54 : 473

Spinocerebellar ataxia type 31 (SCA31) DR, E{GHT R
—Spinocerebellar ataxia type 6 (SCA6) & O/NEAMEMRED B R —

MR BTV B BTV BT
K R O\ &Y kg SR

BE | EEERREEEFDOHPBR L /- spinocerebellar ataxia type 31 (SCA31) &, ERICHEVINNERE TH B
spinocerebellar ataxia type 6 (SCA6) & NHBEEBESRZHLS PICT 2 2O FRBEDEFRESE MRIFTRICD
WTE 6Bl EBAENICESREL A DNERIEEECEZEL 24, DNREEMUAOBIBIEEE SCA3 Tk
HIEOHEHEDEDIZIL, SCAS TIHSHAIRIR, BHERLEEZBICOAN LN SEETH >/~ MRIE
B T3 SCA31 BERIAMICH > TINHBREFIE £ R OICER I/ BHRIOETT 2D L, SCAS Tt/
BRFOEMICIZBR 10 FUTOLENINE, SF 4 REDILAF H Lo Th b OERPEGFENEY
DB ETRRUET ORI OFHEY &4 3FEEEN 5 5.

(BRFR#4E 2014;54:473-479)

Key words : H8i/Mid3i#E (SCA), spinocerebellar ataxia type 31 (SCA31). spinocerebellar ataxia type 6 (SCA6), MRI

B, YBEET4HF CREAR - /i BN S RE 6 51
A, BEFHEAETSCAIL THEIEHPHEALL &1
ADCA type III I234H & 115 SCA6 & SCA31 & DN —TH
HWLWEHICEDNS, FZTHRRETIE, SCA31 & SCA6 D
FRR G % NREGEDAOMIEER T 5 OBRET L, mMEOHE
AT NG OREBEFFS T B 0B ERE L7,

ol

Spinocerebellar ataxia type 31 (SCA31) £ 2000 E1Z 16q22.1-
linked autosomal dominant cerebellar ataxia (16q-ADCA) & L
TEEBMEHHILL Y, 2009 FICRE L % 5 RIETHHES 2
o LWSCATH D, TORERFIL 16 FHaf L
CHET 52202 ki bi#{5F BEANL & TK2 #54 > b
Oy e LTHETHMBICEFEMEL (TGGAA), D 53R
) ¥~ MAMEA SN, /M Purkinje #IAZ OFEPI1C RNA &
EEPEBTAIEEHBELTBY Y, CAGYE—F7]R
HETHMNELDSCALIELD.

N E TR THE AR ER 2 R T BEREETRAREN
JE (ADCA type I D#ERIZE % % X % L TIX spinocerebellar

MR EFHE

FBRIL 2007 EE DS 2012 FEOMICHIRICTHET B ko
72 SCA31, SCA6 % 6 BITH 5. @b DEFNIHRENEIE
WL BBEEY, BEOEMIIMBFNDEIG SELRG
L7zE74lgs b i, BREREZ LB LEBT1ETY
SIS HIWT L7z 7l SCA6 fEFI O 4 A @k

ataxia type 6 (SCA6) HEFIZHIT SN T 27275, SCA3L D
BIEFHMATREE 22> TH B IE SCA3L b -k & g4
FEODL I ENHBE LT A FEFE SCA6 IHIFITHOR: 72 /M i
EREXETLLEINLOPF—MEHNTIEIH L0000, EBIZ
o F W, REHEBEREEY, BREEBE EE OETEK
H OGREVE) #E55, VA Mo —% KON EESR), RAEELE
BTRZEFELREVIRELZERAONE Y, —J
SCASLIZBIT B/ARAMERIZ L2 b o & L EEDRE
W BWT L, BERAC G N o SO BENS
WERESN TS,

