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Abstract

In Lewy body disease (LBD) such as dementia with LBs and Parkinson’s disease, several
lines of evidence show that disrupted proteolysis occurs. p62/SQSTMI1 (p62) is highly
involved with intracellular proteolysis and is a component of ubiquitin-positive inclusions
in various neurodegenerative disorders. However, it is not clear whether p62 deficiency
affects inclusion formation and abnormal protein accumulation. To answer this question,
we used a mouse model of LBD that lacks p62, and found that LB-like inclusions were
observed in transgenic mice that overexpressed o-synuclein (Tg mice) with or without the
p62 protein. p62 deficiency enhanced o-synuclein pathology with regard to the number of
inclusions and staining intensity compared with Tg mice that expressed p62. To further
investigate the molecular mechanisms associated with the loss of p62 in Tg mice, we
assessed the mRNA and protein levels of several molecules, and found that the neighbor of
the breal gene (MBr/), which is functionally and structurally similar to p62, is increased in
Tg mice without p62 compared with control Tg mice. These findings suggest that p62 and
NBRI1 affect the pathogenesis of neurodegenerative diseases through the cooperative
modulation of o-synuclein aggregation.

* These authors contributed equally to the
manuscript.

doi:10.1111/bpa.12214

INTRODUCTION

Lewy body disease (LBD) including dementia with LBs and Par-
kinson’s disease (PD) is pathologically characterized by the pres-
ence of intracellular inclusions called LBs. o-Synuclein has been
identified as a component of LBs (41), and the duplication and
triplication of the o-synuclein gene are found in both sporadic and
early onset forms of PD (40). Mutations (A30P and A53T) in the
o-synuclein gene are linked to autosomal dominant forms of PD
(20, 31). Originally, o-synuclein is a proteinase K (PK)-soluble
protein that localizes at presynaptic terminals; however,
o-synuclein becomes resistant to PK and widely deposited
throughout the brain of patients with LBD (19, 42). These findings
suggest that o-synuclein is significantly involved in the pathogen-
esis of both familial and sporadic cases of LBD.

a~Synuclein is physiologically processed by two intracellular
degradation systems, including the ubiquitin—proteasome and
autophagy—lysosome systems. In case of o-synuclein overload,
the autophagy-lysosome system, including chaperone-mediated
autophagy, predominantly aids in the degradation of excess
a-synuclein (6, 22, 46). Thus, it is possible that dysfunction of
intracellular degradation system results in the up-regulation of
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o-synuclein expression and contributes to abnormal protein accu-
mulation. Indeed, several lysosomal-related genes were identified
as a causative mutation in familial PD, including leucine-rich
repeat kinase 2 and adenosine-3-phosphate 13A2. Furthermore,
PD has been genetically linked to rare lysosomal storage diseases,
including Gaucher’s disease (25) and Sanfilippo syndrome (47).
p62/SQSTM1/sequestosome 1 (referred to as p62) is a multi-
functional protein that is strongly associated with the intracellular
degradation system. P62 knockout (KO) mice exhibit mature-
onset obesity, insulin and leptin resistance (37). Pathologically,
loss of p62 results in the accumulation of hyperphosphorylated tau
and insoluble K63-linked polyubiquitin chains (33, 48). p62 con-
tains a ubiquitin-associated (UBA) domain at the C-terminus that
enables its interaction with ubiquitinated and misfolded proteins.
Additionally, p62 possesses a Phox and Bemlp (PB1) domain at
the N-terminus and a LC3 interacting region, suggesting that p62
is able to interact with proteasome components and autopha-
gosomal membranes (29, 38). Thus, it has been suggested that p62
can efficiently degrade ubiquitinated and misfolded proteins
through the proteasome and autophagy-lysosome systems. It has
been reported that p62 is an inducible protein that easily aggre-
gates under several pathological conditions, such as oxidative
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stress and neurodegeneration (1, 11, 27). Accordingly, dysfunction
of the intracellular degradation systems induces p62 aggregation
in vivo (2, 16). Furthermore, loss of p62 suppressed ubiquitin-
positive inclusions in neurons of brain-specific autophagy-
deficient mice (17). Additionally, ubiquitin- and p62-positive
protein aggregates were abrogated in Atg8 and p62 double-mutant
flies (26). These findings suggest that p62 may be responsible for
the formation of cytoplasmic inclusions and abnormal protein
accumulation.

In this study, we used transgenic (Tg) mice overexpressing
o~-synuclein with a A53T mutation as a model for LBD. We
crossed the Tg mice with p62 KO mice to examine the involvement
of p62 in abnormal ¢-synuclein pathology. Immunohistochemical
analyses showed that p62 deficiency enhanced o-synuclein pathol-
ogy, as shown by an increase in inclusion number and staining
intensity. We assessed several genes and proteins related to stress
response and proteolysis. These data revealed that the expression
of neighbor of brcal gene (NBR1), which is a functional homo-
logue to p62, was increased in p62-deficient mice. '
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Figure 1. Characterization of p62 protein deficiency in an animal model
of Lewy body disease. A. Breeding strategies to generate p62 defi-
ciency in a-synuclein transgenic (Tg) mice. Initially, heterozygous
a-synuclein Tg and homozygous p62-knockout (KO) mice were crossed.
Next, littermates and heterozygous p62-deficient mice were mated to
generate Tg mice without p62 (Tg/KO), of which four groups were used
in this study (black circles). B. Immunoblot analysis confirmed that
a-synuclein was overexpressed in Tg and Tg/KO mice and that p62

ody weight (g)

