PID IUIS classification # Table 2 | Continued Al-Herz et al. | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |--|---|-------------|---|---|---------------------------|---|----------------| | (ii) DOCK8
deficiency | Mutations in DOCK8 – regulator of intracellular actin reorganization | AR | Decreased impaired
T lymphocyte
proliferation | Decreased, low
CD27+
memory B cells | Low IgM,
increased IgE | Low NK cells with impaired function, hypereosinophilia, recurrent infections; severe atopy, extensive cutaneous viral and bacterial (staph.) infections, susceptibility to cancer | 243700 | | 6. Dyskeratosis o | ongenital (DKC) Mutations in dyskerin (DKC1) (Hoyeraal–Hreidarsson syndrome) | XL | Progressive
decrease | Progressive
decrease | Variable | Intrauterine growth retardation, microcephaly, nail dystrophy, recurrent infections, digestive tract involvement, pancytopenia, reduced number and function of NK cells | 305000 | | (b) AR-DKC due
to NHP2
deficiency | Mutation in NOLA2 (NHP2) | AR | Decreased | Variable | Variable | Pancytopenia, sparse
scalp hair and
eyelashes, prominent
periorbital
telangiectasia, and
hypoplastic/dysplastic
nails | 613987 | | (c) AR-DKC due
to NOP10
deficiency | Mutation in <i>NOLA3 (NOP10 PCFT)</i> | AR | Decreased | Variable | Variable | Pancytopenia, sparse
scalp hair and
eyelashes, prominent
periorbital
telangiectasia, and
hypoplastic/dysplastic
nails | 224230 | | (d) AR-DKC due
to RTEL1
deficiency | Mutation in (RTEL1) | AR | Decreased | Variable | Variable | Pancytopenia, sparse
scalp hair and
eyelashes, prominent
periorbital
telangiectasia, and
hypoplastic/dysplastic
nails | 608833 | | (e) AD-DKC due
to TERC
deficiency | Mutation in <i>TERC</i> | AD | Variable | Variable | Variable | Reticular hyperpigmentation of the skin, dystrophic nails, osteoporosis premalignant leukokeratosis of the mouth mucosa, palmar hyperkeratosis, anemia, pancytopenia | 127550 | ## Table 2 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |--|---|-------------|---|--|--|--|----------------| | (f) AD-DKC due
to TERT
deficiency | Mutation in <i>TERT</i> | AD | Variable | Variable | Variable | Reticular hyperpigmentation of the skin, dystrophic nails, osteoporosis premalignant leukokeratosis of the mouth mucosa, palmar hyperkeratosis, anemia, pancytopenia | 614742 | | (g) AD-DKC due
to TINF2
deficiency | Mutation in <i>TINF2</i> | AD | Variable | Variable | Variable | Reticular hyperpigmentation of the skin, dystrophic nails, osteoporosis premalignant leukokeratosis of the mouth mucosa, palmar hyperkeratosis, anemia, pancytopenia | 613990 | | 7. Defects of Vital
(a) TCN2
deficiency | min B12 and folate metabolism Mutation in <i>TCN2</i> ; encodes transcobalamin, a transporter of cobalamin into blood cells | AR | Normal | Variable | Decreased | Megaloblastic anemia,
pancytopenia,
untreated for
prolonged periods
results in mental
retardation | 275350 | | (b) SLC46A1
deficiency | Mutation in <i>SLC46A1</i> ; a proton coupled folate transporter | AR | Variable numbers and activation profile | Variable | Decreased | Megaloblastic anemia,
failure to thrive
untreated for
prolonged periods
results in mental
retardation | 229050 | | (c) MTHFD1°
deficiency | Mutations in <i>MTHFD1</i> ;
essential for processing of
single-carbon folate
derivatives | AR | Low | Low | Decreased | Megaloblastic anemia,
failure to thrive
neutropenia, seizures,
mental retardation | | | 8. Comel–
Netherton
syndrome | Mutations in <i>SPINK5</i> resulting in lack of the serine protease inhibitor LEKTI, expressed in epithelial cells | AR | Normal | Switched and
non-switched B
cells are
reduced | Elevated IgE
and IgA
Antibody
variably
decreased | Congenital ichthyosis,
bamboo hair, atopic
diathesis, increased
bacterial infections,
failure to thrive | 256500 | | 9. Winged helix
deficiency
(Nude) ^a | Defects in forkhead box N1 transcription factor encoded by <i>FOXN1</i> | AR | Markedly decreased | Normal | Decreased | Alopecia, abnormal
thymic epithelium,
impaired T cell
maturation | 600838 | | 10. ORAI-I
deficiency⁵ | Mutation in <i>ORAI1</i> , a Ca ⁺⁺ release-activated channel (CRAC) modulatory component | AR | Normal number, but
defective
TCR-mediated
activation | Normal | Normal | Autoimmunity,
anhydrotic ectodermic
dysplasia,
non-progressive
myopathy defective
TCR-mediated
activation | 610277 | Table 2 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |--|--|-------------|---|--|--|--|-----------------| | 11. STIM1
deficiency ^a | Mutations in <i>STIM1</i> , a stromal interaction molecule 1 | AR | Normal number, but
defective
TCR-mediated
activation | Normal | Normal | Autoimmunity,
anhydrotic ectodermal
dysplasia,
non-progressive
myopathy defective
TCR-mediated
activation | 605921 | | 12. STAT5b
deficiency ^a | Mutations in <i>STAT5B</i> , signal transducer, and transcription factor, essential for normal signaling from IL-2 and 15, key growth factors for T and NK cells | AR | Modestly decreased | Normal | , Normal | Growth-hormone insensitive dwarfism Dysmorphic features Eczema Lymphocytic interstitial pneumonitis, autoimmunity | 245590 | | 13. Hepatic
veno-occlusive
disease with
immunodefi-
ciency
(VODI) | Mutations in <i>SP110</i> | AR | Normal (decreased
memory T cells) | Normal
(decreased
memory B
cells) | Decreased
IgG, IgA, IgM,
absent
germinal
centers,
absent tissue
plasma cells | Hepatic veno-occlusive disease; Pneumocystis jiroveci pneumonia; susceptibility to CMV, Candida; thrombocytopenia; hepatosplenomegaly | 235550 | | 14. IKAROS
deficiency ^a | Mutation in <i>IKAROS</i> | AD de novo | Normal, but
impaired lymphocyte
proliferation | Absent | Presumably decreased | Anemia, neutropenia,
thrombocytopenia | Not
assigned | | 15. FILS
syndrome ^a | Mutation in <i>POLE1</i> ; defective DNA replication | AR | Low naïveT cells;
decreasedT cell
proliferation | Low memory B cells | Decreased
IgM and IgG;
lack of
antibodies to
polysaccha-
ride
antigens | Mild facial
dysmorphism (malar
hypoplasia, high
forehead), livedo,
short stature;
recurrent upper and
lower respiratory tract
infections, recurrent
pulmonary infections,
and recurrent
meningitis | 615139 | | 16. Immunode-
