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generated through hydrolysis of phosphatidyl-inositol 4,5-bisphosphate, a com-
ponent of the plasma membrane, by phospholipases Cf and Cy. This hydrolysis is
triggered by the ligand binding to G protein-coupled or tyrosine phosphorylation-
coupled receptors followed by the sequential activation of the phospholipases
(Fig. 28.1a).

IP;Rs are ubiquitously expressed in all cell types. Three IPsR isoforms, IPs;R
type 1 (IPsR1), IP3R type 2 (IP;R2), and IPsR type 3 (IP;R3), are expressed in
mammals including humans (Furuichi et al. 1994; Mikoshiba et al. 1993; Foskett
et al. 2007; Taylor et al. 1999; Taylor et al. 2004; Stutzmann and Mattson 2011;
Goto and Mikoshiba 2011). The three IPs;R isoforms are 60-70 % identical in
sequence (Furuichi et al. 1994; Michikawa et al. 1996). Most tissues express more
than one and often all three IP;R isoforms at different ratios (Taylor et al. 1999;
Foskett et al. 2007), and the expression level of each IP3R isoform can be regulated
according to cellular states.

IP3R1 is the major neuronal form of IP;R family in the central nervous system
(Yamada et al. 1994) and is abundant in the cerebellum, particularly in cerebellar
Purkinje cells. It is also expressed in other brain areas, including the cerebral
cortex, hippocampus, basal ganglia, and thalamus, as well as in peripheral tissues
(Furuichi et al. 1994; Foskett et al. 2007; Nakanishi et al. 1991; Sharp et al. 1999).
IP;R1 is 2,758 residues in length and forms a homotetramer. The primary structure
of IP3R1 consists of three domains, including an IPs-binding domain near the N
terminus, a coupling/regulatory domain in the middle of the molecule, and a
transmembrane-spanning domain near the C terminus (Fig. 28.2). In addition,
there is at least two consensus protein kinase A phosphorylation sites and at least
one consensus ATP-binding site (Nucifora et al. 1995; Foskett et al. 2007). See
also Chap. 11 for the details of IP;R.

Because of the ubiquitous expression of IP3Rs and their roles in diverse bio-
logical processes, it is likely that IP;R can be implicated in a number of disease
conditions. In this chapter, we will discuss the neurological disorders, spinocere-
bellar ataxia type 15 (SCA15) and 29, caused by alterations in the /P3R gene. In
addition, we will highlight other neurological disorders, including some SCAs,
Huntington’s disease (HD), and Alzheimer’s disease (AD), where alterations in
IP;R-mediated Ca®* signaling may link to their pathogenesis.

28.2 Dominantly Inherited SCAs Caused by Alteration
in IP3R

SCA15 (MIM 606658) is an autosomal dominant neurodegenerative disorder
characterized by very slowly progressive, pure cerebellar ataxia (Storey et al.
2001; Gardner et al. 2005). A family of Australian origin with SCA15 was the first
report on this condition, and the locus was mapped to 3pter-p24.2 (Knight et al.
2003). Then, in two Japanese families with benign SCA, Hara et al. narrowed the
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Fig. 28.1 A model of deranged inositol 1,4,5-trisphosphate receptor (IP;R)-mediated Ca**
signaling in Huntington’s disease, spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3), type 15
(SCAI1S5), and type 29 (SCA29), cerebellar ataxia and mental retardation with or without
quadrupedal locomotion 3 (CAMRQ3), and Alzheimer’s disease. a Sources of Ca** influx are
Ca**-permeable a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-
D-aspartate (NMDA) glutamate receptors, voltage-gated Ca”* channels (VGCCs), nicotinic
acetylcholine receptors (nAChR), and transient receptor potential type C (TRPC) channels. Ca®*
release from internal stores is mediated by inositol triphosphate receptors (IP;R) and ryanodine
receptors (RyR). Inositol triphosphate (IP3) can be generated by metabotropic glutamate receptors
(mGIuR). Ca** efflux is mediated by the sodium—calcium exchanger (NCX), the plasma
membrane calcium ATPase (PMCA), and the sarco-/endoplasmic reticulum calcium ATPase
(SERCA). b In HD, mutant huntingtin (mHtt) binds to the C-terminal region of IP;R and
enhances its affinity to IP;. ¢ In AD, presenilins (PSs) can directly increase the activity of IPsR.
ER = endoplasmic reticulum. d In healthy individuals, the carbonic anhydrase-related protein
VIII (CARP) binds to the modulatory domain of IP;R and suppresses its affinity to IP5;. In SCA29
or CAMRQ3, CARP cannot bind to IP3R, resulting in increased affinity of IP;R to IP;. e In SCA2
or SCA3, mutant ataxin-2 (ATXN2) or ataxin-3 (ATXN?3) also binds to the C-terminal region of
IP;R and enhances its affinity to IP;. f In SCA15, the reduced IP3R levels results in dysregulation
of IPsR-mediated Ca* signaling
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Fig. 28.2 Domain structure of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). IP;R1
consists of three major domains, including the amino-terminal IP;-binding region, coupling/
regulatory region, and transmembrane region. The structural features shown are as follows:
alternative splicing sites SI (318-332), SII (1692-1731), and SIII (917/918). -trefoil domain,
armadillo repeat domain, IRBIT-binding region, carbonic anhydrase-related protein VIII
(CARP)-binding region, Opt deletion, A18 deletion, ATP-binding site, and ataxin-1-, ataxin-2-,
HAP1- and mHtt-binding regions