Tanji et a/

MATERIALS AND METHODS

Animals and experimental design

o-Synuclein Tg mice have been widely used as an animal model
for LBD (7, 14, 21, 23, 24, 34, 36, 45). To create this LBD model
in a p62-deficient background, we used mice overexpressing
human o-synuclein with the A53T mutation under the prion pro-
moter (Jackson Laboratories, Bar Harbor, ME, USA) (7) and p62
KO mice with exon 14 deleted as previously described (17). The
p62 KO mice lacked abnormal tau pathology. a-Synuclein Tg and
p62 KO mice were backcrossed with C57BL/6J mice for at least 10
generations. First, heterozygous ¢-synuclein Tg mice were bred
with p62 KO mice to generate a-synuclein®/p62*~ mice. Second,
o-synuclein®/p62*~ mice were inbred to generate wild type,
p62 KO, o-synuclein”/p62** and o-synuclein™/p627 mice
(Figure 1A). Hereafter, wild-type, p62 KO, a-synuclein”/p62**
and o-synuclein*/p62~ mice are simply referred to as WT, KO,
Tg and Tg/KO mice, respectively. All comparisons were made
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signals were diminished in KO and Tg/KO mice (9 weeks of age, n =6
per group). The molecular mass is indicated on the left side of the panel.
B-Actin was used as a loading control. C. A quantitative analysis shows
that human o-synuclein is expressed in Tg and Tg/KO mice and that p62
is absent in KO and Tg/KO mice. The values of Tg mice are defined as
100%. D. The weight changes of Tg (black circle) and Tg/KO mice (grey
circle) are shown (mean + standard deviation, n = 6-8 per group).
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among littermates to minimize confounding effects by different
genetic backgrounds. Mice were housed with a light/dark cycle of
12 h and were given food and water ad libitum. The experimental
protocol was approved by the Institutional Animal Care and Use
Committee at the Hirosaki University Graduate School of Medi-
cine in Japan. Tg mice were genotyped using real-time polymerase
chain reaction (PCR) analysis (forward primer, 5-TGT AGG CTC
CAA AAC CAA GG-3'; reverse primer, 5-TAT GCC TGT GGA
TCC TGA CA-3’), and verified by backcrossing. Conventional
PCR was used for p62 genotyping (primer pair for wild type,
forward, 5'-CTT ACG GGT CCT TTT CCC AAC-3'; reverse,
5-TCC TCC TTG CCC AGA AGA TAG-3'; primer for p62 KO,
forward; 5-CTG CAT GTC TTC TCC CAT GAC-3"; reverse,
5-TAG ATA CCT AGG TGA GCT CTG-3). Mice were
transcardially perfused with phosphate-buffered saline. The brain
was removed, and the right hemisphere was fixed with 4% para-
formaldehyde for 48 h. After dehydrating through a graded ethanol
series, the right hemisphere was embedded in paraffin and cut into
4-um thick sections. The left hemisphere was frozen at —80°C for
subsequent biochemical analyses.

Antibodies and immunohistochemistry

Rabbit antibodies against Keap! (ProteinTech Group, Inc.,
Chicago, IL, USA), p62 (MBL, Nagoya, Japan), NBR1 (Sigma, St.
Louis, MO, USA and Santa Cruz Biotechnology, Santa Cruz, CA,
USA), NAD(P)H quinone oxidoreductase 1 (NQO1) (Sigma), LC3
(Sigma and MBL), ubiquitin (DAKO, Glostrup, Denmark),
UBQLN1 (Lifespan Biosciences, Seattle, WA, USA),
phosphorylated o-synuclein (Abcam, Cambridge, UK) and B-actin
(Sigma) were used in this study. Mouse antibodies against p62
(BD Biosciences, Franklin Lakes, NJ, USA), SNAP2S (Chemicon,
Temecula, CA, USA), synaptophysin (DAKO), human
o-synuclein (LB509; Zymed, South San Francisco, CA, USA),
human and mouse o-synucleins (4D6; GeneTex, Irvine, CA, USA)
and phosphorylated o-synuclein (pSyn#64; Wako, Osaka, Japan)
were also used.

The sections were dehydrated and pretreated with heat retrieval
using an autoclave for 10 minutes in 10 mM citrate buffer (pH 6.0)
for rabbit anti-Keap1 and anti-NBR1 antibodies. The sections were
then subjected to immunohistochemical processing using the
avidin-biotin-peroxidase complex method with diaminobenzidine
(Sigma). In addition, the sections were counterstained with
hematoxylin. For the staining of presynaptic PK-resistant
o-synuclein, sections were pretreated with PK (Gibco BRL,
Gaithersburg, MD, USA; 50 pg/mL) in a PK buffer containing
10 mM Tris-HCI, pH 7.8, 100 mM NaCl, 0.1% Nonidet-P40 at
37°C for 5§ minutes. The total number of inclusions immunostained
with anti-phosphorylated o-synuclein was quantified in contigu-
ous sections. Immunohistochemical studies were performed at 9
weeks of age (n= 6 per group).

Quantitative reverse transcription-polymerase
chain reaction (qRT-PCR)

Total RNA was extracted from the right hemisphere of the brain
using the RNeasy lipid tissue mini kit (Qiagen, Hilden, Germany)
at 9 weeks of age (n =3 per group). cDNA was synthesized from
1 pg of total RNA using the PrimeScript® II first-strand ¢cDNA
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synthesis kit (Takara Bio Inc., Otsu, Japan). An aliquot of cDNA
was used for gene expression analysis with the SYBR® Premix Ex
Taq™ 1I (Perfect Real Time) (Takara Bio Inc.) and CFX Real-
Time PCR Detection System (Bio-Rad, Hercules, CA, USA) using
the following primer sets: heme oxygenase-1 (Ho-1) (5'-CCA
GCA ACA AAG TGC AAG ATT C-3'; 5-TCA CAT GGC ATA
AAG CCCTAC AG-3"), Ngol (5-GTC ATT CTC TGG CCA ATT
CAG AGT-3; 5-TTC CAG GAT TTG AAT TCG GG-3%),
glutamate-cysteine ligase catalytic subunit (Gele) (5-AAA ATG
CGG AGG CAT CAA-3"; 5-ATA TGC TGC AGG CTT GGA
AT-3%), p62 (5-AGC TGC CTT GTA CCC ACA TC-3"; 5'-CAG
AGA AGC CCA TGG ACA G-3"), Cyclophilin A (5-ATG CTG
GAC CCA ACA CAA AT-3%; 5-TCT TTC ACT TTG CCA AAC
ACC-3"), Keapl (5"-CAC AGC AGC GTG GAG AGA-3"; 5-CAA
CAT TGG CGC GAC TAG A-3"), Lampl (5'-CCT ACG AGA
CTG CGA ATG GT-3"; 5-CCA CAA GAA CTG CCATTTTTC-
3), Cathepsin D (5-CCC TCC ATT CAT TGC AAG ATA C-3%; 5'-
TGC TGG ACT TGT CAC TGT TGT-3"), transcription factor EB
(T/EB) (5'-GAG CTG GGA ATG CTG ATC C-3%; 5-GGG ACT
TCT GCA GGT CCT T-3%); Rab7ll (5-GCT GCA GCT CTG
GGA TAT TG-3%; 5'-TAG TAG AGT CGT GTC ATG GAT GTG-
3"y and Nbrl (5-TCA ACA GGA CTC GCA AAC AG-3'; 5"-ATG
CTG CTC CCA TTG TGG-3'). Cyclophilin A was used for
normalization.