THL, KPF—7E->TBY, Z6FITLLNLN >
FPHEEWE L S_EFARME L W) Rl & LTWwah. T
IR, BRIE, A0 2 /NRAHEE O 12 1 Mann-
Whitney M7 %, EEOHEEO MEIZIE Fisher BE%F & B\
7z, HE{R1X SCA31 & SCA6 £ 6 B> MRI T, 5B 15
AW, ZARWT (SCA3L I § X C T, i {5, SCA6 132
IS T, SEFAER, 4 60A% T, BRIEIR) *#E LEBREH25
E£L FEOMBERBEME 2 A0 HE L, kL.
W% 5D, HArDBBERZEL TEERICOVTMK
iR, FAMBIOR, PAARMEROF EE FHE LBTR A

ZETH,

*Corresponding author: B RBEAHEE & BREHIENEL (T 465-8620 &P R AR KHERK 5-101)

lf [ 37 7% BE AR T T B R B A AR
RS N YN
(Z44H 120134459 H)

19



54 : 474 F R

Fig. 1 Percentage of SCA types in our hospital (1998-2012).
The graph shows that SCA3 is the most frequent (33.3%) subtype in
our hospital. The second most frequent subtypes are DRPLA and
SCAG at the same percentage (15.4%), followed by SCA31 and SCA2
at the same percentage (12.8%) and SCA1 (10.3%). The percentage
is calculated with the number of family.
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Table 1 Clinical features of SCA31 and SCAS patients.
SCA31 SCAS6 Mann-Whitney test
Age at examination 7533 + 2.8 55.33 = 12.7 p < 0.05%
Male/Female M4/F2 M3/F3 —
Age at onset 63.8 = 4.9 40.7 £ 10.3 p < 0.05%
Duration of disease 115 £ 5.2 14.7 = 8.0 p > 0.05
Initial symptoms Unsteadiness of gait Unsteadiness of gait 4
Dysarthria Dysarthria 2
Vertigo 1
Tremors 1
Fisher’s exact test
Family history 6/6 4/6 0.23
Consanguinity 1/6 0/2 0.75
No. of family 5 6
<Cerebellar function>
Upper limb ataxia 6/6 6/6 —
Truncal ataxia 6/6 6/6 —
Lower limb ataxia 6/6 6/6 —
<Cranial nerves>
Gaze evoked nystagmus
Horizontal 6/6 1/6 0.0076%*
Vertical 0/6 2/6 0.23
Oculomotor disturbance 0/6 0/5 —
Dysarthria 6/6 6/6 —
Dysphagia 3/6 1/6 0.24
Hearing impairment 3/4 0/1 0.5
<Motor functions>
Muscle weakness 0/6 1/5 0.45
Amyotrophy 0/6 1/4 0.4
Muscular hypotonus 5/6 2/4 0.33
Spasticity 0/6 2/4 0.13
Involuntary movements
Tremors 1/6 3/6 0.24
Myoclonus 0/6 1/6 0.5
<Sensory>
Impaired thermal sense 0/6 0/5 —
Reduced vibration sense 3/6 5/5 0.12
Impaired kinesthesia 0/6 2/5 0.18
<Reflexes>
Deep tendon reflex
Increased 2/6 5/5 0.045*
Decreased/Lost 2/6 0/5 0.27
Positive Babinski reflex 0/6 1/4 04
<Autonomic function>
Orthostatic hypotension 0/6 0/4 —
Urinary incontinence 0/6 1/4 04
<Qther symptoms >
Cognitive impairment 0/6 1/3 0.33
Psychiatric symptoms 0/6 4/5 0.015*
Vertigo 0/6 2/3 0.083
Mann-Whitney test
No. of extracerebellar symptoms 1.5 = 0.96 4.5 % 2.22 p < 0.05%

* < 0.05, **p < 0.01.
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Fig. 2 Clinical course of SCA31 and SCAS6.
Gait disturbance slowly progresses with disease duration in SCA31 patients. This trend is unclear in SCA6

and the clinical course varies in each case. A mark indicating patient using both wheelchair and walker is
placed in the middle of them.