region to 3p26.1-p25.3 (Hara et al. 2004). In a large four-generation Japanese
family, initial studies showed a linkage to chromosome 8, and the condition was
formally designated SCA16. However, additional studies revealed a linkage to
3pter-p26.2 (Miura et al. 2006). In 2007, heterozygous large deletions
(200—400 kb) in genes encoding IP3R1 and sulfatase modifying factor 1 (SUMF1)
were identified in affected members of the Australian and two other British
families (van de Leemput et al. 2007). In addition, a heterozygous large deletion
only in ITPR1, the IP3R1 gene, as well as a point mutation in /TPRI was identified
in the Japanese families. These have been reported to link to the same locus,
indicating that ITPRI is the causative gene for SCA in humans (Hara et al. 2008;
Iwaki et al. 2008).

28.2.1 Clinical Features of SCAIS5

SCALIS is clinically characterized by autosomal dominant inheritance, very slow
progression, and pure cerebellar ataxia. Age at onset varies between 7 and 66 years
(usually between 30 and 50) (Storey et al. 2001; van de Leemput et al. 2007; Hara
et al. 2008; Iwaki et al. 2008). The disease usually begins with gait ataxia. Tremor
may begin simultaneously with or even occasionally precede gait ataxia. Deterio-
ration in handwriting, motion-induced instability, and myoclonus were also the
initial symptoms in some individuals. Cerebellar signs and symptoms including
truncal and limb ataxia, ataxic speech, and gaze-evoked nystagmus are core features
in combination with head tremor (titubation), upper limb postural tremor, action
tremor, and impaired oculocephalic reflex. Hyperreflexia, but neither Babinski
reflex nor spasticity, may be noted as a pyramidal sign. Fatal complications such as
severe bulbar palsy do not develop. Cognitive function seems to be intact. There
have been no reports describing epilepsy in individuals affected with SCA15.
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Brain magnetic resonance imaging (MRI) reveals marked atrophy of the cer-
ebellar vermis with mild atrophy of the cerebellar hemispheres (Hara et al. 2004;
Knight et al. 2003; van de Leemput et al. 2007; Novak et al. 2010; Synofzik et al.
2011). Nerve conduction studies are typically normal, but mild slowing of con-
duction velocities of sural sensory and median motor nerves were shown in
affected members of a Japanese family with SCA15 (Hara et al. 2008). Disease
progression is notably slow. Most patients with SCA1S can ambulate indepen-
dently or with a cane 10-40 years after onset (Storey et al. 2001; van de Leemput
et al. 2007; Hara et al. 2008; Iwaki et al. 2008). Neuropathological findings are not
available in SCA15.

28.2.2 SCAIS5 Diagnosis

SCAI1S is defined by the presence of a pathogenic mutation in ITPRI. SCA15
diagnosis should be considered in individuals who exhibit the clinical features of
SCAI1S5 and in whom the diagnosis of SCAL, 2, 3, 5, 6, 8, 12, and 14 have been
excluded by genetic testing. Most patients with SCA1S5 are diagnosed by gene
dosage analysis for ITPRI. Because most ITPRI mutations are exonic deletions,
genetic testing should begin with gene dosage analysis followed by sequence
analysis if a deletion is not identified.

28.2.3 SCAIS5 Prevalence

In the Australian population, pathogenic ITPRI deletions were found in approxi-
mately 2.7 % of families with autosomal dominant SCA who were negative for
common SCA repeat expansions in coding exons (Ganesamoorthy et al. 2009). In
the Caucasian population, an /TPRI deletion was found in 1.8 % of 333 families
(Marelli et al. 2011). On the other hand, ITPRI deletions were found in 8.9 % of
56 central European families negative for common SCA repeat expansions
(Synofzik et al. 2011). The precise prevalence of SCA15 is however still obscure,
because most previous studies used quantitative PCR for genetic testing of SCA15
and this method cannot detect small deletions, insertions, or nonsense mutations in
ITPRI. Hara et al. analyzed ITPRI deletions using custom high-definition com-
parative genomic hybridization microarrays covering the entirety of /TPRI at an
average interval of 200 bp for the probes in 54 Japanese families with undeter-
mined autosomal dominant SCA and did not find ITPRI deletions, indicating that
SCAI1S is a quite rare ataxia in the Japanese population (Hara et al. 2008).
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28.2.4 Molecular Genetics of SCAIS5