Immunoblot analysis

Western blot analysis was performed as previously described (43).
For total cell lysate, we used a lysis buffer with 4% sodium dodecyl
sulfate (SDS; 75 mM Tris-HCI, pH 6.8, 4% SDS, 25% glycerol,
5% B-mercaptoethanol) and passed sample through 21 gauge
needle attached on a I mL syringe. For an experiment using
insoluble sample of detergent, samples were weighted and lysed
with 10-fold volume of Tris-based buffer (pH 7.4) containing 0.1%
Triton X-100 on ice. After homogenization with a pestle 20 times,
they were passed 10 times through 21 gauge needle attached on a
1 mL syringe. Lysates were incubated for 5 minutes on ice, and
centrifuged at 12 000 % g for 10 minutes. Supernatant was used as
a soluble fraction. The pellets were resuspended with 8 M urea and
sonicated (insoluble fraction). Signal detection was performed
according to the protocol provided with the ECL or ECL prime
detection systems (Amersham Pharmacia Biotech, Piscataway, NJ,
USA). We performed each immunoblot analysis a minimum of
three times, and all data were quantified and collected.

Animal behavioral testing

The Morris water maze

Spatial learning was assessed in a round tank of water (0.95 m in
diameter) at 30°C. An escape platform (10 cm in diameter) was
placed 1 cm below the water surface. A camera (Primetech Engi-
neering Corp., Tokyo, Japan) was mounted above the maze and
attached to a computer running the Smart software (Primetech
Engineering Corp.). The training paradigm for the hidden platform
version of the Morris water maze consisted of two trials per day for
five consecutive days. The time taken to reach the platform
(latency to escape) was recorded for each trial. The time limit was
120 s, and the intertrial interval was 1 h. If the animal could not
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find the platform, it was placed on the platform for 20 s. After
removing the platform, the probe trial was carried out 2 h after the
completion of training on the fifth day. The latency to reach the
former location of the platform and the percentage of total time
spent in each quadrant were recorded.

Forced swim test

Immobility time was analyzed using a forced swim test. Animals
were individually placed in a transparent acrylic cylindrical beaker
(height: 25 cm, diameter: 18 cm) containing 4600 mL of clear
water at 25 + 1°C for 6 minutes. A mouse was judged to be immo-
bile when it remained passively floating in the water for more than
2 s. Immobility time was quantified using a Forced Swim Scan
software (Clever Sys Inc., Reston, VA, USA).

Quantitative analysis and statistical analysis

A semi-quantitative analysis of protein levels was performed using
the Imagel software provided by the NIH. All data were repre-
sented as the mean + standard deviation. The statistical signifi-
cance was evaluated using one-way analysis of variance (ANOVA)
with Bonferroni’s post hoc test to analyze four genotypes and
Student’s #-test to analyze two genotypes. A probability value of
less than 0.05 (P < 0.05) was considered to be significant.

RESULTS

Characterization of o-synuclein Tg mice with
or without p62

To test the possibility that p62 is responsible for the formation of
cytoplasmic inclusions and abnormal protein accumulation, we
generated mice that overexpressed human o-synuclein (Tg) on a
p62-deficient background (Figure 1A). First, we crossed Tg mice
with p62 KO mice. Next, littermates with or without p62 and/or
human o-synuclein were selected by genotyping and crossed to
generate Tg mice lacking p62. Consequently, littermates with or
without endogenous p62 and/or human a-synuclein expression
were born at the expected Mendelian ratio. For our studies, we
used WT, KO, Tg and Tg/KO mice.

We confirmed that o-synuclein was robustly expressed in the
brains of Tg mice and Tg/KO mice (Figure 1B). We used a human
o-synuclein-specific antibody, LB509, to confirm that human
o-synuclein expression was present only in Tg and Tg/KO mice.
There were no differences in the endogenous and human
o-synuclein levels between the Tg and Tg/KO mice. We also
confirmed that p62 protein levels were diminished in the brains of
KO and Tg/KO mice. Interestingly, the amount of p62 was slightly
higher in Tg mice than it was in WT mice (Figure 1C). An increase
of p62 was also supported by immunohistochemical studies that
showed an increase in p62 immunoreactivity in Tg mice compared
with WT mice (Figure 2A). o-Synuclein expression was mainly
observed in the presynapses in the brains of WT and p62 KO mice;
however, additional staining of a-synuclein was observed in the
cytoplasm and presynapses in the brains of Tg and Tg/KO mice
(Figure 2B). Consistent with previous papers (28, 37), KO mice
exhibited mature-onset obesity. As they aged, Tg/KO mice had a
heavier average body weight than did Tg mice (Figure 1D). The

Tanji et al

majority of Tg mice remained healthy until at least 70 weeks of
age. Tg and Tg/KO mice were behaviorally indistinguishable and
displayed lower food intake and activity at the end stage of the
disease.

Tg/KO mice exhibit an increase in
phosphorylated o-synuclein staining and
inclusion number compared with Tg mice

Similar to the human pathological conditions, there are two types
of abnormal o-synuclein in the brains of Tg mice (7, 42), including
phosphorylated a-synuclein (P-syn) and PK-resistant o-synuclein
(PK-syn). Immunohistochemical analyses showed that P-syn is
observed in both Tg/KO and Tg mice (Figure 3A). We compared
the number of P-syn-positive inclusions in the thalamus of Tg and
Tg/KO mice. Quantitative data indicated that the number of inclu-
sions was higher in Tg/KO mice compared with Tg mice
(Figure 3B). Furthermore, the intensity of P-syn staining was
increased in the hippocampus and cerebral cortex of Tg/KO mice
compared with Tg mice (Figure 3C). Unlike human pathological
conditions, p62 was not localized in the cytoplasmic inclusions
in the brains of Tg mice. Immunohistochemical studies
demonstrated that PK treatment abolished normal o-synuclein
immunoreactivity, and PK-syn was found in the presynapses of the
brain of both Tg and Tg/KO mice (Figure 3D). Western blot analy-
sis verified that P-syn signal intensity was higher in Tg/KO than Tg
mice using two kinds of antibodies against P-syn (Figure 3E).
Furthermore, we fractionated samples of Tg and Tg/KO mice by
buffer with 0.1% Triton X-100 detergent, and found that insoluble
P-syn level was increased in Tg/KO compared with Tg mice
(Figure 3F). Thus, p62 deficiency modulates o-synuclein pathol-
ogy with regard to P-syn staining intensity, the number of P-syn
inclusions and solubility.