SCA31

Fig. 3 MRI T, weighted image (axial, sagittal 1.5 T; TR 4,600 ms, TE 85 ms) of six SCA31 patients (upper rows) and

six SCAS6 patients (lower rows). T, weighted image (sagittal, TR 520 ms, TE 15 ms) were shown in four SCA6
patients (¥).

The numbers in the figure show each patient’s age and disease duration at the study. Cerebellar atrophy starts from the
upper vermis in SCA31, whereas the 4th ventricle becomes enlarged in SCA6 even in the early stage of disease.
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Abstract

Clinical features and MRI findings in spinocerebellar ataxia type 31 (SCA31) comparing
with spinocerebellar ataxia type 6 (SCA6)

Satoko Sakakibara, M.D.”, Ikuko Aiba, M.D.”, Yufuko Saito, M.D.?,
Akira Inukai, M.D.”, Kinya Ishikawa, M.D.? and Hidehiro Mizusawa, M.D.”

"Department of Neurology, National Hospital Organization Higashi Nagoya National Hospital
“Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University

Since the discovery of spinocerebellar ataxia type 31 (SCA31) gene, we identified 6 patients whose SCA type had
been unkown for a long period of time as having SCA31 in our hospital and realized that SCA31 is not a rare type of
autosomal dominant spinocerebellar ataxia in this region. We examined and compared the clinical details of these six
SCA31 patients and the same number of SCA6 patients, finding that some SCA31 patients had hearing loss in common
while there are more wide range and complicated signs of extra cerebellum in SCA6 such as pyramidal signs, extrapyra-
midal signs, dizzy sensations or psychotic, mental problems. There is a significant difference in the number of extracere-
bellar symptoms between SCA31 and SCA6. There are differences also in MRI findings. Cerebellar atrophy starts from
the upper vermis in SCA31, as well as some SCA types, whereas the 4th ventricule becomes enlarged in SCA6 even in
the early stage of disease. We suggest that these differences in clinical and MRI findings can be clues for accurate diagnosis
before gene analysis.

(Clin Neurol 2014;54:473-479)
Key words: spinocerebellar ataxia (SCA), spinocerebellar ataxia type 31 (SCA31), spinocerebellar ataxia type 6 (SCA6), MRI
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Table Summary of 22 patients with spinocerebellar degeneration

Age Gender Duration of disorder Gait disorder
(years) (Male/Female) (years)
MSA-C  Probable 82 M 3 Walking impossible
57 F 7 Walking only with accompanying person
66 g 8 Walking only with accompanying person
Possible 56 M 2 Walking impossible
65 M 2 Walking without support
73 M 3 Walking without support
50 F 2 Walking without support
70 F 3 Walking without support
74 F 5 Walking without support
SCA3 55 M 5 Walking without support
61 M 8 Walking only with accompanying person
44 b 9 Walking without support
74 F 18 Walking without support
76 I 18 Walking impossible
78 F 11 Walking only with accompanying person
SCA6 62 M 4 Walking without support
71 M 6 Walking without support
70 F 28 Walking impossible
SCA31 70 M 10 Walking without support
80 F 10 Walking without support
DRPLA 55 M 0 Walking without support
70 M 4 Walking without support

[. WREGE

SR 2005 AFLAE, Mk kPR E 2R L
INHERREEE O S B, BRI X 0 SRR
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 scA3

o

SCA3 DRPLA SCAG

Fig.1
Superimposed VBM findings at the cerebellopontine level for each disease. GM: gray
matter, WM: white matter. The lower scale indicates the Z score.
In the MSA-C group (#=9), gray matter atrophy in the cerebellum and prominent

white matter atrophy in the brainstem and cerebellar hemispheres were observed. In’

the SCA3 group (n=6), gray matter atrophy was not obvious in the cerebellum,
whereas intense white matter atrophy was visual in the brainstem and cerebellar
hemispheres. In both cases of DRPLA (z=2), white matter atrophy was observed in
the brainstem and surrounding the dentate nucleus, whereas gray matter atrophy of the
cerebellum was not remarkable. In both the SCA6 group (»=3) and the SCA31 group
(n=2), gray matter atrophy was prominent in the cerebellum; however, white matter
atrophy was not found in the brainstem, whereas symmetric atrophy of white matter
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was found near the dentate nucleus.
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M S)ﬂvcr