28.2.4.1 ITPRI1 Deletions

ITPRI consists of 58 exons. Heterozygous deletions encompassing exons 1-10,
140, and 1-44 of ITPRI were identified in three unrelated Australian and British
families with SCA1S5 (van de Leemput et al. 2007), and a heterozygous deletion of
entire exons in the gene was found in another Japanese family (Hara et al. 2008).
Most patients with SCA1S5 also have deletions in the adjacent SUMFI (van de
Leemput et al. 2007; Hara et al. 2008; Ganesamoorthy et al. 2009; Novak et al.
2010; Di Gregorio et al. 2010; Castrioto et al. 2011). Although individuals with
homozygous SUMF1 deletions show mental retardation, seizure, and leukodys-
trophy, individuals with heterozygous SUMF1 deletions are healthy (Cosma et al.
2003). These findings suggest that partial SUMF1 deletion does not contribute to
SCA15 pathogenesis. In addition, a heterozygous deletion of exons 1-48 in ITPRI,
but not in SUMF1, was identified in a Japanese family (Iwaki et al. 2008), indi-
cating that the pathogenic mechanism underlying SCA15 is ITPRI haploinsuffi-
ciency. Although it is expected that micro deletions, insertions, or nonsense
mutations cause SCA1S5, these mutations have not yet been fully identified and
evaluated.

28.2.4.2 Missense Mutations in ITPR1

Two heterozygous missense mutations, P1059L (c.8581C > T) and V4941
(c.1480G > A), have been also identified in Japanese and Australian families with
SCA1S, respectively (Hara et al. 2008; Ganesamoorthy et al. 2009). Proline at
position 1059 in the amino acid sequence is highly conserved in IP;R1 among
species, although it is not the same in human ITPR2 and ITPR3. This residue is
located in the coupling domain (Fig. 28.2), whose function remains poorly
understood. Valine at position 494 is located in the IP5-binding domain consisting
of p-trefoil and armadillo repeat domains (Ganesamoorthy et al. 2009; Foskett
et al. 2007). The proper coordination of both domains is necessary for the binding
of IP5 to IP;R1. Valine at position 494 is not particularly conserved among spe-
cies. Although it seems likely that the missense mutations may affect IP;R1
function, the Ca®* release properties of IPsR1 with P1059I mutation is largely
unaffected (Yamazaki et al. 2011). To show that these missense mutations con-
tribute to disease pathogenesis, it should be clarified how these mutations affect the
functional properties or the kinetics of biogenesis and turnover of IP;R1.

A recent study demonstrated that two other heterozygous missense mutations in
ITPRI, V1553 M (c.4657G > A) and N602D (c.1804A > G), caused another
neurological disease in families with autosomal dominantly inherited congenital
nonprogressive ataxia, designated as SCA29 (OMIM 117360) (Huang et al. 2012).
Mild and very slow progressive ataxia observed in SCA29 is similar to that in
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SCAI15. However, these families exhibited several characteristic clinical features,
including delayed motor milestones (suggesting the existence of congenital ataxia)
and mild intellectual impairment (Dudding et al. 2004, Huang et al. 2012). In
addition, the severity of ataxia and intellectual impairment was variable in each
affected member even in the same family. Valine at position 1553 is located in the
carbonic anhydrase-related protein VIII (CARP)-binding region, and asparagine at
position 602 is in the IRBIT-binding region, respectively. Both IRBIT and CARP
compete with IP5 for binding to IPsR1 and suppress IP;R1 activity (Hirota et al.
2003; Ando et al. 2006). Interestingly, homozygous mutations in CAS8, which
encodes CARP, cause an autosomal recessive congenital ataxia associated with
mild intellectual impairment (Turkmen et al. 2009). Therefore, the two missense
mutations in the families might increase the sensitivity of IPsR1 in response to IP;
and therefore be a cause of the disease in these families.

28.2.5 Roles of IP3R1 in SCA15 Pathogenesis

Western blot analysis of IP3;R1 protein levels in immortalized lymphoblasts from
affected individuals carrying ITPRI deletions revealed remarkable reduction in
IP3R1 protein levels (van de Leemput et al. 2007; Novak et al. 2010). In addition,
RT-PCR analysis showed that the mRNA expression levels of ITPR] in fibroblasts
obtained from an affected individual with SCA15 were half of the levels measured
in normal controls (Hara et al. 2008). These findings suggest that SCA15 is caused
by ITPRI haploinsufficiency and that cerebellar Purkinje cells are particularly
vulnerable to the dosage of ITPR/ (Fig. 28.1b).