Behavioral tests revealed a longer immobility
time for p62-deficient mice

Given the presynaptic aggregation of PK-syn in the hippocampus
of Tg and Tg/KO mice, we sought to determine whether memory
function was also affected in these mice. We performed the Morris
water maze test using mice at a younger age (9 weeks old) to
exclude differences in body weight. The average weight was com-
parable between Tg and Tg/KO mice (21.1 g in Tg, 22.0g in
Tg/KO) at 9 weeks of age. During the training phase of the Morris
water maze test, WT and Tg mice showed a gradual decrease in
escape latency over time; however, KO and Tg/KO mice exhibited
longer escape latencies (Supporting Information Video Clip S1
and S2). When the platform was removed, 80% of WT mice and
70% of Tg mice found the platform location. In contrast, less than
50% of KO and Tg/KO mice found the platform location. KO and
Tg/KO mice took a longer time to reach to the platform location
(Figure 4A) and spent less time in the target quadrant (Figure 4B)
than did WT mice. The lower rate of platform crossing in the KO
mice was due to their immobility (Figure 4C,D), which is consist-
ent with previous results showing that KO mice exhibited immo-
bility during training and probe trials (33). During only the first
minute of a forced swim test, KO mice showed a significantly
increased immobility that lasted longer than 2 s when compared
with WT mice (Figure 4E,F). Thereafter, the time course for

Brain Pathology s« (2014) ee—ee
© 2014 International Society of Neuropathology

185



Tanji et al

Figure 2. p62 and a-synuclein staining in
wild-type (WT), knockout (KO), Tg and Tg/KO
mice. A. Immunohistochemical analysis shows
that p62 immunoreactivity is observed in WT and
Tg mice but not in KO mice (9 weeks of age,

n =6 per group). Bar = 20 um. B. Human and
mouse a-synuclein is strongly expressed in the
presynapse and cytoplasm of cortical neurons in
Tg and Tg/KO mice. Bar = 10 pm.

floating behavior (the percentage of immobility) was similar
between groups. There was no significant difference between
Tg/KO and WT mice. These results suggest that p62 plays a role in
maintaining neurological functions, such as stress responses and
motivation to escape.

Increased levels of the functional homologue,
NBR1, in p62 KO and Tg/KO mice

To analyze the molecular mechanisms associated with the loss of
p62 on Tg mice, we performed quantitative RT-PCR analysis using
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p62 staining

primers for genes related to the stress response and proteolysis
(Figure 5). Consistent with the genotype results, the p62 mRNA
level was diminished in KO and Tg/KO mice. Keapl is a binding
partner of p62 and functions as a sensor for noxious stimuli such
as oxidants and electrophiles. The mRNA level of Keapl appeared
to be different between the four groups; however, the data were not
statistically significant (P = 0.069). Previous papers have reported
that autophagy-deficient mice display a higher expression of
detoxifying enzymes, such as Ho-1, Ngol and Gcle (18). There
were no differences in the mRNA levels of these enzymes among
the four groups. Recent evidence indicates that o-synuclein
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A P-syn staining

P-syn staining

Figure 3. The effect of p62 deficiency on abnormal a-synuclein expres-
sion. A. Cytoplasmic inclusions are positive for phosphorylated
a-synuclein (P-syn) in the thalamus of Tg and Tg/knockout (KO) mice.
Bar = 20 um. B. A quantitative analysis shows that the number of cyto-
plasmic inclusions is significantly increased in Tg/KO mice when com-
pared with Tg mice (9 weeks of age, n = 6 per group). The groups differed
significantly [analysis of variance (ANOVA), A3, 11) = 160.81, P< 0.01].
C. P-syn staining is observed in the neurons of the cerebral cortex and
hippocampus in Tg and Tg/KO mice. An increased staining intensity is
observed in Tg/KO mice compared with Tg mice. Bar = 500 um. D. No

overexpression causes dynamic changes in the autophagy—
lysosomal system. Therefore, we assessed levels of 7fEB, a major
transcriptional regulator for this system (39), lysosomal enzymes
(Lampl and cathepsin D), molecules responsible for membrane
trafficking (Rab7lIl) and selective autophagy markers (Nbrl).
Among these genes, only the Nbr! mRNA levels were significantly
different (P < 0.01) between the four groups. Consistent with this
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obvious differences in proteinase K-resistant a-synuclein (PK-syn) are
found between Tg and Tg/KO mice. Bar = 250 um. E. P-syn level is
significantly increased in Tg/KO mice compared with Tg mice. Ratio of
P-syn to B-actin was calculated, and the values of Tg mice are defined as
1.0. The groups differed significantly [ANOVA, F(3,11) = 147.1, P< 0.01].
F. Triton X-100 soluble and insoluble samples were prepared from Tg and
Tg/KO mice (3 weeks of age, n = 2 per Tg and Tg/KO groups). Insoluble
P-syn level is increased in Tg/KO mice compared with Tg mice. P-syn
levels were normalized by total synuclein, and the values of Tg mice were
defined as 1.0 in a soluble or insoluble sample.

result, the NBR1 protein levels were significantly increased in
mice lacking p62 compared with mice with p62 (P <0.05)
(Figure 6A,B). Additionally, Keapl protein levels were also sig-
nificantly different among the four groups at the protein level.
There were no alterations in NQOI, synaptic proteins and
proteolysis-related molecules, such as ubiquitin and LC3, which
are essential to autophagosomal formation (13). Based on the
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Figure 3. Continued.

increased NBR1 levels in mice lacking p62, we compared the
distribution patterns of p62 and NBR1 in the mouse brain. Inter-
estingly, immunoblotting showed that p62 and NBR1 are similarly
distributed in distinct regions of the mouse brain (Figure 7A,B).
NBR1 was mainly localized in the cytoplasm of neurons, and its
intensity was higher in Tg/KO than in Tg mice (Figure 7C). These
data are consistent with the qRT-PCR and immunoblotting
analyses.

