, Sago H, Ogata T,
Kagami M. 2013. Prenatal Genetic Testing
for a Microdeletion at Chromosome
14q32.2 Imprinted Region Leading to
UPD(14)pat-like Phenotype.

Am ] Med Genet Part A 9999:1-3.

deliver the fetus at a local hospital if there is no microdeletion or
at our hospital with a neonatal intensive care unit if a micro-
deletion is identified.

After thorough consultation, we performed trans-abdominal
chorionic villus sampling (CVS) at 12 weeks of gestation. Immedi-
ately after the sampling, fluorescence in situ hybridization was
carried out with an RP11-566]3 probe detecting a segment within
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FIG. 1. Summary of the molecular studies. A: The physical map
of the 14q32.2 imprinted region and the FISH finding of the
fetus. PEGs are shown in blue, MEGs in red, and the IG-DMR and
the MEG3-DMR in green. The gray rectangle indicates the
411,354 bp microdeletion identified in the first child and the
mother, and the white rectangle denotes the region detected by
the RP11-566J3 BAC probe. The FISH analysis reveals two red
signals (arrows) identified by the RP11-566J3 BAC probe and
two green signals (arrowheads) detected by the RP11-56612
BAC probe for 14q12 utilized as an internal control. B: The
methylation analysis for the IG-DMR (CG4 and CG6) and the
MEG3-DMR (CG?7) by COBRA. The black and white circles indicate
methylated and unmethylated cytosines at the CpG dinucleo-
tides, respectively. Pat: paternally derived chromosome; and
Mat: maternally derived chromosome. PCR products for CG4

(311 bp) are digested with BstUl into three fragments (33, 18,
and 260 bp) when cytosines at the first and the second CpG
dinucleotides and the fourth and fifth CpG dinucleotides (indicat-
ed with orange rectangles) are methylated. The PCR products for
CGB (428 bp) are digested with Tagql into two fragments (189
and 239 bp) when the cytosine at the 9th CpG dinucleotide
(indicated with an orange rectangle) is methylated. The PCR
products of CG7 [168 bp) are digested with BstUl into two
fragments (56 and 112 bp) when the cytosines at the fourth
and fifth CpG dinucleotides (indicated with orange rectangle) are
methylated. Both methylated (M)- and unmethylated (U)-specif-
ic bands are identified in the chorionic villus sample. V, villi; L,
leukocytes; and N.C, negative control.

AMERICAN JOURNAL OF MEDICAL GENETICS PART A

the deleted region of the first child and the mother, delineating two
signals on villus cell interphase spreads (Fig. 1). Next combined
bisulfite restriction analysis (COBRA) was performed for the IG-
DMR and the MEG3-DMR using villus cell genomic DNA, identi-
fying both methylated- and unmethylated allele-specific bands (Fig.
1B). These findings clearly excluded the presence of a microdeletion
in the fetus by 14 weeks of gestation. Subsequent pregnant course
was uneventful, and a phenotypically normal infant was delivered at
term by a caesarean section.

To our knowledge, this is the first report describing a prenatal
genetic testing for a familial microdeletion affecting the chromo-
some 14q32.2 imprinted region. Although such a genetic testing is
possible only when an accurate genetic diagnosis has been made for
the proband, it permitted the precise diagnosis before the second to
the third trimester when characteristic UPD(14)pat-like features
such as bell-shaped small thorax with coat hanger appearance and
polyhydroamnios become detectable by ultrasonographic studies
[Suzumori et al.,, 2010; Yamanaka et al., 2010]. Such an early
prenatal diagnosis, though it is associated with a certain risk
such as CVS-induced abortion, provides critical information for
the clinical management. When a microdeletion is excluded as
shown in this case, this releases the parents from the anxiety of
having an affected fetus and allows for a standard follow-up during
pregnancy. By contrast, when a microdeletion is identified, this will
allow for appropriate management during pregnancy (e.g., amnior-
eduction to mitigate the risk of threatened premature delivery) and
pertinent therapeutic interventions for the infant (e.g., respiratory
management). Thus, prenatal genetic diagnosis appears to be
beneficial for the fetus and the parents, when it is performed at
appropriate institutes where a multidisciplinary team including a
genetic counselor is available.
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LETTER TO THE EDITOR

Aromatase excess syndrome in a family with
upstream deletion of CYP719A1

Aromatase excess syndrome (AEXS) is an autosomal dominant
disorder caused by overexpression of CYPI9AI at 15q21." Salient
clinical features of AEXS are gynaecomastia and advanced bone
age resulting from oestrogen excess.' To date, six genomic
rearrangements at 1521 have been identified in 23 patients
from nine families.'* These rearrangements include duplications
involving the promoter region of CYPI9AI, and deletions and
inversions that create chimeric genes consisting of coding exons
of CYPI9AI and promoter-associated exons of neighbouring
genes. Given the small number of reported patients, further
studies are necessary to clarify molecular basis and phenotypes
of AEXS.

Here, we identified a Japanese family with AEXS and hitherto
unreported deletion at 15q21-2. This study was approved by the
Institutional Review Board Committees at the National Center
for Child Health and Development. The proband was a 12-year-
old boy ascertained by gynaecomastia. Physical examination
revealed age-appropriate sexual development (Fig. 1 and Table
S1). His brother and father also exhibited gynaecomastia. The
14-year-old sister experienced early menarche. The mother was
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clinically normal. Bone age was significantly advanced in the
proband and brother. Assessment of growth records revealed
that the proband and brother had a peak growth velocity at
6-7 years of age, and the sister showed a high growth velocity at
4-6 years of age (Fig. 1). Blood oestradiol (E,) values were
slightly elevated in the father and remained undetectable in the
proband and brother (Table S1).