How does IP;R1 haploinsufficiency cause cerebellar ataxia in patients with
SCA15? IP;R1, the major neuronal IP;R, is expressed ubiquitously in various
regions of the central nervous system including CAl, basal ganglia, and the thala-
mus and particularly in the cerebellar Purkinje cells (Nakanishi et al. 1991; Sharp
et al. 1999). Intracellular Ca** homeostasis is important for maintaining the function
of neurons, particularly Purkinje cells (Hartmann and Konnerth 2005; Mikoshiba
2007). As described later, mice homozygous for null /TPRI develop ataxia and
epilepsy (Matsumoto and Nagata 1999; Matsumoto et al. 1996), whereas mice
heterozygous for null ITPRI develop only mild motor discoordination (Ogura et al.
2001). Thus, ITPRI haploinsufficiency may result in dysfunction restricted to the
cerebellar Purkinje cells, whereas complete loss of IP;R1 results in more severe
dysfunction of not only Purkinje cells but also cortical neurons.

Indeed, none of the individuals with SCA15 with heterozygous ITPRI deletions
had epilepsy or abnormal electroencephalogram, and the clinical phenotype was
restricted to pure cerebellar ataxia even in the elderly (Gardner et al. 2005; Hara
et al. 2004; Knight et al. 2003; van de Leemput et al. 2007). These findings
indicate that Purkinje cells are particularly vulnerable to abnormalities in IPsR1.
The reduced IP;R1 levels may cause dysregulation of intracellular Ca** homeo-
stasis, leading to persistent long-standing dysfunction of Purkinje cells and
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eventually degeneration of the selective neuronal populations. The neuropatho-
logical findings of affected individuals with deletion or missense mutations in
ITPRI will confirm this speculation.

28.3 IP;R Mutant/Deficient Mice

28.3.1 ITPRI Knockout Mice

Homozygous IP;R1 knockout mice, in which cytosolic IPs-induced Ca** release is
almost completely deficient, are rarely born alive, indicating that IP;R1 has some
function during embryonic development. Even if they survive, the mice exhibit
severe ataxia and tonic or tonic—clonic seizure and die by 3-4 weeks after birth
(Matsumoto et al. 1996; Matsumoto and Nagata 1999). Cultured Purkinje cells from
the mice shows abnormal dendritic development and enlarged parallel fiber termi-
nals with many vesicles (Hisatsune et al. 2006). IP;R1 in granule cells, not in
Purkinje cells, is crucial for the outgrowth of the Purkinje cell dendrites. Brain-
derived neurotrophic factor (BDNF) production in cerebellar granule cells induced
by IP;R1-mediated signaling, modifies the parallel fiber-Purkinje cell synaptic
efficacy, resulting in the formation of Purkinje cell dendrites (Hisatsune et al. 2006).

In neurophysiological analysis, long-term depression (LTD) is completely
diminished in cerebellar Purkinje cells (Inoue et al. 1998). However, the effect of
IP;R1 on synaptic plasticity in the hippocampus is a little complicated. A classical
form of LTD induced by sustained low-frequency stimulation is not affected at the
CA3-CA1 synapses (Fujii S et al. 2000), whereas it is diminished at mossy fiber-
CA3 synapses (Itoh et al. 2001). In addition, although paring stimulations of pre- and
postsynaptic sites in a post - > pre order induces homo- and heterosynaptic LTD at
the normal hippocampal CA3-CA1 synapses, the homosynaptic LTD is converted to
long-term potentiation (LTP) and heterosynaptic L'TD is disappeared (Nishiyama
etal. 2000; Nagase et al. 2003). LTP induced by the short tetanus (100 Hz, 10 pulses)
is enhanced in CA1 synapses. Moreover, IP;R1 is indispensable to the induction of
depotentiation and suppression of LTP (Fujii et al. 2000). These results indicated
that IP;R1-mediated Ca*" signaling plays an important role for the regulation of
synaptic plasticity in different ways in each situation.

28.3.2 Opisthotonus (Opt) Mouse

The Opt mouse has a spontaneously generated allele of deletion of exons 43 and
44 in ITPRI that results in an in-frame deletion of residues 1732-1839 (107 amino
acids) in the regulatory domain (Street et al. 1997). Homozygous Opt mice are
small at birth, lack their normal mobility, exhibit seizures 2 weeks after birth, and
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die by 4 weeks of age. The phenotype of Opr mice largely overlaps that of
homozygous ITPRI knockout mice. The recombinant Opt IP;R1 mice showed
reduction in ATP sensitivity compared with wild-type IP;R1 mice, consistent with
the fact that Opr deletion involves the ATP-binding site, yet the recombinant Opt
IP;R1 remains functional (Tu et al. 2002). A strong Ca”* release from intracellular
stores was elicited in the cerebellar Purkinje cells of homozygous Opt mice treated
with the mGluR agonist quisqualate (Street et al. 1997). Nevertheless, Opt IP;R1
expression levels in the brain tissues of heterozygous Opt mice were reduced
compared with those of the wild-type mice, and Opt IP;R1 was almost unde-
tectable in the homozygous Opt mice (Street et al. 1997; Foskett et al. 2010).
Although mechanisms underlying the reduced IP;R1 levels remain to be eluci-
dated, it is presumed that cellular protein quality control mechanisms may rec-
ognize Opt IP;R1 as aberrant and degrade it promptly. Further studies are needed
to clarify the precise mechanisms underlying neurological deficits in Opt mice.