DISCUSSION

p62 is an inducible protein that easily aggregates under pathologi-
cal conditions, such as oxidative stress and disrupted proteolysis,
and it is localized in cytoplasmic inclusions in LBD and other
neurodegenerative diseases, suggesting that p62 contributes to
inclusion formation. Moreover, p62- and ubiquitin-positive inclu-
sions in the neurons of brain-specific Atg7-deficient mice disap-
pear with the loss of p62 (17). Based on these findings, we initially
predicted that p62 deficiency would lead to a decrease in the
number of inclusions in Tg mice that overexpressed o-synuclein.
However, our data suggest that p62 deficiency results in an exag-
geration of o-synuclein pathology with regard to P-syn staining
intensity and inclusion number. Consistent with our findings,
Doi et al demonstrated that a loss of p62 exacerbated neuro-
pathological outcomes (5) in a mouse model of spinal and bulbar
muscular atrophy, which is one of polyglutamine diseases. Our
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pathological data showed that the number of P-syn-positive inclu-
sion increased by 1.5-fold in Tg/KO mice compared with Tg mice.
Consistently, this was supported by Western blot analyses showing
that P-syn level was higher in Tg/KO mice than Tg mice using two
kinds of antibodies against P-syn. Considering that increased
P-syn is mainly resistant to detergent of Triton X-100, it is possible
that biochemical property of a-synuclein is altered and leads to
more aggregation in Tg/KO mice. Although it remains controver-
sial whether the formation of cytoplasmic inclusions exerts a ben-
eficial or toxic effect on cells, our findings strengthen the idea that
p62 can modulate o-synuclein aggregation and the pathogenesis of
diseases.

Consistent with previous results (28, 37), a p62 deficiency
resulted in mature-onset obesity in mice. Recent evidence indi-
cates that hyperphagia is the primary cause of obesity in p62-
deficient mice due to the disruption of leptin signaling (9).
Accordingly, p62 is highly expressed in hypothalamic neurons,
including proopiomelanocortin (POMC) neurons in the arcuate
nucleus (3, 9) that are responsible for the control of appetite and
energy intake. Interestingly, lack of autophagic activity in POMC
neurons caused higher post-weaning body weight and p62/
ubiquitin aggregation (4, 32). Furthermore, leptin signaling is also
disrupted in these mice. This may have broad implications for the
pathophysiology of p62 KO mice. Because p62 helps shuttle
insoluble and ubiquitinated proteins into autophagosomes, disrup-
tion of autophagic flux or loss of p62 gives rise to the accumulation



The influence of p62 on a-synuclein in mice

>

=
— 60
£ **P = 0.0002
© 50
o
m 40 4 _L
Kt
((é @ 30 A
Q7 5]
O
-‘5 10 4
£
- WT KO Tg Tg/KO
C
60 4
@
2 1 *P=0.027
n — 40
>
E 30 A
=
O 20 4
£
E 1w
"TWT KO Tg
E
@60 B
©
E40-
P
F20- B Tg
g Tg/KO
£ 0 .
- 1 2 3 4 5 6 (min)

Figure 4. p62-deficient mice exhibit longer escape latencies due to
lower activity. A. The probe trial was completed after 5 days of hidden
platform training in the Morris water maze. Wild type (WT, n = 10), p62
knockout (KO, n = 11), a-synuclein Tg (Tg, n = 9) and a-synuclein mice
lacking p62 (Tg/KO, n = 9) were tested at 9 weeks of age. KO mice take
longer to reach the platform location. The groups differed significantly
[analysis of variance (ANOVA), A3, 39) = 4.53, P< 0.01]. B. The percent-
age of time spent in the target quadrant (black) during a 60 s probe trial
of the Morris water maze test. KO mice spend less time in the target
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quadrant. C. The immobility time of the Morris water maze. Longer
immobility times are evident in KO mice. D. Representative path trac-
ings are shown. Light pink indicates the position of the platform. E. A
forced swim test was performed at 9-10 weeks of age {n = 9-11 per
group) and shows a significant difference in immobility latency, with KO
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1 minute. F. KO mice exhibit higher immobility times for the first 6
minutes. The groups differed significantly [ANOVA, F3, 39) = 2.14,
P<0.05]. ¥*P<0.05.
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Figure 5. The effect of p62 deficiency on several kinds of genes. The
mARARNA levels of genes related to proteolysis and oxidative stress in the
brains of WT, KO, Tg and TG/KO mice were determined at 9 weeks of
age (n =3 per group). mANA was measured by quantitative reverse
transcription-polymerase chain reaction {gRT-PCR) using the right hemi-
sphere of the brain. Data are normalized by the Cyclophilin A mRNA
level in each sample, and the average and standard deviation was
calculated. gRT-PCR reveals that there is no significant difference in the
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quinone oxidoreductase 1 (NgoT), heme oxygenase-1 (Ho-1), Lamp1,
Cathepsin D, TfEB and Rab7I1 levels among the four groups. In con-
trast, the mANA level of p62 (P< 0.01) and Nbr1 (P < 0.05) are signifi-
cantly different. The groups differed significantly [analysis of variance,
A3, 11) = 226.86, P<0.01 in p62 mANA, F3, 11) = 14.15, P<0.01 in
Nbr1 mRNA]. The WT values are defined as 100%. *P<0.05,
**P<0.01.
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Figure 6. The effect of p62 deficiency on molecules related to
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and NBR1 is significantly increased in Tg/KO mice compared with Tg
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quantitative analysis indicates that the Keap1 and NBR1 levels are
significantly increased in p62-deficient mice compared with mice with
p62. The Tg values are defined as 100%. *P<0.05, **P<0.01. The
groups differed significantly [analysis of variance, A3, 11)=7.44,
P=0.011in Keap1, F3, 11) =4.27, P=0.045 in NBR1].
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Figure 7. The spatial patterns of p62 and NBR1 in the mouse brain. A.
Equal amounts of homogenates from the indicated regions were
analyzed by immunoblotting (12 weeks of age, n = 2 in wild-type mice).
Antibodies against NBR1 (upper) or p62 (bottom) were used to detect
endogenous proteins. NBR1 is mainly expressed in the olfactory bulb,
temporal and occipital cortices, striatum, thalamus and hypothalamus.
The highest expression of p62 is observed in the olfactory bulb,
striatum, temporal and occipital cortices, hippocampus, thalamus, hypo-
thalamus and medulla oblongata. B-Actin is used as a loading control. B.
Distribution patterns of NBR1 and p62 in the sagittal section of mice
brains. NBR1 or p62 levels are normalized by B-actin. The circles repre-
sent the size of the expression level. C. NBR1 immunostaining in Tg and
Tg/KO mice (9 weeks of age, n = 6 per group). NBR1 immunoreactivity
is mainly detected in neurons of the thalamus of both Tg and Tg/KO
mice. Note the increased intensity of NBR1 immunoreactivity in Tg/KO
mice compared with Tg mice. Bar = 30 um.
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of p62 target molecules. Accordingly, we revealed that P-syn level
is increased in Triton X-100 insoluble fraction of Tg/KO mice
compared with Tg mice. Thus, p62 dysfunction observed in
autophagy-deficient POMC neurons or p62 KO mice might also
affect intercellular environment through disturbance of p62
binding partners or substrates. One of p62 binding partners is
known to be dopamine receptor (15). Because dopamine is widely
involved in physiological conditions such as mood, cognition and
motor control, it is possible that p62 modulates dopamine system,
and p62 dysfunction may cause pathogenesis of PD.