ficiency with
multiple
intestinal
atresias | Mutation in <i>TTCTA</i> [tetratricopeptide repeat (TPR) domain 7A] protein of unknown function | AR | Variable, but
sometimes absent | Normal | Decreased | Multiple intestinal
atresias, often with
intrauterine
polyhydramnios and
early demise; some
with SCID phenotype | 243150 | SCID, severe combined immune deficiencies; XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; MSMD, Mendelian susceptibility of mycobacterial disease. T and B cell number and function in these disorders exhibit a wide range of abnormality; the most severely affected cases meet diagnostic criteria for SCID or leaky SCID and require immune system restoring therapy such as allogeneic hematopoietic cell transplantation. While not all DOCK8-deficient patients have elevated serum IgE, most have recurrent viral infections and malignancies as a result of combined immunodeficiency. AR-HIES due to Tyk2 deficiency is also listed in **Table 6**, because of its association with atypical mycobacterial disease resulting in MSMD. Riddle syndrome is caused by mutations in a gene involved in DNA double-strand break repair and is associated with hypogammaglobulinemia. Autosomal dominant and autosomal recessive forms of dyskeratosis congenita are included in this table. IKAROS-deficiency represents a single prematurely born infant who died at the age of 87 days and who had absent B and NK
cells and non-functional T cells. ^aTen or fewer unrelated cases reported in the literature. Table 3 | Predominantly antibody deficiencies. | Genetic defect/
presumed pathogenesis | Inheritance | Serum Ig | Associated features | OMIM
number | |---|---|---|---|---| | all serum immunoglobulin isotypes v
Mutations in <i>BTK</i> , a cytoplasmic
tyrosine kinase activated by
crosslinking of the BCR | vith profoundly
XL | decreased or absent B cells All isotypes decreased in majority of patients; some patients have detectable immunoglobulins | Severe bacterial infections;
normal numbers of pro-B cells | 300300 | | Mutations in μ heavy chain; essential component of the pre-BCR | AR | All isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 147020 | | Mutations in I5; part of the surrogate light chain in the pre-BCR | AR | All isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 146770 | | Mutations in Iga <i>(CD79a)</i> ; part of the pre-BCR and BCR | AR | All isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 112205 | | Mutations in Igb (CD79β); part of the pre-BCR and BCR | AR | All isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 147245 | | Mutations in <i>BLNK</i> ; a scaffold protein that binds to BTK | AR | All isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 604615 | | Mutations in <i>PIK3R1</i> ; a kinase involved in signal transduction in multiple cell types | AR | All isotypes decreased | Severe bacterial infections;
decreased or absent pro-B cells | 171833 | | Mutations in <i>TCF3</i> ; a transcription factor required for control of B cell development | AD | All isotypes decreased | Recurrent bacterial infections | 147141 | | May have monosomy 7, trisomy 8, or dyskeratosis congenita | Variable | One or more isotypes may be decreased | Infections; decreased number of pro-B cells | Not
assigned | | Unknown | None | One or more isotypes may be decreased | Bacterial and opportunistic infections; autoimmunity; decreased number of pro-B cells | Not
assigned | | at least two serum immunoglobulin
Unknown | isotypes with n
Variable | ormal or low number of B cell
Low IgG and IgA and/or
IgM | Clinical phenotypes vary: most have recurrent infections, some have polyclonal lymphoproliferation, autoimmune cytopenias, and/or granulomatous disease | Not
assigned | | Mutations in <i>ICOS</i> ; a co-stimulatory molecule expressed on T cells | AR | Low IgG and IgA and/or IgM | Recurrent infections;
autoimmunity, gastroenteritis,
granuloma in some | 604558 | | Mutations in <i>CD19</i> ;
transmembrane protein that
amplifies signal through BCR | AR | Low IgG and IgA and/or
IgM | Recurrent infections; may have glomerulonephritis | 107265 | | Mutations in <i>CD81</i> ;
transmembrane protein that
amplifies signal through BCR | AR | Low IgG, low or normal IgA and IgM | Recurrent infections; may have glomerulonephritis | 186845 | | | all serum immunoglobulin isotypes v Mutations in BTK, a cytoplasmic tyrosine kinase activated by crosslinking of the BCR Mutations in μ heavy chain; essential component of the pre-BCR Mutations in I5; part of the surrogate light chain in the pre-BCR Mutations in Iga (CD79a); part of the pre-BCR and BCR Mutations in Igb (CD79β); part of the pre-BCR and BCR Mutations in BLNK; a scaffold protein that binds to BTK Mutations in PIK3R1; a kinase involved in signal transduction in multiple cell types Mutations in TCF3; a transcription factor required for control of B cell development May have monosomy 7, trisomy 8, or dyskeratosis congenita Unknown Mutations in CD19; transmembrane protein that amplifies signal through BCR Mutations in CD19; transmembrane protein that amplifies signal through BCR Mutations in CD81; transmembrane protein that | all serum immunoglobulin isotypes with profoundly Mutations in BTK, a cytoplasmic XL tyrosine kinase activated by crosslinking of the BCR Mutations in μ heavy chain; AR essential component of the pre-BCR Mutations in I5; part of the surrogate light chain in the pre-BCR and BCR Mutations in Iga (CD79a); part of the pre-BCR and BCR Mutations in Igb (CD79β); part of the pre-BCR and BCR Mutations in BLNK; a scaffold AR protein that binds to BTK Mutations in PIK3R1; a kinase involved in signal transduction in multiple cell types Mutations in TCF3; a AD transcription factor required for control of B cell development May have monosomy 7, trisomy 8, or dyskeratosis congenita Unknown None Mutations in ICOS; a AR co-stimulatory molecule expressed on T cells Mutations in CD19; AR transmembrane protein that amplifies signal through BCR Mutations in CD81; AR transmembrane protein that mutations in CD81; AR transmembrane protein that | ### Presumed pathogenesis ### all serum immunoglobulin isotypes with profoundly decreased or absent B cells Mutations in BTK, a cytoplasmic tyrosine kinase activated by crosslinking of the BCR | ### Presumed pathogenesis ### and pathogenesis ### profoundly decreased or absent B cells Mutations in BTK, a cytoplasmic XL Mutations in BTK, a cytoplasmic XL Mutations in BTK, a cytoplasmic XL Mutations in µ heavy chain; AR ### AR ### AR ### All isotypes decreased in majority of pathents, some patients have detectable immunoglobulins or pre-B cells ### Consisting of the BCR ### Mutations in µ, heavy chain; AR ### AR ### ARI isotypes decreased Severe bacterial infections; normal numbers of pro-B cells pre-BCR ### Mutations in I5; part of the pre-BCR ### Mutations in I5; part of the pre-BCR ### Mutations in Igs (**CD79a); part of the pre-BCR ### ARI isotypes decreased Severe bacterial infections; normal numbers of pro-B cells ###