28.3.3 The A18 Mouse

The A18 mouse has a spontaneously generated deletion of 18 nucleotides in exon
36 of ITPRI that results in an in-frame deletion of six amino acid residues (res-
idues 1533-1538; Glu-Ser-Cys-Ile-Arg-Val) in the regulatory domain (van de
Leemput et al. 2007). The homozygous A18 mice show severe neurological
symptoms, small weight at birth, abnormal mobility, and die by 4 weeks of age.
Their phenotype is similar to those of ITPRI knockout and Opt mice (van de
Leemput J et al. 2007; Street et al. 1997; Matsumoto et al. 1996). The functional
significance of the six deleted residues, which are not particularly conserved
among isoforms and species, remains to be examined. As observed in Opt mice,
immunostaining of the cerebellar Purkinje cells and western blotting of the whole
brain lysates revealed that IP3;R1 expression levels were markedly reduced in the
homozygous Al8 mice (van de Leemput et al. 2007). It is interesting that the
recombinant expression of the mutant IP3R1 proteins produces functional ion
channels, including Opt, Al8, and P1059L, but appears to cause disease because of
reduced IP;R1 levels, perhaps due to rapid degradation by cellular quality control
mechanisms. Thus, it will be interesting, in future studies, to investigate the effects
of these mutations not only on ion channel properties but also on the kinetics of
channel biogenesis and turnover.

28.4 CARP and Ataxias

Despite the abundant expression of IPsR1 in Purkinje cells, IPsR 1-mediated Ca®*
release in response to IP3 in these cells is lower than that in other tissues. CARP
may, in part, account for this mechanism. CARP binds to the modulatory domain
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of IP;R1 (residues 1387-1647) and suppresses the binding ability of IP; to IP;R1
(Hirota et al. 2003). In addition, CARP is expressed exclusively in the Purkinje
cells. These results suggest that CARP regulates IP;R1-mediated Ca”* signaling
particularly in the Purkinje cells. Therefore, it would be speculated that the loss of
function of CARP results in an enhanced sensitivity of IP; binding to IP3;R1,
consequently leading to dysregulation of IP;R1-mediated Ca®* signaling in the
Purkinje cells (Fig. 28.1¢).

Interestingly, CARP was identified as the antigen of auto-antibody observed in
a patient with paraneoplastic cerebellar degeneration (Bataller et al. 2004).
Moreover, Turkmen et al. identified a homozygous missense mutation (S100P,
¢.298T > G) in CAS8, which encodes CARP, in affected patients with recessively
inherited ataxia (Turkmen et al. 2009). They exhibited mild mental retardation and
congenital ataxia with quadrupedal gait. Another homozygous missense mutation,
G162R (c.484G > A), was identified in three related Arabian families with ataxia
and mild cognitive impairment without quadrupedal gait (Kaya et al. 2011). A
whole brain MRI showed varying degrees of cerebellar atrophy. Fluorodeoxy-
glucose positron emission tomography revealed hypometabolic cerebellar hemi-
spheres, temporal lobes, and mesial cortex. These families are designated as
cerebellar ataxia and mental retardation with or without quadrupedal locomotion 3
(CAMRQ3, MIM 613227). The reduced levels of SIO0P CARP in cell culture
experiments suggest that the loss of function of CARP caused ataxia. Indeed, in
CAMRQ3, waddles (wdl) mice, harboring a spontaneously occurring 19-base pair
deletion in CAS8, exhibited ataxia and appendicular dystonia without pathological
abnormalities in the central nervous system (Jiao et al. 2005).