Our immunoblot results confirmed that the hypothalamus is one
of the regions with the highest p62 expression level. The hypo-
thalamus is known to regulate various physiological functions,
particularly the hypothalamus-pituitary-adrenal axis, which coor-
dinates emotional, neuroendocrine and autonomic inputs in
response to stress. Regarding behavioral abnormalities, we could
not distinguish Tg mice from Tg/KO mice; however, p62-deficient
mice exhibited less activity and depression-like behavior in the
Morris water maze and forced swim test. This is consistent with
previous results (33). It is conceivable that p62 deficiency affects
the hypothalamus-pituitary-adrenal axis, leading to behavioral
abnormalities in response to stress. The immobility rate of Tg/KO
mice was comparable with that of normal control mice. Consider-
ing previous reports that mice overexpressing o-synuclein are
hyperactive (8, 30, 44), we speculate that the degree of immobility
in Tg/KO mice is recovered because of the hyperactivity of Tg
mice. Taken together, p62 plays an important role in modulating
multiple physiological responses, including nutritional, oxidative
and water stressors.

We screened multiple protein and mRNA levels to study the
molecular mechanisms associated with the loss of p62 in Tg
mice. We found that NBR1 was significantly increased in Tg/KO
mice compared with Tg mice at both the mRNA and protein
levels. p62 and NBR1 contain an N-terminal PB1 domain, an
intermediate LC3 binding region, and a C-terminal UBA
domain, and they function as cargo adapters for the autophagic
degradation of ubiquitinated substrates (10, 12, 29). Intriguingly,
our immunoblotting results suggest that these molecules are
similarly distributed in distinct regions of the mouse brain. This
spatial pattern and functional similarity raise the possibility that
NBRI levels can be up-regulated to compensate for the loss of
p62 protein. Therefore, the functional redundancy of NBR1 may
mask the anticipated abnormalities of p62-deficient mice.

In conclusion, we have provided evidence that p62 is unneces-
sary for the formation of inclusions in an animal model that
overexpresses O-synuclein. In addition, p62 deficiency enhanced
a-synuclein pathology based on the number of inclusions and
staining intensity of P-syn. In support of this finding, it is likely
that p62 indirectly helps sequester abnormal molecules through its
own oligomerization (35). Further analyses at the molecular level
suggest that NBR1 plays a compensatory role for p62 in the central
nervous system. NBR1 and p62 double KO mice would be a useful
tool to test this hypothesis.
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Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Video Clip S1. The Morris water maze test. A wild-type mouse
successfully reaches the platform within 30 s on the fourth day of
training course.

Video Clip S2. The Morris water maze test. A p62-knockout
mouse does not take an action within 60 s, and end up failing on
the fourth day of training course.
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Introduction

The cerebellum generates its vast amount of output to the
cerebral cortex through the dentate nucleus (DN), especially in
monkeys. In fact, nuclear cells in DN generate burst activity prior
to imb movement [1,2,3,4,5,6,7], and inactivation of DN results
in cerebellar ataxia, a destruction of finely coordinated movement
[8]. There are three sources of inputs to DN that may contribute
to generation of the burst activity: mossy fiber (MF) collaterals,
climbing fiber (CF) collaterals and Purkinje cells (PCs). MF
collaterals and CF collaterals provide excitatory inputs, but neither
can explain the burst activity in DN. MF collaterals are
exceptionally minor in DN [9,10,11,12,13,14], in striking contrast
to the other cerebellar nuclei, i.e. the interpositus nucleus (IP) and