Mutations in Igb (**CD79a); part of the pre-BCR and BCR ### Mutations in Igb (**CD79a); part of the pre-BCR and BCR ### ARI isotypes decreased Severe bacterial infections; normal numbers of pro-B cells ### Mutations in BLNK; a scalfold Part of the pre-BCR and BCR ### ARI isotypes decreased Severe bacterial infections; normal numbers of pro-B cells ### Mutations in BLNK; a scalfold Part of the pre-BCR and BCR ### ARI isotypes decreased Severe bacterial infections; normal numbers of pro-B cells ### Mutations in BLNK; a scalfold Part of the pre-BCR and BCR ### ARI isotypes decreased Severe bacterial infections; normal numbers of pro-B cells ### Mutations in BLNK; a scalfold Part of the pre-BCR and BCR ### Mutations in BLNK; a kinase Involved in signal transduction in multiple cell types ### Unknown PKPaR; a kinase Involved in Severe bacterial infections; decreased or absent pro-B cells ### Unknown PKPaR; a kinase Involved in Severe bacterial infections; decreased or absent pro-B cells ### Unknown PKPaR; a kinase Involved in Severe bacterial infections; decreased number of pro-B cells ### Unknown PKPaR; a kinase Involved in Severe bacterial infections; decreased number of pro-B cells ### Unknown PKPaR; a kinase Involved in Severe bacterial infections; decreased n | # Table 3 | Continued | Genetic defect/
presumed pathogenesis | Inheritance | Serum Ig | Associated features | OMIM
number | |--|--|---|--|--| | Mutations in <i>CD20</i> ; a B cell surface receptor involved in B cell development and plasma cell differentiation | AR | Low IgG, normal or elevated IgM and IgA | Recurrent infections | 112210 | | Mutations in <i>CD21</i> ; also known as complement receptor 2 and forms part of the CD19 complex | AR | Low IgG; impaired anti-pneumococcal response | Recurrent infections | 614699 | | Mutations in TNFRSF13B (TACI);
a TNF receptor family member
found on B cells and is a
receptor for BAFF and APRIL | AD or AR or complex | Low IgG and IgA and/or
IgM | Variable clinical expression | 604907 | | Mutations in <i>LRBA</i>
(lipopolysaccharide responsive
beige-like anchor protein) | AR | Reduced I IgG and IgA in most | Recurrent infections,
inflammatory bowel disease,
autoimmunity; EBV infections | 606453 | | Mutations in TNFRSF13C
(BAFF-R); a TNF receptor family
member found on B cells and is
a receptor for BAFF | AR | Low IgG and IgM | Variable clinical expression | 606269 | | Mutations in TWEAK | AD | Low IgM and IgA; lack of anti-pneumococcal antibody | Pneumonia, bacterial infections, warts; thrombocytopenia. neutropenia | 602695 | | Mutations in <i>NFKB2</i> ; an essential component of the non-canonical NF- _K B pathway | AD | Low IgG and IgA and IgM | Recurrent infections | 615577 | | Gain-of-function mutations of CXCR4, the receptor for CXCL12 | AD | Panhypogammaglobulinemia,
decreased B cells | Warts/human papilloma virus
(HPV) infection
Neutropenia
Reduced B cell number
Hypogammaglobulinemia | 193670 | | serum IgG and IgA with normal/elev
Mutations in <i>CD40LG</i> (also
called <i>TNFSF5</i> or <i>CD154</i>) | ated IgM and n | ormal numbers of B cells IgG and IgA decreased; IgM may be normal or increased; B cell numbers may be normal or increased | Bacterial and opportunistic infections, neutropenia, autoimmune disease | 300386 | | Mutations in <i>CD40</i> (also called <i>TNFRSF5</i>) | AR | Low IgG and IgA; normal
or raised IgM | Bacterial and opportunistic infections, neutropenia, autoimmune disease | 109535 | | Mutations in AICDA gene | AR | IgG and IgA decreased;
IgM increased | Bacterial infections, enlarged lymph nodes, and germinal centers | 605257 | | Mutations in <i>UNG</i> | AR | IgG and IgA decreased;
IgM increased | Enlarged lymph nodes and germinal centers | 191525 | | deficiencies with generally normal
Mutation or chromosomal
deletion at 14q32 | numbers of B c
AR | ells One or more IgG and/or IgA subclasses as well as IgE may be absent | May be asymptomatic | Not
assigned | | | Mutations in CD20; a B cell surface receptor involved in B cell development and plasma cell differentiation Mutations in CD21; also known as complement receptor 2 and forms part of the CD19 complex Mutations in TNFRSF13B (TACI); a TNF receptor family member found on B cells and is a receptor for BAFF and APRIL Mutations in LRBA (lipopolysaccharide responsive beige-like anchor protein) Mutations in TNFRSF13C (BAFF-R); a TNF receptor family member found on B cells and is a receptor for BAFF Mutations in TWEAK Mutations in NFKB2; an