28.5 Deranged IP;R-Mediated Ca** Signaling in Ataxias
Caused by Expanded Polyglutamine (polyQ) Stretches

SCA type 2 (SCA2) and type 3 (SCA3), polyQ diseases, are autosomal dominantly
inherited ataxias caused by the expansion of CAG repeats that encode abnormally
expanded polyQ in the ataxin-2 (ATXN2) and ataxin-3 (ATXN3) proteins,
respectively (Zoghbi and Orr 2000; Williams and Paulson 2008; La Spada and
Taylor 2010; Costa Mdo and Paulson 2012). The diseases are progressive in nature
and generally feature degeneration of the cerebellum, brainstem, and spinocere-
bellar tracts. Mutant polyQ proteins including mutant ATXN2 and ATXN3 are
prone to undergo a conformational change that favors f sheet-rich structures and to
aggregate in cells, leading to the formation of neuronal inclusion bodies, a prominent
pathological hallmark of polyQ diseases (Muchowski and Wacker 2005; Williams
and Paulson 2008; Nagai et al. 2007; Paulson et al. 1997). PolyQ expansions usually
act in a dominant toxic manner associated with altered interactions with other
proteins, resulting in altered cellular processes such as perturbed proteostasis,
transcriptional dysregulation, oxidative stress, impaired neurotransmission,
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insufficient trophic support, and aberrant cellular excitability (Williams and Paulson
2008; Costa Mdo and Paulson 2012; Takahashi et al. 2010). Increasing evidence
suggests that deranged neuronal Ca”" signaling plays a role in the pathogenesis of
polyQ diseases (Chen et al. 2008; Liu et al. 2009). Cerebellar Purkinje cells seem to
be particularly vulnerable to fluxes in cytosolic Ca** levels. Several neuronal genes
abundantly expressed in Purkinje cells that are involved in Ca®* signaling or
homeostasis are downregulated in the cerebellum of SCA1 mutant mice before the
occurrence of motor deficits or pathology (Serra et al. 2004; Lin et al. 2000). Unlike
SCA15, other SCAs are affected by exaggerated Ca®" flux but not by suppressed
cytosolic Ca”* signaling. Among these SCAs, to date, only ATXN2 and ATXN3
have been reported to directly affect IP;R1 function.

28.5.1 SCA2

SCAZ2 is clinically characterized by progressive cerebellar ataxia of gait, limbs,
and speech associated with slow saccades, early hyporeflexia, severe tremor of
postural or action type, peripheral neuropathy, cognitive disorders, and other
multisystemic features (Lastres-Becker et al. 2008; Magana et al. 2012). Cere-
bellar Purkinje cells are predominantly affected in SCA2. The disease-causing
protein ATXNZ2 is expressed ubiquitously. Increasing evidence suggests that
ATXN?2 is involved in multiple cellular processes including RNA post-transcrip-
tional and translational regulation, stress-granule formation, endocytosis, cyto-
skeletal reorganization, and Ca”*-mediated signaling (Albrecht et al. 2004; van de
Loo et al. 2009; Neuwald and Koonin 1998; Satterfield and Pallanck 2006; Las-
tres-Becker et al. 2008; Ralser et al. 2005a; Ralser et al. 2005b; Shibata et al. 2000;
Kozlov et al. 2010; Ciosk et al. 2004; Satterfield et al. 2002; Liu et al. 2009),
although the precise physiological function of ATXN2 is unknown (Pulst et al.
2005). The mechanisms underlying Purkinje cell degeneration in SCA2 are also
poorly understood.

The presence of ATXN2 in ER suggests its participation in intracellular Ca®*
signaling pathways. Supporting this hypothesis, pull-down and co-immunopre-
cipitation assays revealed that mutant, but not wild-type, ATXN2 (58Q) specifi-
cally binds to the cytosolic C-terminal region (residues 2627-2749) of IP;R1 (Liu
et al. 2009). Association of mutant ATXN2 (58Q) with the receptor increases the
sensitivity of IP;R1 to activation by IP3 in bilayer reconstitution experiments
(Fig. 28.1d). In Ca®* imaging experiments, a significant increase in Ca”* release
from ER through IP3;R1 was observed in primary Purkinje cells cultured from
SCA2 transgenic mice (58Q), which express human ATXN2 with 58 CAG repeats
under the control of the Purkinje cell-specific promoter (Huynh et al. 2000).
Ryanodine or dantrolene, inhibitors of ryanodine receptors (RyR), alleviated the
adverse effects of mutant ATXN2 such as excessive Ca®* release and glutamate-
induced cell death in 58Q Purkinje cell cultures (Liu et al. 2009). In addition, long-
term feeding of SCA2 mice (58Q) with dantrolene ameliorated age-dependent
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motor discoordination and loss of Purkinje cells. More recently, long-term sup-
pression of IPsR1-mediated Ca** signaling by viral expression of the inositol
1,4,5-phosphatase enzyme in the Purkinje cells of SCA2 transgenic mice (58Q)
rescued age-dependent dysfunction in the firing pattern of SCA2 Purkinje cells and
motor deficits and cell death in SCA2 mice (Kasumu et al. 2012). These findings
support the idea that excitotoxic Ca** signaling through IP;R1 plays a key role in
SCA2 pathogenesis.