DRPLA

Fig. 2

SCA31

Superimposed VBM findings at the midbrain level for each disease (9 patients with

MSA-C, 6 with SCA3, 3
matter, WM: white matter.

with SCAS, 2 with SCA31, and 2 with DRPLA).

GM: gray

The scale at the bottom of the figure indicates the Z score.

In MSA-C, SCAG, and SCA31 groups, intense GM atrophy was observed in the anterior

lobe of the cerebellum.

A. Cerebellopontine level B. Midbrain level
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Fig. 3

Atrophic area of cerebellar gray matter in the MSA-C
and SCA3 patient groups. A: At the level of the pons.
B: At the level of the midbrain. The atrophic area of
cerebellar gray matter in the MSA-C group is significant-
ly larger than that in the SCA3 group at the level of the
pons and midbrain. *: P <0.05
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The Utility of Voxel-based Morphometry in the Diagnosis of Spinocerebellar

Nobuyuki Tanaka*, Kazunori Nanri?, Takeshi Taguchi?, Noriko Tanaka, Tsuneo Fujita®,

Department of Neurology, Tokyo Medical University Hachioji Medical Center, 1163 Tatema-
chi, Hachioji, Tokyo 193-0998, Japan; *Department of Neurology, Hitachi General Hospital;
YDepartment of Medical Education, Tokyo Medical University; “Department of Neurology,
Tokyo Metropolitan Neurological Hospital; ®Department of Neurology and Neuroscience,

We evaluated atrophic sites in the brainstem and cerebellum in the patients with spinocerebel-

Gray matter atrophy was found

extensively in both the cerebellar hemispheres and vermis of subjects presenting the cerebellar

In addition, remarkable white matter

atrophy was observed in the middle cerebellar peduncle, brainstem, and cerebellar hemi-

In contrast, gray matter atrophy was not apparent in the cerebellar hemispheres or

vermis of subjects in the SCA3 group (#=6), whereas intense white matter atrophy was visible

in the middle cerebellar peduncle, brainstem, and cerebellar hemispheres.

White matter

atrophy was also observed in the brainstem and surrounding the dentate nucleus in both cases
of dentatorubral-pallidoluysian atrophy (DRPLA) (2=2), whereas gray matter atrophy of the

In both the SCA6 group (12=3) and the SCA31 group (n=2),

gray matter atrophy was prominent in the cerebellar hemispheres and vermis; however, white
matter atrophy was not found in the middle cerebellar peduncle and brainstem, whereas

symmetric atrophy of white matter was found in the vicinity of the dentate nucleus.

In each

of these diseases, VBM {indings were consistent with the pathological findings; therefore,
VBM can be considered a useful tool for the diagnosis of spinocerebellar degeneration.

Title
Degeneration

Authors
Hiroshi Mitoma®, Akihiro Kawata®, Hidehiro Mizusawa®
Tokyo Medical and Dental University
“E-mail: tanabu@nmes.ac.jp

Abstract
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variant of multiple system atrophy (MSA-C; n=09).
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cerebellum was not remarkable.
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| Characteristic RNA foci of the abnormal hexanucleotide
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Background and purpese: Spinocerebellar ataxia type 36 (SCA36), also called Asi-
dan, is an autosomal-dominant neurodegenerative disorder identified as a hexanu-
cleotide GGCCTG repeat expansion in the first intron 1 of the NOP56 gene. In the
present study, for the first time an autopsy sample from an Asidan patient was
examined and cytoplasmic inclusions and (GGCCUG), repeat RNA foci were
detected.