essential component of the non-canonical NF-kB pathway Gain-of-function mutations of CXCR4, the receptor for CXCL12 serum IgG and IgA with normal/eleval Mutations in CD40 (also called TNFSF5) Mutations in CD40 (also called TNFSF5) Mutations in AICDA gene | Mutations in CD20; a B cell surface receptor involved in B cell development and plasma cell differentiation Mutations in CD21; also known as complement receptor 2 and forms part of the CD19 complex Mutations in TNFRSF13B (TACI); AD or AR or a TNF receptor family member found on B cells and is a receptor for BAFF and APRIL Mutations in LRBA (lipopolysaccharide responsive beige-like anchor protein) Mutations in TNFRSF13C AR (BAFF-R); a TNF receptor family member found on B cells and is a receptor for BAFF Mutations in TWEAK AD Mutations in TWEAK AD Mutations in NFKB2; an AD essential component of the non-canonical NF-kB pathway Gain-of-function mutations of AD CXCR4, the receptor for CXCL12 Serum IgG and IgA with normal/elevated IgM and no Mutations in CD40LG (also Called TNFSF5) Mutations in CD40 (also called AR TNFRSF5) Mutations in UNG AR Mutations in UNG AR Mutations in UNG AR Mutations in UNG AR | Mutations in CD20; a B cell surface receptor involved in B cell development and plasma cell differentiation Mutations in CD21; also known as complement receptor 2 and forms part of the CD19 complex Mutations in TNFRSF13B (TACI); AD or AR or anti-pneumococcal response Mutations in TNFRSF13B (TACI); AD or AR or anti-pneumococcal response Mutations in TNFRSF13B (TACI); AD or AR or anti-pneumococcal response Mutations in TNFRSF13B (TACI); AD or AR or anti-pneumococcal response Mutations in LRBA AR Reduced I IgG and IgA and/or IgM Mutations in TNFRSF13C AR Low IgG and IgA in most Mutations in TNFRSF13C AR Low IgG and IgM Mutations in TNFRSF13C AR Low IgG and IgA in most Mutations in TNFRSF13C AR Low IgG and IgA in most Mutations in TNFRSF13C AR Low IgG and IgA in most Mutations in TNFRSF13C AR Low IgG and IgA in most Mutations in TNFRSF13C AR Low IgG and IgA in most Mutations in NFKB2; an are export or BAFF Mutations in NFKB2; an AD Low IgG and IgA and IgM Mutations in NFKB2; an AD Low IgG and IgA and IgM Mutations in NFKB2; an AD Low IgG and IgA and IgM Mutations in NFKB2; an AD Low IgG and IgA and IgM Mutations in CD40C (also XL IgG and IgA decreased; IgM may be normal or increased B cells Mutations in CD40C (also called AR Low IgG and IgA; normal or raised IgM Mutations in AICDA gene AR IgG and IgA decreased; IgM increased Mutations in UNG AR IgG and IgA decreased; IgM increased Mutations in UNG AR IgG and IgA decreased; IgM increased deletion at 14q32 IgA subclasses as well as | Mutations in CD20; a B cell surface receptor involved in B cell development and plasma cell differentiation Mutations in CD21; also known as complement receptor 2 and so complement receptor 2 and forms part of the CD19 complex response Mutations in TNFRSF13B (TACI); and D or AR or a TNF receptor family member complex of the CD19 complex and plasma cell differentiation Mutations in TNFRSF13B (TACI); and D or AR or a TNF receptor family member complex of the CD19 complex and the complex of the CD19 c | #### Table 3 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Serum Ig | Associated features | OMIM
number | |---|--|-------------------------|--|--|-----------------| | (b) κ Chain
deficiency ^a | Mutations in Kappa constant gene | AR | All immunoglobulins have lambda light chain | Asymptomatic | 147200 | | (c) Isolated IgG
subclass deficiency | Unknown | Variable | Reduction in one or more
IgG subclass | Usually asymptomatic; a minority may have poor antibody response to specific antigens and recurrent viral/bacterial infections | Not
assigned | | (d) IgA with IgG
subclass deficiency | Unknown | Variable | Reduced IgA with
decrease in one or more
IgG subclass | Recurrent bacterial infections | Not
assigned | | (e) PRKC 8
deficiency ^a | Mutation in <i>PRKCD</i> ; encoding a member of the protein kinase C family critical for regulation of cell survival, proliferation, and apoptosis | AR | Low IgG levels; IgA and IgM above the normal range | Recurrent infections; EBV chronic infection Lymphoproliferation SLE-like autoimmunity (nephrotic and antiphospholipid syndromes) | 615559 | | (f) Activated PI3K-8 | Mutation in <i>PIK3CD</i> , PI3K-8 | AD gain-of-
function | Reduced IgG2 and impaired antibody to pneumococci and hemophilus | Respiratory infections,
bronchiectasis; autoimmunity;
chronic EBV, CMV infection | 602839 | | (g) Selective IgA
deficiency | Unknown | Variable | IgA decreased/absent | Usually asymptomatic; may have recurrent infections with poor antibody responses to carbohydrate antigens; may have allergies or autoimmune disease. A very few cases progress to CVID, others coexist with CVID in the family | 137100 | | 5. Specific antibody
deficiency with
normal lg concen-
trations and normal
numbers of B cells | Unknown | Variable | Normal | Reduced ability to produce antibodies to specific antigens | Not
assigned | | 6. Transient hypogammaglobu- linemia of infancy with normal numbers of B cells | Unknown | Variable | IgG and IgA decreased | Normal ability to produce antibodies to vaccine antigens, usually not associated with significant infections | Not
assigned | XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; BTK, B ruton tyrosine kinase; BLNK, B cell linker protein; AID, activation-induced cytidine deaminase; UNG, URG, URG Several autosomal recessive disorders that might previously have been called CVID have been added to **Table 3**. CD81 is normally co-expressed with CD19 on the surface of B cells. As for CD19 mutations, mutations in CD81 result in normal numbers of peripheral blood B cells, low serum IgG, and an increased incidence of glomerulonephritis. Single patient with a homozygous mutation in CD20 and CD21 has been reported. Common variable immunodeficiency disorders (CVID) include several clinical and laboratory phenotypes that may be caused by distinct genetic and/or environmental factors. Some patients with CVID and no known genetic defect have markedly reduced numbers of B cells as well as hypogammaglobulinemia. Alterations in TNFRSF13B (TACI) and TNFRSF13C (BAFF-R) sequences may represent disease-modifying mutations rather than disease causing mutations. CD40L and CD40 deficiency are included in **Table 1** as well as this table. A small minority of patients with XLP (**Table 4**), WHIM syndrome (**Table 6**), ICF (**Table 2**), VOD1 (**Table 2**), thymoma with immunodeficiency (Good syndrome), or myelodysplasia are first seen by an immunologist because of recurrent infections, hypogammaglobulinemia, and normal or reduced numbers of B cells. Patients with GATA2 mutations (**Table 5**) may have markedly reduced numbers of B cells, as well as decreased monocytes and NK cells, and a predisposition to myelodysplasia but they do not usually have an antibody deficiency. $^{{}^{\}circ}$ Ten or fewer unrelated cases reported in the literature. Table 4 | Diseases of immune dysregulation. | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional defect | Associated features | OMIM