28.5.2 SCA3

SCA type 3 (SCA3), also known as Machado—Joseph disease, is the most common
inherited SCA and one of the nine known polyQ diseases (Costa Mdo and Paulson
2012; Tsuji et al. 2008; Paulson 2012). SCA3 is clinically characterized by pro-
gressive cerebellar ataxia and variable findings including a dystonic-rigid syn-
drome, a Parkinsonian syndrome, or a combined syndrome of dystonia and
peripheral neuropathy. The most affected brain regions are the dentate and pontine
nuclei, internal portion of globus pallidus, substantia nigra, subthalamic nucleus,
and spinocerebellar tracts (Stevanin et al. 2000; Yamada et al. 2008; Yamada et al.
2000). The cerebellar cortex is relatively spared in SCA3 compared with other
SCAs. The disease-causing protein ATXN3 is ubiquitously expressed and abun-
dant in cerebellar Purkinje cells. ATXN3 is a 43-kDa cytosolic protein containing
the amino-terminal Josephin domain and three ubiquitin-interacting motifs and
functions as a deubiquitinating enzyme (Costa Mdo and Paulson 2012). Similar to
other SCAs, the precise mechanisms of SCA3 remain poorly understood.

In SCA3, deranged Ca®" signaling has also been implicated in pathogenesis
(Bezprozvanny 2011). Inhibition of Ca**-dependent protease calpain suppressed
aggregation of mutant ATXN3 in transfected cells (Haacke et al. 2007). In a SCA3
fly model, knockdown of expression of PICK 1, which is a regulator of traffic of ion
channels involved in Ca>" homeostasis (Chung et al. 2000; Hanley 2006; McGurk
and Bonini 2012), suppressed external eye degeneration, insoluble aggregations,
and inclusions. Mutant, but not wild-type, ATXN3 specifically binds to the
cytosolic C-terminal region of IP;R1 (Chen et al. 2008), as cases in mutant hun-
tingtin (mHtt) and mutant ATXN2 (Fig. 28.1d and e). Association of mutant
ATXN3 with the receptor increases the sensitivity of IP3R1 to activation by IP3 in
bilayer reconstitution and Ca®* imaging experiments. In addition, long-term
feeding of SCA3-YAC-84Q transgenic mice with dantrolene ameliorated gae-
dependent motor deficits and prevented neuronal cell loss in the pontine nuclei and
substantia nigra regions. These findings indicate that deranged IP;R1-mediated
Ca®* signaling may play an important role in SCA3 pathogenesis.
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28.6 Deranged IP3;R-Mediated Ca** Signaling in HD

HD is a dominantly inherited neurodegenerative disorder caused by polyQ
expansions in Htt, which primarily results in the selective degeneration of the
striatal medium spiny neurons (MSNs) (Bonelli and Beal 2012). The disease is
clinically characterized by movement disorders, cognitive decline, and psychiatric
symptoms. A pathological hallmark of HD is cytoplasmic and nuclear aggregates
containing htt and other proteins. Although the physiological function of wild-type
htt is unknown, its amino acid sequence indicates that it possesses HEAT repeats,
protein interaction domains, suggesting that it may function as a scaffold protein
(Bonelli and Beal 2012). Several lines of evidence indicate that a toxic gain of
function of mHtt accounts for HD pathogenesis, although the molecular mecha-
nisms that underlie this pathogenesis and selective neurodegeneration remain
unknown.

Deranged Ca®* signaling has also been implicated in HD pathogenesis (Bez-
prozvanny 2011; Bezprozvanny 2009). mHtt binds specifically to the C-terminal
region of IP3R1 (Tang et al. 2003; Tang et al. 2005). A comprehensive high-
throughput screening confirmed binding of mHtt to IP;R1 (Kaltenbach et al.
2007). Mutant, but not wild-type, Htt sensitizes IP3R1 activation by IP3 in planar
lipid bilayer experiments and facilitates IP;R1-mediated intracellular Ca”" release
in rat striatal MSNs (Tang et al. 2003) (Fig. 28.1e). The effect of mHtt on IP3R1 is
facilitated when mHtt is associated with Htt-associated protein 1 (HAP1), which
has also been shown to interact with IP;R1 (Tang et al. 2004), suggesting that
HAPI plays an important role in functional interactions between Htt and IP;R1.
Specific inhibitors of IP3R1, 2-aminoethoxydiphenyl borate and enoxaparin, pro-
vided protection in the same model (Tang et al. 2005). Genetic knockdown and
chemical inhibition of IP;R1 also reduced mHtt aggregation in cultured cells
(Bauer et al. 2011). Expression of the GFP-fused C-terminal fragment of IP3R1 in
MSNs from HD transgenic mice stabilized exaggerated Ca®" signaling and pro-
tected HD MSNs from glutamate excitotoxicity (Tang et al. 2009). Infection of
adeno-associated viruses expressing the recombinant IP;R1 C-terminal fragment
in the striatum ameliorated motor deficits and loss of MSNs in a HD mouse model
(Tang et al. 2009). In addition, long-term feeding of HD mice with dantrolene, a
relevant Ca®* signaling stabilizer, alleviated motor deficits, formation of nuclear
inclusion bodies, and loss of MSNs (Chen et al. 2011). Thus, deranged IP;R1-
mediated Ca** signaling also plays an important role in HD pathogenesis.