Methods: Hematoxylin and eosin staining, immunohistochemical staining, as well
as fluorescence in situ hybridization were used to investigate the cytoplasmic inclu-
sions of ubiquitin and p62 and the (GGCCUQG), repeat RNA foci.

Results: The present study showed both ubiquitin- and p62-positive inclusions in
the cytoplasm of the inferior olivary nucleus of the Asidan patient, (GGCCUG),
RNA foci in neuronal nuclei of the cerebrum, cerebellum, inferior olive, spinal cord
and temporal muscle, and three types of RNA foci, i.e. single small, multiple small
and giant. Of interest is that the giant RNA foci, nearly 10 um in diameter, that
were detected in Purkinje cells, spinal motor neurons and most frequently in the
inferior olivary nucleus, may be responsible for pivotal clinical symptoms of
Asidan.

Conclusions: The present study is the first report to show neuronal cytoplasmic
inclusion bodies and giant RNA foci in an Asidan patient. The relationships
between the giant RNA foci and neurodegeneration have yet to be studied.

| Introduction

The mean onset of an Asidan patient is at 53.1 years
of age with spinocerebellar symptoms starting in trun-

Spinocerebellar ataxia (SCA) is a heterogeneous
| group of autosomal-dominant neurodegenerative dis-
| orders and consists of more than 30 subtypes [1].
| SCA type 36 (SCA36) is a novel dominant disorder
which was recently identified as a hexanucleotide
GGCCTG repeat expansion in the first intron 1 of
| the nucleolar protein 56 (NOP56) gene [2]. Because
most patients were originally found along the Asida
| River located in the western part of Japan, the disor-
| der was named ‘Asidan’. Other than Japan, the same
. mutation has also been reported in northwestern
Spain [3].
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cal ataxia, followed by progressive dysarthria, limb
ataxias, hyperreflexia, and tongue fasciculation and
atrophy [2,4]. It was recently reported by us that Asi-
dan patients also showed unique cognitive and affec-
tive characteristics different from other hereditary
SCAs [5]. It was previously shown that the number of
GGCCTG repeats in Asidan patients ranged from
1700 to 2300, and that (GGCCUG), RNA foci were
observed in their lymphoblastoid cell lines [2].

Although the detailed pathogenic mechanism of the
(GGCCUG),, RNA repeat expansion in Asidan is not
yet fully elucidated, the presence of RNA foci may be
related to an interaction with RNA-binding proteins.
In the present study, an autopsy sample from an Asi-
dan patient was examined mainly by fluorescence in situ
hybridization (FISH) to detect the (GGCCUG),, repeat
RNA foci.
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Patients and methods

Subjects and tissue samples

The present Asidan (SCA36) patient developed trun-
cal ataxia at 57 years of age and died when 86 years
old (29 years® duration), corresponding to case 11-4 in
Pedigree E in our previous report [4]. His cerebrum,
cerebellum, brainstem, upper spinal cord and tempo-
ral muscle were obtained for subsequent analyses.
Four healthy subjects served as negative control for
the Asidan mutation.

The family members of both the Asidan patient and
the control subject provided informed written consent
prior to enrollment in the study, which was approved
by the Ethics Committees/Institutional Review Board
of Okayama University Graduate School of Medicine,
Dentistry and Pharmaceutical Sciences.

Neuropathology

For neuropathological examination, paraffin-embed-
ded sections of 4.5 pm thickness were visualized by
hematoxylin and eosin (HE) staining. Immunohisto-
chemical staining was performed with ubiquitin
(1:2000; Dako, Glostrup, Denmark) and p62 (1:1000;
BD Transduction Laboratories, Sparks, MD, USA).
The number of nerve cells in the inferior olivary
nucleus per 1 mm? was counted in 10 microscopic
fields (200x magnification) of tissues from the Asidan
patient and three healthy controls (who died when 85
or 86).