number | |--|---|----------------|--|------------------------------
---|--|---| | 1. Familial hemop | phagocytic lymphohistiocytosis | (FHL) syndrome | S | | AMANGALIA DEPARTURA DE LA CALIFORNIA | | TO THE CONTRACT OF THE PART AND COMES AND THE CONTRACT OF | | 1.1 FHL syndro
(a) Perforin
deficiency
(FHL2) | omes without hypopigmentation Mutations in <i>PRF1</i> ; perforin is a major cytolytic protein | AR | Increased
activated T
cells | Normal | Decreased to
absent NK and CTL
activities
(cytotoxicity) | Fever, hepatosplenomegaly (HSMG), hemophagocytic lymphohistiocytosis (HLH), cytopenias | 603553 | | (b) UNC13D/
Munc13-4
deficiency
(FHL3) | Mutations in <i>UNC13D</i> ^a ; required to prime vesicles for fusion | AR | Increased
activated T
cells | Normal | Decreased to
absent NK and CTL
activities
(cytotoxicity and/or
degranulation) | Fever, HSMG, HLH, cytopenias | 608898 | | (c) Syntaxin 11
deficiency
(FHL4) | Mutations in <i>STX11</i> , required for secretory vesicle fusion with the cell membrane | AR | Increased
activated T
cells | Normal | Decreased NK activity (cytotoxicity and/or degranulation) | Fever, HSMG, HLH, cytopenias | 603552 | | (d) STXBP2/
Munc18-2
deficiency
(FHL5) | Mutations in STXBP2, required for secretory vesicle fusion with the cell membrane omes with hypopigmentation | AR | Increased
activated T
cells | Normal | Decreased NK and
CTL activities
(cytotoxicity and/or
degranulation) | Fever, HSMG, HLH, cytopenias | 613101 | | (a) Chediak–
Higashi
syndrome | Mutations in <i>LYST</i> Impaired lysosomal trafficking | AR | Increased
activated T
cells | Normal | Decreased NK and
CTL activities
(cytotoxicity and/or
degranulation) | Partial albinism Recurrent infections, fever HSMG, HLH Giant lysosomes, neutropenia, cytopenias Bleeding tendency Progressive neurological dysfunction | 214500 | | (b) Griscelli
syndrome,
type 2 | Mutations in <i>RAB27A</i> encoding a GTPase that promotes docking of secretory vesicles to the cell membrane | AR | Normal | Normal | Decreased NK and
CTL activities
(cytotoxicity and/or
degranulation) | Partial albinism, fever,
HSMG, HLH, cytopenias | 607624 | | (c) Hermansky–
Pudlak
syndrome,
type 2 | Mutations in <i>AP3B1</i> gene, encoding for the b subunit of the AP-3 complex | AR | Normal | Normal | Decreased NK and
CTL activities
(cytotoxicity and/or
degranulation) | Partial albinism Recurrent infections Pulmonary fibrosis Increased bleeding Neutropenia HLH | 608233 | | 2. Lymphoprolife
(a) SH2D1A
deficiency
(XLP1) | rative syndromes Mutations in SH2D1A encoding an adaptor protein regulating intracellular signaling | XL | Normal or
increased
activated T
cells | Reduced
memory B
cells | Partially defective
NK cell and CTL
cytotoxic activity | Clinical and immunological
features triggered by EBV
infection: HLH
Lymphoproliferation, aplastic
anemia, lymphoma
Hypogammaglobulinemia
Absent iNKT cells | 308240 | ## Table 4 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional defect | Associated features | OMIM
number | |---|--|-------------|---|---|--|--|----------------| | (b) XIAP
deficiency
(XLP2) | Mutations in XIAP/BIRC4 encoding an inhibitor of apoptosis | XL | Normal or
increased
activated T
cells;
low/normal
iNKT cells | Normal or
reduced
memory B
cells | Increased T cells
susceptibility to
apoptosis to CD95
and enhanced
activation-induced
cell death (AICD) | EBV infection, splenomegaly,
lymphoproliferation
HLH, colitis, IBD, hepatitis
Low iNKT cells | 300635 | | (c) ITK
deficiency ^a | Mutations in <i>ITK</i> encoding IL-2 inducible T cell kinase required for TCR-mediated activation | AR | Progressive
decrease | Normal | Decreased T cell activations | EBV-associated B cell
lymphoproliferation,
lymphoma
Normal or decreased IgG | 613011 | | (d) CD27 deficiency ^a | Mutations in CD27,
encoding TNF-R member
superfamily required for
generation and long-term
maintenance of T cell
immunity
of regulatory T cells | AR | Normal | No memory
B cells | LowT and NK cells functions | Clinical and immunological
features triggered by EBV
infection: HLH
Aplastic anemia, lymphoma,
hypogammaglobulinemia
Low iNKT cells | 615122 | | (a) IPEX,
immune
dysregulation,
polyen-
docrinopathy,
enteropathy
X-linked | Mutations in <i>FOXP3</i> , encoding a T cell transcription factor | XL | Normal | Normal | Lack of (and/or
impaired function
of) CD4+ CD25+
FOXP3+ regulatory
T cells (Tregs) | Autoimmune enteropathy Early-onset diabetes Thyroiditis, hemolytic anemia, thrombocytopenia, eczema Elevated IgE, IgA | 304790 | | (b) CD25
deficiency ^a | Mutations in <i>IL-2RA</i> , encoding IL-2Rα chain | AR | Normal to decreased | Normal | No CD4+ C25+
cells with impaired
function of Tregs
cells | Lymphoproliferation,
autoimmunity. Impaired T
cell proliferation | 606367 | | (c) STAT5b deficiency ^a | Mutations in <i>STAT5B</i> , signal transducer, and transcription factor, essential for normal signaling from IL-2 and 15, key growth factors for T and NK cells vithout lymphoproliferation | AR | Modestly
decreased | Normal | Impaired development and function of γ8T cells, Tregs, and NK cells Low T cell proliferation | Growth-hormone insensitive
dwarfism
Dysmorphic features
Eczema
Lymphocytic interstitial
pneumonitis, autoimmunity | 245590 | | (a) APECED (APS-1), autoimmune polyen- docrinopathy with candidiasis and ectodermal dystrophy | Mutations in AIRE, encoding a transcription regulator needed to establish thymic self-tolerance | AR | Normal | Normal | AIRE-1 serves as checkpoint in the thymus for negative selection of autoreactive T cells and for generation of Tregs | Autoimmunity: hypoparathyroidism hypothyroidism, adrenal insufficiency, diabetes, gonadal dysfunction, and other endocrine abnormalities Chronic mucocutaneous candidiasis Dental enamel hypoplasia Alopecia areata Enteropathy, pernicious anemia | 240300 | Table 4 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional
defect | Associated features | OMIM
number | |---|--|-------------|--|---|---
--|----------------| | (b) ITCH