PLOS ONE | www.plosone.org

the fastigial nucleus. Discharge of the CF (~1 Hz) is too infrequent
to explain the burst activity of DN cells. The remaining inputs
from PCs are even more enigmatic because they are inhibitory and
exert tonic suppression of DN cells. To explain the cause of
excitation of deep cerebellar nuclear (DCN) cells in general
without effective excitatory drive, there are two proposed
mechanisms. First, some researchers proposed recruitment of a
post-inhibitory rebound excitation [15,16,17,18]. They observed a
short burst of DCN cells after current-induced hyperpolarization
or synchronous activation of a large number of PCs. However,
there are vigorous discussions about whether the conditions
required for rebound excitation are realistic in physiological
conditions, especially in behaving animals [15,16,17,18,19,20].
Second, suppression of PC activity could generate burst activity of
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Figure 1. Recording sites of wrist-movement-related Purkinje cells (PCs) and dentate nucleus (DN) cells. A: Dorsal view of the right
cerebellar hemisphere of monkey W. The open star indicates the center of the recording chamber. The gray dot marks the location of the electrolytic
lesion indicated by the white arrowhead in B. PF: primary fissure, IV-Vi: lobules IV-VI, R: rostral, L: lateral. B: Coronal section of the cerebellum of
monkey W at the level of the gray line in A. The arrow indicates a recording track. The recording chamber was set at an angle to allow access to both
the wrist-related cerebellar cortex and deep cerebellar nuclei (DCN). DN: dentate nucleus, AIP: anterior interpositus nucleus, PIP: posterior interpositus
nucleus, h: hilum, D: dorsal, L: lateral. C: Typical examples of unit activities of simple spikes (SS, top) and complex spikes (CS, middle) for a PC and for a
DN cell (DNC, bottom). D and E: Somatotopy maps of PCs for the three animals (D) and DN cells for the two animals (E). Cells with receptive fields
(RFs) in distal arm (filled circles), proximal arm (open circles), face/mouth (open triangles) and hindlimb/trunk (open diamonds) are plotted. Note that
all cells with RF in distal arm (filled circles) were task-related. in some cells, RF was unclear (cross marks). In D, the gray lines in the left (Monkey M) and
middle (Monkey S) panels indicate locations of the PF. In the right panel (Monkey W), the open star and the PF (black line) correspond to those in A.
The intersection of the two dashed lines indicates the center of the recording chamber in each animal. In E, the medial gray dashed line indicates the
presumed medial edge of DN, whereas the lateral gray dashed line indicates the presumed lateral edge of DN. The medial border corresponds to the
location of the axon bundle in the hilum of DN (indicated by h in B). The lateral border was estimated due to a lack of unit activities beyond the lines
(See Materials and Methods). In both the cerebellar cortex and DN, recorded cells that had RFs in the face region were located caudal to the wrist-
movement related cells, while cells that had RFs in the hindlimb/trunk were located rostrally.

doi:10.1371/journal.pone.0108774.g001

DCN cells by disinhibition, as suggested by previous studies
[13,21,22,23,24]. Indeed, Heiney et al. [25] very recently
demonstrated that a transient suppression of PC activity was
capable of activating DCN cells.

To address how DN cells become activated during voluntary
limb movements, we compared the temporal patterns of move-
ment-related changes in activity for PCs and DN cells recorded
from the same monkeys during step-tracking movements of the
wrist. If rebound excitation works, phasic excitation of PCs and a
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concomitant inhibition of DN cells should precede excitation of
DN cells. On the other hand, if disinhibition plays a primary role,
phasic suppression of PCs and activation of DN cells should be
observed at the same timing. We found that a great majority of
PCs showed an initial suppression of their activity prior to
movement onset, while a great majority of DN cells showed an
initial facilitation without a preceding suppression. In a minority of
PCs and DN cells, movement-related increases and decreases in
activity, respectively, developed later. Our results suggest that a
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Figure 2. Movement kinematics of the wrist joint. A: Movement
trajectories to 8 peripheral targets (10 trials for each target [square}) in
the pronated forearm posture in monkey M. The target locations
required 20° changes in the angle of the wrist joint. Each trace
represents a single trial of movement. B: An example temporal profile of
wrist angle (displacement) in a single trial. C: An example temporal
profile of wrist speed in a single trial. Filled inverted triangle indicates
the time of target acquisition (i.e., when the cursor moved into the
target). Black circles with error bars indicate the mean =* SD of the time
of target acquisition in eight movement directions (twenty trials each).
Vertical dashed line labeled ‘Move’ indicates movement onset.
doi:10.1371/journal.pone.0108774.g002

decrease of inhibition from PCs, ie., disinhibition, plays the
primary role in activating DN cells. Our results further suggest
that, contrary to our previous belief, suppression rather than
facilitation of PCs plays the primary role in generating output from
DN cells.

Materials and Methods

Ethics statement

All animal experimentation was conducted in accordance with
the Guide for the Care and Use of Laboratory Animals (National
Research Council. Washington, DC: National Academy Press,
1996) and the Guiding Principles for the Care and Use of Animals
in the Field of Physiological Sciences (The Physiological Society of
Japan, revised 2001). All surgical and experimental protocols were
approved by the Animal Care and Use Committee of Tokyo
Metropolitan Institute of Medical Science, and all efforts were
made to minimize suffering.
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Disinhibition of Dentate Nucleus Cells

We used three Japanese monkeys (Macaca fuscata, one female
[monkey S} and two males [monkey M and monkey W], 6.0 kg,
8.0 kg and 7.8 kg, respectively). Animals were obtained through a
government source (National BioResource Project “Japanese
monkeys”). They received regular (on every weekday) veterinary
checks. Each animal was housed in a cage specifically designed for
macaques in an animal facility whose room temperature (18-
23°C) and lighting (12-hour cycle) were controlled automatically.
They were kept with other housed conspecifics and no other
species. We provided animals chew toys as environmental
enrichment in the cage. Animals were fed 150 g monkey biscuits
once a day at 10 a.m. They also received fruit/vegetable pieces
(total ~200 g) in the afternoon. When animals were not on water
control, animals had unlimited access to water through a spigot at
the front of the cage. When they were on fluid control, they
received water everyday regardless of performance. Body weight
was measured at least once each week and the animal was taken
off study if the body weight dropped below 15% of the fully
hydrated weight.

A recording chamber (30 mm in diameter) was implanted in a
surgical room that was specifically designed for primates using
aseptic techniques and full surgical anesthesia (Ketamine, 4 mg/kg
IM. and xylazine, 0.5 mg/kg IM, followed by pentobarbital
sodium, initial dose =10 mg/kg IV, supplemented IM. as
required). Animals were closely monitored prior to, during and
after surgery until they could safely sit upright on their own. At the
end of surgery, an analgesic was administered to the animals
(Butorphanol, 0.1 mg/kg IM). The chamber was stercotaxically
positioned on the hemispheric part of lobules V and VI of the
cerebellum (Fig. 1A, B) ipsilateral to the trained (right) hand, based
on magnetic resonance imaging (MRI). The target region was
assumed to correspond to the area where arm-related PCs have
been described previously [26,27,28,29]. In order to record wrist-
related PCs and DCN cells within a single recording chamber, we
tilted the chamber laterally by 4045 degrees from the vertical. We
obtained MRI images after surgery to identify the recording area
in the cerebellum. For the MRI scan, the animal was anesthetized
and monitored throughout the scan and during recovery from
anesthesia.

In monkey W, a small electrolytic lesion (10 pA for 10 s) was
made at selected sites in the cerebellar cortex (e.g. filled gray circle
in Fig. 1A and white arrow head in Fig. 1B) near the end of the
recording period. Then, the monkey was deeply anesthetized with
a lethal dose (75 mg/kg, IV) of pentobarbital sodium before
perfusion, and perfused with physiological saline followed by 10%
formalin.