ER stress has been implicated in the pathogenesis of numerous neurodegen-
erative diseases including HD. It was demonstrated that ER stress induced IP3R1
dysfunction through an impaired interaction of IP;R1 with an ER chaperone
GRP78, which positively regulates IP;R1 tetrameric assembly in an energy
dependent manner (Higo et al. 2010). Stabilizing Ca®* signaling by targeting
IP;R1 appears as an attractive therapeutic strategy for HD.
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28.7 Deranged IP;R-Mediated Ca®* Signaling in AD

AD is the most common form of age-related dementia, clinically characterized by
a decline in memory, particularly in short-term and working memory, apathy,
depression, impaired judgment, and changes in behavior (Forman et al. 2004;
Brookmeyer et al. 2007). The key pathological hallmarks of AD are accumulation
of extracellular amyloid 8 (Af) plaques, intracellular neurofibrillary tangles, and
neuronal loss accompanied by extensive neurodegeneration of the median tem-
poral lobe, parietal lobe, selective regions of the frontal cortex, and cingulate gyrus
(Wenk 2003; Giannakopoulos et al. 2009; Forman et al. 2004). Mutations in
presenilins (PS1 and PS2) and amyloid precursor protein (APP) cause most early-
onset, autosomal dominant familial cases of AD (Tanzi and Bertram 2005).

Numerous lines of evidence indicate that altered Ca** signaling also plays an
important role in AD pathogenesis. Af oligomers can form Ca®*-permeable
channels in neuron plasma membranes (Arispe et al. 1993; Lee et al. 2002; Ku-
chibhotla et al. 2008). AS oligomers also perturb neuronal Ca®* homeostasis
through modulation of the activities of N-methyl-p-aspartic acid receptors (De
Felice et al. 2007; Shankar et al. 2007), AMPA receptors (Hsieh et al. 2000), and
P/Q-type voltage-gated Ca®* channels (Nimmrich et al. 2008). Another key con-
nection between Ca®* signaling and AD pathogenesis is based on studies dem-
onstrating that mutations in PSs found in familial AD cause dysregulation of Ca®*
signaling (Ito et al. 1994; Leissring et al. 1999; Stutzmann et al. 2004; Stutzmann
et al. 2006; Stutzmann 2005; Yoo et al. 2000; LaFerla 2002). Despite some dif-
ferences in the proposed mechanisms, most studies have shown that various PS
mutations result in exaggerated Ca®" release from ER through IPsR1 or RyR
(Leissring et al. 1999; Cai et al. 2006; Cheung et al. 2008; Stutzmann et al. 2006;
Chan et al. 2000; Rybalchenko et al. 2008; Chakroborty et al. 2009; Smith et al.
2005; Berridge 2010; Supnet and Bezprozvanny 2011) (Fig. 28.1f). Exaggerated
Ca”" signaling in AD may negatively affect reactive oxygen species generation,
mitochondrial function, gene transcription, and Af production. Aged neurons are
particularly vulnerable to cytosolic Ca** overload because of their lower capacity
of buffering Ca** (reviewed in Supnet and Bezprozvanny 2011; Berridge 2010;
Hermes et al. 2010).

28.8 Future Perspectives

As stated above, increasing evidence indicates that deranged IP;R 1-mediated Ca**
signaling has been implicated in neurological diseases including AD, HD, and
SCAs. Despite many advances in understanding disease mechanisms, no pre-
ventive treatment exists for these fatal neurological disorders. In SCA1S, point
mutations as well as large deletion mutations in ITPR] cause diseases because of
reduced IP3;R1 levels, perhaps due to rapid degradation by cellular quality control
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mechanisms. On the other hand, increasing evidence supports the idea that
exaggerated Ca”" influx through IP3R 1 plays an important role in pathogenesis of
other neurological diseases, such as AD, HD, and some SCAs. Neurons abundantly
expressing IPsR1 are vulnerable to alterations of intracellular Ca®* homeostasis,
particularly exaggerated Ca®* signaling. Understanding the molecular mechanisms
underlying neurodegeneration caused by reduced IP;R1 levels or exaggerated
IP;R 1-mediated Ca®* signaling will provide new insights into disease pathogenesis
and eventually the development of new therapeutic approaches. Modulation of
Ca”" signaling by targeting IP;R1 appears as an attractive therapeutic strategy for
these neurological disorders.
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