deficiency ^a | Mutations in <i>ITCH</i> , an E3 ubiquitin ligase catalyzes the transfer of ubiquitin to a signaling protein in the cell including phospholipase Cγ1 (PLCγ1) | AR | Not assessed | Not
assessed | Itch deficiency may
cause immune
dysregulation by
affecting both
anergy induction in
autoreactive
effector T cells and
generation of Tregs | Early-onset chronic lung disease (interstitial pneumonitis) Autoimmune disorder (thyroiditis, type I diabetes, chronic diarrhea/enteropathy, and hepatitis) Failure to thrive, developmental delay, dysmorphic facial features | 613385 | | | ymphoproliferative syndrome (A | | | | | | | | (a) ALPS-FAS | Germinal mutations in TNFRSF6, encoding CD95/Fas cell surface apoptosis receptor ^b | AD
AR° | Increased
CD4-CD8-
TCRα/β double
negative (DN)
T cells | Normal, low
memory B
cells | Apoptosis defect
FAS mediated | Splenomegaly, adenopathies, autoimmune cytopenias Increased lymphoma risk IgG and A normal or increased Elevated FasL and IL-10, vitamin B12 | 601859 | | (b) ALPS-
FASLG | Mutations in <i>TNFSF6</i> , Fas ligand for CD95 apoptosis | AR | Increased DN
T cells | Normal | Apoptosis defect
FAS mediated | Splenomegaly,
adenopathies, autoimmune
cytopenias, SLE
Soluble FasL is not elevated | 134638 | | (c) ALPS-
caspase 10 ^a | Mutations in <i>CASP10</i> , intracellular apoptosis pathway | AD | Increased DN
T cells | Normal | Defective
lymphocyte
apoptosis | Adenopathies, splenomegaly, autoimmunity | 603909 | | (d) ALPS–
caspase 8 ^a | Mutations in <i>CASP8</i> , intracellular apoptosis, and activation pathways | AR | Slightly
increased DN
T cells | Normal | Defective
lymphocyte
apoptosis and
activation | Adenopathies,
splenomegaly, bacterial and
viral infections,
hypogammaglobulinemia | 607271 | | (e) FADD
deficiency ^a | Mutations in FADD encoding an adaptor molecule interacting with FAS, and promoting apoptosis | AR | Increased DN
T cells | Normal | Defective
lymphocyte
apoptosis | Functional hyposplenism,
bacterial and viral infections
Recurrent episodes of
encephalopathy and liver
dysfunction | 613759 | | (f) CARD11
gain-of-function
(GOF)
mutations ^e | GOF mutations in <i>CARD11</i> , encoding a protein required for antigen receptor–induced NF-kB activation in B and T lymphocytes | AD | Normal | Increased
M+D+CD19+
CD20+ B
cells | Constitutive
activation of NF-κB
in B & T | Lymphoproliferation Bacterial and viral infections EBV chronic infection Autoimmune cytopenia Hypogammaglobulinemia | 606445 | | (g) PRKC8
deficiency ^a | Mutations in <i>PRKCD</i> , encoding a member of the protein kinase C family critical for regulation of cell survival, proliferation, and apoptosis | AR | Normal | Low
memory B
cells and
elevation of
CD5 B cells | Apoptotic defect in
B cells | Recurrent infections; EBV chronic infection Lymphoproliferation SLE-like autoimmunity (nephrotic and antiphospholipid syndromes) HypolgG | 615559 | ## Table 4 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional
defect | Associated features | OMIM
number | |---|--|--|---|------------------------|---|--|---| | 6. Immune dysre | gulation with colitis | - The state of | *************************************** | 20,777 (64.00) | | The state of s | 111111111111111111111111111111111111111 | | (a) IL-10
deficiency ^a | Mutations in <i>IL-10</i> , encoding IL-10 | AR | Normal | Normal | No functional IL-10 secretion | Inflammatory bowel disease
(IBD) folliculitis
Recurrent respiratory
diseases
Arthritis | Not
assigned | | (b) IL-10Rα
deficiency | Mutations in <i>IL-10RA</i> ,
encoding IL-10R1 | AR | Normal . | Normal | Leukocytes, no
response to IL-10 | IBD, folliculitis
Recurrent respiratory
diseases
Arthritis, lymphoma | 613148 | | (c) IL-10Rβ
deficiency | Mutations in <i>IL-10RB</i> ,
encoding IL-10R2 | AR | Normal | Normal | Leukocytes, no
response to IL-10,
IL-22, IL-26, IL-28A,
IL-28B, and IL-29 | IBD, folliculitis
Recurrent respiratory
diseases
Arthritis, lymphoma | 612567 | | 7. Type 1 interfero | onopathies | | | | | | | | (a) TREX1
deficiency,
Aicardi–
Goutieres
syndrome 1
(AGS1) | Mutations in TREX1, encoding nuclease involves in clearing cellular nucleic debris | AR
AD° | Not assessed | Not
assessed | Intracellular accumulation of abnormal single-stranded (ss) DNA species leading to increased CSF alpha-IFN production | Progressive encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia Elevated hepatic transaminases Chronic cerebrospinal fluid (CSF) lymphocytosis | 606609 | | (b) RNASEH2B
deficiency,
AGS2 | Mutations in RNASEH2B, encoding nuclease subunit involves in clearing cellular nucleic debris | AR | Not assessed | Not
assessed | Intracellular
accumulation of
abnormal ss-DNA
species leading to
increased CSF
alpha-IFN
production | Progressive encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia Elevated hepatic
transaminases Chronic CSF lymphocytosis | 610326 | | (c) RNASEH2C
deficiency,
AGS3 | Mutations in RNASEH2C,
encoding nuclease subunit
involves in clearing cellular
nucleic debris | AR | Not assessed | Not
assessed | Intracellular
accumulation of
abnormal ss-DNA
species leading to
increased CSF
alpha-IFN
production | Progressive encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia Elevated hepatic transaminases Chronic CSF lymphocytosis | 610330 | | (d) RNASEH2A
deficiency,
AGS4 ^a | Mutations in RNASEH2A, encoding nuclease subunit involves in clearing cellular nucleic debris | AR | Not assessed | Not
assessed | Intracellular
accumulation of
abnormal ss-DNA
species leading to
increased CSF
alpha-IFN
production | Progressive encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia Elevated hepatic transaminases Chronic CSF lymphocytosis | 606034 | Table 4 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional
defect | Associated features | OMIM
number | |---|--|-------------|------------------------|------------------------|--|---|----------------| | (e) SAMHD1
deficiency,
AGS5 | Mutations in SAMHD1, encoding negative regulator of the immunostimulatory DNA response | AR | Not assessed | Not