Fluorescence in situ hybridization (FISH)

To detect the repeated RNA sequence of GGCCUG
in the tissues of the Asidan patient, FISH was carried
out as per our previous report [2]. To reduce autoflu-
orescence in the sections of frozen tissues, these were
pretreated with Sudan Black B [6]. Whether the
(GGCCUQG), foci appeared in the nuclei was assessed
using a Cy3-labeled C(CAGGCC),CAG LNA oligo-
nucleotide probe (probe A). Two other Cy3-labeled
oligonucleotide probes served as negative controls:
G(CAGGCG),CAG (probe B) with one nucleotide
different from probe A; CUG(GGCCUG),G (probe
C) to detect the antisense sequence of (GGCCUQG),,.
For DNase treatment, tissues were pre-hybridized
and then treated with 1 U/ul of RNase-free DNase I
recombinant (Roche Applied Science, Indianapolis,
IN, USA) in incubation buffer (40 mM Tris-HCI,
10 mM NaCl, 6 mM MgCl,, 1 mM CaCl,, pH 7.9)
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for 1.5 h at 37°C. For RNase treatment, tissues were
pre-hybridized and then treated with 50 pg/ml of
DNase-free  RNase (Roche Applied Science) in
50 mM Tris-HCI, 10 mM MgCl,, in phosphate-buf-
fered saline (PBS) (pH 7.4) for 1.5 h at 37°C. After a
wash with 1x PBS/diethylpyrocarbonate, the sections
were treated with 1 ng/pl of oligonucleotide probe A,
B or C overnight at 37°C. On the next day, the
sections were washed with 30% formamide/2x saline
sodium citrate (SSC) for 30 min at 65°C, and then
washed again with 1x SSC for 30 min at room tem-
perature. The sections were mounted in Vectashield
mounting medium with DAPI (Vector Laboratories,
Burlingame, CA, USA). To calculate the percentage
of RNA-foci-positive nuclei, 10 contiguous micro-
scope fields (630x magnification) in each tissue were
used, the number of RNA-foci-positive nuclei and
total cells were counted, and finally the percentage of
RNA-foci-positive nuclei per 1 mm? in Asidan patient
tissues was computed.

Combination of FISH and immunofluorescent analysis
(IFA)

To combine FISH with IFA, the sections were first
washed with 1x SSC and then blocked with blocking
buffer (3% bovine serum albumin and 0.1% Triton
X-100 in PBS) for 1 h. They were incubated overnight
at 4°C with primary antibodies in the blocking buffer.
To ascertain the types of RNA-foci-positive cells in
the cerebrum, a combination of FISH and IFA was
performed in frontal cortex tissues using several nerve
markers: anti-NeulN antibody for neurons, anti-GFAP
antibody for astrocytes, anti-Ibal antibody for micro-
glia and anti-CNPase antibody for oligodendrocytes.
The primary antibodies used in this study were mono-
clonal anti-mouse NeuN antibody (1:500; Millipore,
Billerica, MA, USA), monoclonal anti-mouse CNPase
antibody (1:100; Millipore), polyclonal anti-goat Ibal
antibody (1:100; Abcam, Tokyo, Japan), polyclonal
anti-rabbit ubiquitin antibody (1:200; Dako) and
monoclonal anti-mouse p62 (1:1000; BD Transduction
Laboratories). On the following day, sections were
washed three times with PBS and incubated with a
secondary antibody, namely Alexa Fluor 488 labeled
donkey anti-mouse IgG (1:500), donkey anti-goat 1gG
(1:500) or donkey anti-rabbit IgG (1:500), for 2 h at
room temperature. The sections were then rinsed three
times with PBS and the nuclei were stained with
DAPI. A confocal microscope equipped with argon
and HeNel lasers (Zeiss LSM 510; CarlZeiss, Jena,
Germany) was used to capture fluorescent images.
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Results

HE and immunohistochemical staining

A neuropathological examination showed that the
brain weighed 1080 g. The cerebrum and cerebellum
were especially atrophic. Microscopically, neuronal
loss with astrogliosis was observed in the Purkinje cell
layer and the dentate nuclei of the cerebellum, hypo-
glossal nucleus and anterior horn at the upper cervical
cord. In the cerebral frontal cortex and cerebellum, no
neuronal inclusion was observed in nerve cell bodies
(Fig. 1A, a, b), whilst eosinophilic neuronal inclusions
were observed in the inferior olivary nucleus where
neuronal cells were preserved (Fig. 1A, ¢, black
arrowheads). There were fewer nerve cells in the infe-
rior olivary nucleus of the Asidan patient than in the
healthy controls (Fig. 1B).