Array-based comparative genomic hybridization analyses (Agi-
lent Technologies, Palo Alto, CA, USA) identified heterozygous
deletions in the proband, brother, sister and father (Fig. 1). The
deletion included several exons of the neighbouring genes
DMXL2 and GLDN. Long-range PCR of the breakpoint-flanking
regions using multiple primers (Table S2) showed that the dele-
tion was 198 662 bp in size and started at a point 154 688 bp
upstream of CYPI9AI. The telomeric and centromeric break-
points resided in a Line 1 sequence within DMXL2 intron 1 and
in a nonrepeat sequence at the exon—intron boundary of GLDN
exon 6, respectively (Fig. 1 and S1). The fusion junction was
accompanied by 3 bp microhomology. RT-PCR detected a chi-
meric mRNA clone consisting of DMXL2 exon 1 and CYPI9AI1
exon 2 in the mammary gland and skin of the proband (Fig. 1).

DMXL2 is a widely expressed gene, and exon 1 of DMXL2
contains promoter-compatible histone marks.” Thus, phenotype

deletion

Chimeric
mRNA PAASDAIA
DMXL[2exon 1 CYP79A 7exon 2

Fig. 1 (a) Clinical features of the family. Upper part: Gynaecomastia in the proband and brother. Lower part: Growth chart. Actual height and growth
velocity of the proband (black circles), brother (black triangles) and sister (black circles), together with bone age (a while circle and triangle) are
plotted on the growth curves of Japanese children (the mean, £1-0 SD, and & 2:0 SD). (b) Molecular findings of the family. Upper part: Comparative
genomic hybridization analyses. The arrows indicate positions and transcriptional direction of genes. The coloured and white boxes denote the coding
and noncoding exons, respectively. Middle part: DNA sequences at the fusion junction. Lower part: A chimeric mRNA clone consisting of DMXL2

exon 1 and CYPI9AI exon 2.
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of the present family can be ascribed to CYPI9AI overexpression
due to cryptic use of a widely expressed promoter. To date, two
other deletions have been identified in four families with AEXS.?
This suggests that submicroscopic deletions at 15¢21 account a
certain part of the aetiology of AEXS. Notably, the breakpoints
of the present and previously reported deletions were clustered
in small genomic intervals (Fig. S1). These intervals are likely to
provide a hotspot for recombination- and replication-mediated
errors, because the present deletion is consistent with a replica-
tion-mediated error that occurs independently of repetitive
sequences and is associated with microhomology at the fusion
junctions,* while the previously reported deletions are ascribed
to recombination-mediated mechanisms.’

Two points are noteworthy for the clinical features of this fam-
ily. First, the phenotypes in the present family are comparable to
those in other families with deletions.> This supports the previ-
ously proposed notion that clinical severity of AEXS is primarily
determined by the functional properties of the fused promoters.’
In addition, the clinical features of the father and sister of our
family argue for the assumption that oestrogen excess in AEXS
permits normal fertility in males and produces early menarche in
females.>® Second, apparent gynaecomastia was observed in the
prepubertal brother, and markedly accelerated skeletal growth
around 6 years of age was seen in the proband, brother and sister.
These data imply that adrenal androgens rather than gonadal
androgens serve as the major sources of oestrogens in prepubertal
children with AEXS, because in Asian children, adrenarche usually
occurs at 6-7 years of age.” Indeed, aromatase converts andro-
stenedione, one of the major adrenal androgens, into oestrone
(E;). The undetectable levels of E, in the proband and the brother
despite apparent gynaecomastia can be explained by assuming that
circulating E; rather than E, mediates the development of gynae-
comastia in pre- or peripubertal boys. However, because blood E,
levels were not examined in this family, this assumption remains
speculative.

In summary, this study provides further evidence of allelic
heterogeneity and genotype—phenotype correlation in AEXS.
Furthermore, our results indicate for the first time that adrenal
androgens may be the major source of oestrogens in pre- and
peripubertal patients with AEXS.
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Abstract

verexpression of CYP19A1 encoding aromatase
results in a rare genetic disorder referred to

as aromatase excess syndrome (AEXS). Male
patients with AEXS manifest pre- or peri-pubertal
onset gynecomastia, gonadotropin deficiency, and
advanced bone age, while female patients are
mostly asymptomatic. To date, 30 male patients with
molecularly confirmed AEXS have been reported. A
total of 12 types of submicroscopic rearrangements,
i.e., two simple duplications, four simple deletions, two
simple inversions, and four complex rearrangements,
have been implicated in AEXS. Clinical severity of AEXS
primarily depends on the types of the rearrangements.
AEXS appears to account for a small number of cases of
pre- or peri-pubertal onset gynecomastia, and should be
suspected particularly when gynecomastia is associated
with an autosomal dominant inheritance pattern,
characteristic hormone abnormalities and/or advanced
bone age. Treatment with an aromatase inhibitor
appears to benefit patients with AEXS, although long-
term safety of this class of drugs remains unknown.

Ref: Ped Endocrinol, Rev. 2014:11.3: 298-305

Keywords: aromatase, CYP19A1, estrogen, genomic
rearrangement, gynecomastia

Introduction

Aromatase encoded by CYP19A1 is a cytochrome P450
enzyme involved in estrogen biosynthesis. (1) Increased
enzymatic activity of aromatase leads to a rare genetic
disorder referred to as aromatase excess syndrome (AEXS).
(2-4) Male patients with AEXS manifest pre- or peri-pubertal
onset gynecomastia, along with gonadotropin deficiency,
advanced bone age, and short adult height. (2-8) Female
patients are usually asymptomatic, although variable
clinical features such as macromastia, precocious puberty,
irregular menses, and short stature have been reported in
some individuals. (3,4,6,7)
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