assessed | Induction of the cell intrinsic antiviral response, apoptosis, and mitochondrial DNA destruction leading to increased CSF alpha-IFN production | Progressive encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia, anemia elevated lactates Chronic CSF lymphocytosis Skin vasculitis, mouth ulcers, arthropathy | 612952 | | (f) ADAR1
deficiency,
AGS6 | Mutations in <i>ADAR1</i> , encoding an RNA-specific adenosine deaminase | AR | Not assessed | Not
assessed | Catalyzes the
deamination of
adenosine to
inosine in dsRNA
substrates
markedly elevated
CSF IFN-alpha | Progressive encephalopathy intracranial calcification Severe developmental delay, leukodystrophy | 615010 | | (g) Spondylo
enchondro-
dysplasia with
immune
dysregulation
(SPENCD) | Mutations in <i>ACP5</i> ,
encoding tartrate-resistant
acid phosphatase (TRAP) | AR . | Not assessed | Not
assessed | Upregulation of
IFN-alpha and type
I IFN-stimulated
genes | Recurrent bacterial and viral infections, intracranial calcification SLE-like autoimmunity (Sjögren's syndrome, hypothyroidism, inflammatory myositis, Raynaud's disease and vitiligo), hemolytic anemia, thrombocytopenia, skeletal dysplasia, short stature | 607944 | XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; FHL, familial hemophagocytic lymphohistiocytosis; HLH, hemophagocytic lymphohistiocytosis; HSMG, hepatosplenomegaly; DN, double negative; SLE, systemic lupus erythematous; IBD, inflammatory bowel disease; CSF, chronic cerebrospinal fluid. Fourteen new disorders have been added to **Table 4**. Two new entries have been added in the table, including immune dysregulation with colitis and Type 1 interferonopathies. EBV-driven lymphoproliferation is also observed in MAGT1 deficiency (**Table 1**). Table 5 | Congenital defects of phagocyte number, function, or both. | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Affected function | Associated features | OMIM
number | |--|--|---|----------------|----------------------------|--------------------------------|----------------| | 1. Defects of neutrophil f | unction | and the latest block of health house of soils a second PATH PROPERTY AND A PYTH Soils | | | | | | (a) Severe congenital
neutropenia 1 (ELANE
deficiency) | Mutation in <i>ELANE</i> : misfolded protein response, increased apoptosis | AD | N | Myeloid
differentiation | Susceptibility to MDS/leukemia | 202700 | | (b) SCN2° (GFI 1 deficiency) | Mutation in <i>GFI1</i> : loss of repression of ELANE | AD | Ν | Myeloid
differentiation | B/T lymphopenia | 613107 | ^aTen or fewer unrelated cases reported in the literature. ^bSomatic mutations of TNFRSF6 cause a similar phenotype (ALPS-sFAS), see **Table 9**. Germinal mutation and somatic mutation of TNFRSF6 can be associated in some ALPS-FAS patients. ^cAR ALPS-FAS patients have a most severe clinical phenotype. ^d Somatic mutations in KRAS or NRAS can give this clinical phenotype associated autoimmune leukoproliferative disease (RALD) and are now included in **Table 9** entitled phenocopies of PID. ^eDe novo dominant TREX1 mutations have been reported. ## Table 5 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Affected function | Associated features | OMIM
number | |---|---|--------------------------|-------------------|--|--|----------------| | (c) SCN3 (Kostmann
disease) | Mutation in <i>HAX1</i> : control of apoptosis | AR | N | Myeloid
differentiation | Cognitive and neurological defects in patients with defects in both HAX1 isoforms, susceptibility to MDS/leukemia | 610738 | | (d) SCN4 (G6PC3
deficiency) | Mutation in <i>G6PC3</i> : abolished enzymatic activity of glucose-6-phosphatase, aberrant glycosylation, and enhanced apoptosis of N and F | AR | N + F | Myeloid differentiation, chemotaxis, O ₂ production | Structural heart defects,
urogenital abnormalities, inner
ear deafness, and venous
angiectasias of trunks and limbs | 612541 | | (e) SCN5 | Mutation in VPS45 controls vesicular trafficking | AR | N + F | Myeloid
differentiation,
migration | Extramedullary hematopoiesis,
bone marrow fibrosis,
nephromegaly | 615285 | | (f) Glycogen storage
disease type 1b | Mutation in <i>G6PT1</i> : glucose-6-phosphate transporter 1 | AR | N + M | Myeloid
differentiation,
chemotaxis, O ₂ ⁻
production | Fasting hypoglycemia, lactic acidosis, hyperlipidemia, hepatomegaly | 232220 | | (g) Cyclic neutropenia | Mutation in <i>ELANE</i> : misfolded protein response | AD | N | Differentiation | Oscillations of other leukocytes and platelets | 162800 | | (h) X-linked
neutropenia/ ^a
myelodysplasia | Mutation in WAS: regulator of actin cytoskeleton (loss of auto-inhibition) | XL, gain-of-
function | N + M | Mitosis | Monocytopenia | 300299 | | (i) P14/LAMTOR2
deficiency ^a | Mutation in <i>ROBLD3/LAMTOR2</i> : endosomal adaptor protein 14 | AR | N + L
Mel | Endosome
biogenesis | Neutropenia
Hypogammaglobulinemia
↓ CD8 cytotoxicity
Partial albinism
Growth failure | 610389 | | (j) Barth syndrome | Mutation in tafazzin (TAZ)
gene: abnormal lipid structure
of mitochondrial membrane,
defective carnitine metabolism | XL | N | Myeloid
differentiation | Cardiomyopathy, myopathy, growth retardation | 302060 | | (k) Cohen syndrome | Mutation in <i>COH1</i> gene: Pg
unknown | AR | N | Myeloid
differentiation | Retinopathy, developmental delay, facial dysmorphisms | 216550 | | (I) Clericuzio syndrome
poikiloderma with
neutropenia
2. Defects of motility | Mutation in <i>C16ORF57</i> , affects genomic integrity | AR | N | Myeloid
differentiation | Poikiloderma, neutropenia, MDS | 613276 | | (a) Leukocyte
adhesion deficiency
type 1 (LAD1) | Mutation in <i>ITGB2</i> : adhesion protein (CD18) | AR | N + M +
L + NK | Adherence,
chemotaxis,
endocytosis,
T/NK cytotoxicity | Delayed cord separation, skin
ulcers
Periodontitis
Leukocytosis | 116920 | | (b) Leukocyte
adhesion deficiency
type 2 (LAD2) ^a | Mutation in <i>FUCT1</i> : GDP-fucose transporter | AR | N + M | Rolling,
chemotaxis | Mild LAD type 1 features plus
hh-blood group plus mental and
growth retardation | 266265 | | (c) Leukocyte
adhesion deficiency
type 3 (LAD3) | Mutation in <i>KINDLIN3</i> :
Rap1-activation of β1–3
integrins | AR | N + M +
L + NK | Adherence,
chemotaxis | LAD type 1 plus bleeding tendency | 612840 | | (d) Rac 2 deficiency ^a | Mutation in <i>RAC2</i> : regulation of actin cytoskeleton | AD | N | Adherence, chemotaxis, O_2^- production | Poor wound healing,