Immunohistochemical staining of ubiquitin and p62
in the cerebrum, cerebellum and inferior olivary
nucleus is shown in Fig. 1A, d—f, g, respectively. In
the cerebral frontal cortex and cerebellum, neither
ubiquitin-positive (Fig. 1A, d, e) nor p62-positive
(Fig. 1A, g, h) inclusions were observed. In the infe-
rior olivary nucleus, however, eosinophilic neuronal
cytoplasmic inclusions were positive for both ubiquitin
(Fig. 1A, f, black arrowhead) and p62 (Fig. 1A, i,
black arrowhead), but no intranuclear inclusion was
found in the central nervous system.

Probe specificity

Figure 2 shows the FISH results in Asidan patient
and control human brains (cerebral frontal cortex). In
the Asidan brain (Fig. 2A), RNA foci were observed
with probe A in the frontal cortex cell nuclei (Fig. 2A,
top panels, left, arrow), whilst such RNA foci were
not detected with probes B (Fig. 2A, middle panels,
left) or C (Fig. 2A, bottom panels, left). No RNA
foci were detected with probes A, B and C in con-
trol human brain frontal cortex cell nuclei (Fig. 2A,
right).

Similar to the DNase- or RNase-free study with
probe A (Fig. 2B, top, arrows), DNase-treated Pur-
kinje cell nuclei still displayed RNA foci with probe A
(Fig. 2B, middle panels, arrows) but they were lost
after treatment with RNase (Fig. 2B, bottom panels).

FISH analyses of Asidan patient

As shown in Fig. 3, (GGCCUG), RNA foci were
observed in a variety of Asidan patient tissues. In
addition to the cerebrum (frontal and occipital cortic-
es) and three layers of the cerebellum (molecular,
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Purkinje and granular), RNA foci were also detected
in inferior olivary neurons, spinal motor neurons and
temporal muscles (Fig. 3, arrows). Table 1 shows
the percentage of RNA-foci-positive nuclei. Amongst
the tissues, Purkinje cell nuclei showed the highest
percentage of RNA foci (33.3%), followed by
muscular nuclei (18.4%) and cerebral frontal cortex
(6.7%).

Figure 4 shows the double staining of probe A
(red) with nerve cell markers (Fig. 4A, green) in the
cerebral frontal cortex, and ubiquitin (Fig. 4B, green)
and p62 (Fig. 4C, green) in the inferior olivary
nucleus of the Asidan patient. (GGCCUG), RNA foci
were colocalized with NeuN and DAPI (Fig. 4A, top
panels, arrows), suggesting that RNA foci appeared in
neuronal cells. No RNA foci were detected in GFAP-
positive cells (Fig. 4A, second panels), Ibal-positive
cells (Fig. 4A, third panels) or CNPase-positive cells
(Fig. 4A, bottom panels), indicating that no RNA foci
appeared in astrocytes, microglia or oligodendrocytes.
Moreover, there was no colocalization of RNA foci in
cells with ubiquitin (Fig. 4B) or p62 (Fig. 4C).