Task design of step-tracking movement of the wrist
Details of the task were described in Kakei et al. [30]. Briefly,
monkeys sat in a primate chair with their forearm supported and
grasped the handle of a manipulandum. The device rotated
around the two axes of wrist joint motion: flexion-extension and
radial-ulnar deviation. The monkeys faced an LCD monitor and
moved a small cursor that moved in proportion to the animals’
wrist movements. The monkeys began the task by placing the
cursor inside the central target (Fig. 2A). After a variable hold
period (0.8-1.2 ), a second target (open rectangle, 8° diameter)
appeared at one of eight peripheral locations evenly spaced at 45°
intervals on the screen. Following a variable instruction period (1-
2 s), the central target was extinguished. This served as a ‘GO’
signal that indicated to the animals to move the cursor to the
peripheral target. The animals were required to complete the
initial movement within 0.5 s and hold the cursor within a
peripheral target for at least 0.2 s. Target locations required a 20°
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Figure 3. Movement-related activity of an example MF. A: A typical example of unit activity of a MF recorded at the location where task-
related PCs were recorded. B: Movement-related activity of MF in A. Rasters and histogram are aligned on movement onset (Move), indicated by the
solid line in the center of the histogram. Filled gray triangles in the rasters indicate the Go cue. Rasters are sorted by the timing of Go cue. Histogram
bin width =20 ms. Similar to this example, most MFs showed a strong movement-related increase in unit activity that started before movement
onset. However, onset time, duration and depth of modulation differed in each direction and among MFs.

doi:10.1371/journal.pone.0108774.g003

change in wrist angle. After 0.5 s of reaching the target, the animal
obtained a drop of juice as a reward. The cight targets were
presented in a randomized block design. The monkeys performed
the task with the forearm in the fully pronated and/or supinated
positions. Monkeys’ performance was quite stable in terms of both
movement kinematics (Fig. 2) and pereentage of correct trials (>
90%).

Extracellular recordings and identification of cerebellar
neurons

We recorded neural activity with glass-coated Elgiloy clectrodes
(0.8-1.8 MQ). In order to make recordings from the deep portion
of the cerebellum, we used a customized microdrive with a 40 mm
range of drive (MO-958S, Narishige, Japan). We used conventional
techniques to make extracellular recordings of unit activity of
single cells in the hemispheric part of the cerebellar lobules V/VI
and in DCN. Single unit activities were amplified (x 10,000) and
band-pass filtered (150-30,000 Hz) by an amplifier (AB-611],
Nihon-Kohden, Japan), isolated with a Multi Spike Detector
(Alpha Omega, Isracl), and then recorded along with movement
kinematics at 1 kHz for both online and offline analysis. During
recordings, isolated spike waveforms of recorded cells were
sampled at 20 kHz. For each cell, we recorded 5-20 trials of data
for each of 8 directions in one or more forearm postures.

When an electrode penetrated the tentorium cerebelli, activities
of a number of putative PCs suddenly emerged. We searched for
the most superficial layer of the cerebellar cortex where
background noise disappeared, and considered this point as the
surface of the cerebellar cortex. The depth from this point was
used as a reference to identify PCs or DCN cells. PCs were
identified by their location in the cerebellar cortex and the
coexistence of characteristic simple spike (SS) and complex spike
(CS) [27] (Fig. 1C). The occurrence of the SSs and the CSs in the
same PC was identified by a silent period (>10 ms) of SSs after
each CS [27,31]. In the cerebellar cortex, activities of MFs also
were recorded [32]. MF activity was identified based on their
characteristic spike waveform (Fig. 3A). Because the negative
after-wave represents an excitatory postsynaptic potential in
granule cells (GCs) [33], it is highly likely that we recorded the
MF spikes near glomeruli. To record DCN cells, we used two
criteria: 1) appropriate separation from the cerebellar cortex; 2)
characteristic spike waveform. After passing through the last
granular layer, we advanced the clectrode through the subcortical
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white matter for an appropriate distance (>1500 umy) before
encountering cells located at edges of IP or DN (cf. Fig. 1B). The
putative DCN cells were usually clustered, and they demonstrated
large negative-positive spikes (e.g. Fig. 1C, DNC) with initial
negativities that were usually broader than those of PCs (c.g.
Fig. 1C, SS and DNC). We also required that no cells in the
cluster had spike waveforms like those of PCs, MT's, or any other
cell type in the cercbellar cortex. It was usually possible to
distinguish between DN and IP due to the existence of the axon
bundle in the hilum of DN (Ilig. 1B, h), where we found only small
positive-negative axon spikes and relatively silent background
activitics. In monkeys M and S, the 3-dimensional distribution of
putative DN cells corresponded well with the shape of DN
confirmed in monkey W by histological reconstruction. In monkey
W, a small electrolytic lesion (10 pA for 10 s) was made at selected
sites in the cerebellar cortex (e.g. filled gray circle in Fig. 1A and
white arrow head in Fig. 1B) near the end of the recording period.
The monkey was deeply anesthetized with a lethal dose (75 mg/
kg, IV) of pentobarbital sodium before perfusion, and perfused
with physiological saline followed by 10% formalin. After post-
fixing in 30% sucrose with 10% formalin, we prepared frozen-
sections of the cercbellum (50 pum thick).

Examining receptive fields (RFs) of recorded cells

After recording unit activities, we examined the peripheral RFs
of recorded cells. We used passive movements, palpation or
brushing of the fingers, forcarms, upper arms, shoulders, neck,
chest, abdomen, back, face, and leg on both sides of the body to
search for somatosensory afferent input. When a cell was activated
by at least one of these stimuli, we considered the cell to have a
somatosensory RF. We also searched for visual responses to
directional movements of the examiner’s hand in front of the
animal or approach of the examiner’s hand toward the animal’s
body. In addition, we checked whether the cells became active
when the animals moved their wrist voluntarily.

Data analysis

We analyzed the recorded data with custom-made programs on
MATLAB (MathWorks, USA). To detect movement onset, we set
a threshold of movement speed at 15 degrees/s for each trial. We
defined the mean discharge rate before the instruction signal (—
500 to 0 ms relative to the instruction signal) as the spontancous
activity level. For each recorded cell, we compared the mean
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