Morphology of (GGCCUG),, RNA foci

Asidan tissues showed a variety of morphologies of
(GGCCUQG), RNA foci which were classified into
three types, i.e. single small, multiple small and giant
(Fig. 5A). Most small foci were <l pym in diameter,
whilst the giant foci were more than 3-4 um and
nearly 10 pm in diameter within the nuclei. There
were three to seven multiple small RNA foci in one
nucleus. In the Asidan cerebellum, all three types of
RNA foci were observed in Purkinje cells (Fig. 5A,
top panels, arrows). However, only single small foci
were found in molecular and granular layers but not
multiple small or giant RNA foci. These three types
of RNA foci were also observed in spinal motor neu-
rons (Fig. 5A, middle panels, arrows) and in the infe-
rior olivary nucleus (Fig. 5A, bottom panels, arrows).
The Asidan cerebral frontal cortex and temporal mus-
cle mostly showed single small or multiple small RNA
foci in a single nucleus. Giant foci were most fre-
quently observed in inferior olivary neurons.

In order to confirm whether the giant foci that
appeared in the nuclei were actually RNA foci or not,
FISH analysis with DNase and RNase was once again
performed with probe A in tissue sections of the infe-
rior olive. As shown in Fig. 5B (arrows), giant foci
were still positive in inferior olivary neurons after
DNase treatment (middle panels) but disappeared
completely following treatment with RNase (bottom
panels). Thus, giant signals corresponded to RNA
foci.
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Figure 1 HE and immunohistochemical staining for the Asidan patient and healthy controls. (A, a—c) HE staining of the cerebrum,
cerebellum and inferior olivary nucleus of the Asidan patient. Black arrowheads indicate eosinophilic neuronal inclusions. (A, d-f)
Ubiquitin staining of the cerebrum (d), cerebellum (e) and inferior olivary nucleus (f) of the Asidan patient. Black arrowheads indicate
ubiquitin-positive staining. (A, g—i) p62 staining of the cerebrum (g), cerebellum (h) and inferior olivary nucleus (i) of the Asidan
patient. Black arrowheads indicate p62-positive staining. (B) Quantitative analysis of the number of nerve cells in the inferior olivary
nucleus in the Asidan patient and in three healthy controls. White arrowheads indicate typical nerve cells in the tissues. Scale bar

20 pm.
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Figure 2 RNA FISH in the Asidan patient and control subject (cerebral frontal cortex). (A) Cy3-labeled antisense probe A detects
RNA foci in the Asidan patient (top panels, left, arrows). No RNA foci were detected in the Asidan patient with a different probe,
probe B (middle panels, left), or with a sense probe C (bottom panels, left). No RNA foci were detected with probe A, B or C (right)
in the control subject frontal cortex. Scale bar 5 pm. (B) Cy3-labeled probe A detected RNA foci in Purkinje cell nuclei of the Asidan
patient (top panels, arrows), also after treatment with DNase (middle panels, arrows), but no positive signals existed after RNase
treatment (bottom panels). Scale bar 10 pm.
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Figure 3 Disposition of (GGCCUG), RNA foci in the Asidan patient. Localization of (GGCCUG),, RNA foci in the nuclei of the
cerebrum, cerebellum, brainstem, inferior olive, spinal cord and temporal muscle in the Asidan patient (arrows). Scale bar 10 pm.

Table 1 Percentage of RNA-foci-positive nuclei in Asidan patient
tissues

Percentage of RNA-foci-

Area positive nuclei
Cerebrum cortex Frontal cortex 6.7% (in all nuclei)
Occipital cortex 5.4% (in all nuclei)
Cerebellum cortex Molecular layer 6.3% (in all nuclei)
Purkinje layer 33.3% (in all Purkinje
nuclei)
Granular layer 3.9% (in all nuclei)
Muscle Temporal muscle 18.4% (in all nuclei)
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Discussion

This is the first report to show neuronal cytoplas-
mic inclusion bodies in an Asidan patient. These
eosinophilic inclusions were immunoreactive for
ubiquitin and p62 (Fig. 1A). The site of predilection
was the inferior olivary nucleus. On the other hand,
RNA FISH analysis showed (GGCCUG), RNA
foci in the nuclei of the cerebrum, cerebellum,
brainstem, spinal cord and temporal muscle. Within
nerve cells, RNA foci were predominantly located
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