leukocytosis | 602049 | # Table 5 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Affected function | Associated features | OMIM
number | |--|---|-------------|----------------|---
---|----------------| | (e) β-Actin deficiency [®] | Mutation in <i>ACTB</i> : cytoplasmic actin | AD | N+M | Motility | Mental retardation, short stature | 102630 | | (f) Localized juvenile periodontitis | Mutation in <i>FPR1</i> : chemokine receptor | AR | N | Formylpeptide induced chemotaxis | Periodontitis only | 136537 | | (g) Papillon–Lefèvre
syndrome | Mutation in <i>CTSC</i> : cathepsin C activation of serine proteases | AR | N + M | Chemotaxis | Periodontitis, palmoplantar
hyperkeratosis in some patients | 245000 | | (h) Specific granule
deficiency ^a | Mutation in <i>C/EBPE</i> : myeloid transcription factor | AR | N | Chemotaxis | Neutrophils with bilobed nuclei;
absent secondary granules and
defensins | 245480 | | (i) Shwachman–
Diamond syndrome | Mutation in <i>SBDS</i> : defective ribosome synthesis | AR | N | Chemotaxis | Pancytopenia, exocrine pancreatic insufficiency, chondrodysplasia | 260400 | | 3. Defects of respiratory | | VI | N1 + N4 | Villian Harris Of | Dogwood besteriel interior | 200400 | | (a) X-linked chronic
granulomatous
disease (CGD) | Mutation in CYBB: electron transport protein (gp91phox) | XL | N + M | Killing (faulty O ₂ production) | Recurrent bacterial infection, susceptibility to fungal infection, inflammatory gut manifestations McLeod phenotype in patients with deletions extending into the contiguous Kell locus | 306400 | | (b) Autosomal
recessive CGD – p22
phox deficiency | Mutation in <i>CYBA</i> : electron transport protein (p22phox) | AR | N + M | Killing (faulty O ₂ ⁻ production) | Recurrent bacterial infection,
susceptibility to fungal infection,
and inflammatory gut
manifestations | 233690 | | (c) Autosomal
recessive CGD – p47
phox deficiency | Mutation in <i>NCF1</i> : adapter protein (p47phox) | AR | N + M | Killing (faulty O_2^- production) | Recurrent bacterial infection,
susceptibility to fungal infection,
and inflammatory gut
manifestations | 233700 | | (d) Autosomal
recessive CGD – p67
phox deficiency | Mutation in <i>NCF2</i> : activating protein (p67phox) | AR | N + M | Killing (faulty O_2^- production) | Recurrent bacterial infection,
susceptibility to fungal infection,
inflammatory gut
manifestations | 233710 | | (e) Autosomal
recessive CGD – p40
phox deficiency ^a | Mutation in <i>NCF4</i> : activating protein (p40phox) | AR | N + M | Killing (faulty O_2^- production) | Inflammatory gut
manifestations only | 601488 | | Mendelian susceptibili IL-12 and IL-23 receptor β1 chain deficiency | ty to mycobacterial disease (MSMD
Mutation in <i>IL-12RB1</i> : IL-12 and
IL-23 receptor β1 chain |)
AR | L+NK | IFN-γ secretion | Susceptibility to Mycobacteria and Salmonella | 209950 | | (b) IL-12p40 deficiency | Mutation in <i>IL-12B</i> : subunit p40 of IL-12/IL-23 | AR | М | IFN-γ secretion | Susceptibility to Mycobacteria and Salmonella | 161561 | | (c) IFN-γ receptor 1 deficiency | Mutation in <i>IFNGR1</i> : IFN-γR
ligand binding chain | AR, AD | M+L | IFN-γ binding and signaling | Susceptibility to Mycobacteria and Salmonella | 107470 | | (d) IFN-γ receptor 2 deficiency | Mutation in <i>IFNGR2</i> : IFN-γR accessory chain | AR | M + L | IFN-γ signaling | Susceptibility to <i>Mycobacteria</i> and <i>Salmonella</i> | 147569 | | (e) STAT1 deficiency
(AD form) ^a | Mutation in <i>STAT1</i> (loss of function) | AD | M + L | IFN-γ signaling | Susceptibility to Mycobacteria | 600555 | Al-Herz et al. #### Table 5 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Affected function | Associated features | OMIM
number | |--|--|---|---|---|---|----------------| | (f) Macrophage gp91
phox deficiency ^a | Mutation in <i>CYBB</i> : electron transport protein (gp 91 phox) | XL | Mf only | Killing (faulty O ₂ | Isolated susceptibility to Mycobacteria | 306400 | | (g) IRF8-deficiency
(AD form) ^a | Mutation in <i>IRF8</i> : IL-12 production by CD1c+ MDC | AD | CD1c+
MDC | Differentiation of
CD1c+ MDC
subgroup | Susceptibility to Mycobacteria | 601565 | | (h) ISG15 | Mutation in <i>ISG15</i> ; an interferon (IFN) α/β-inducible, ubiquitin-like intracellular protein | AR | M + N + L | IFN-γ secretion | Susceptibility to Mycobacteria | 14751 | | 5. Other defects (a) IRF 8-deficiency (AR form) ^a | Mutation in <i>IRF8</i> : IL-12 production | AR | Monocytes
periph-
eral
DC | Cytopenias | Susceptibility to Mycobacteria,
Candida, myeloproliferation | 614893 | | (b) GATA2 deficiency
(Mono MAC
syndrome) | Mutation in <i>GATA2</i> : loss of stem cells | AD | Monocytes
periph-
eral
DC + NK + B | Multilineage
cytopenias | Susceptibility to Mycobacteria, papilloma viruses, histoplasmosis, alveolar proteinosis, MDS/AML/CMML | 137295 | | (c) Pulmonary alveolar
proteinosis ^a | Mutation in <i>CSF2RA</i> | Biallelic
mutations in
pseudo-
autosomal
gene | Alveolar
macro-
phages | GM-CSF
signaling | Alveolar proteinosis | 306250 | XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; ACTB, actin beta; B, B lymphocytes; CEBPE, CCAAT/enhancer-binding protein epsilon; CMML, chronic myelomonocytic leukemia; CTSC, cathepsin C; CYBA, cytochrome b alpha subunit; CYBB, cytochrome b beta subunit; DC, dendritic cells; ELANE, elastase neutrophil-expressed; GATA2, GATA binding protein 2; IFN, interferon; IFNGR1, interferon-gamma receptor subunit 1; IFNGR2, interferon-gamma receptor subunit 2; IL-12B, interleukin-12 beta subunit; IL-12RB1, interleukin-12 receptor beta 1; IFR8, interferon regulatory factor 8; F, fibroblasts; FPR1, formylpeptide receptor 1; FUCT1, fucose transporter 1; GFI1, growth factor independent 1; HAX1, HLCS1-associated protein X1; ITGB2, integrin beta-2; L, lymphocytes; M, monocytes—macrophages; MDC, myeloid dendritic cells; MDS, myelodysplasia; Mel, melanocytes; M\(\phi\), macrophages; MSMD, Mendelian susceptibility to mycobacterial disease; N, neutrophils; NCF1, neutrophil cytosolic factor 1; NCF2, neutrophil cytosolic factor 2; NCF4, neutrophil cytosolic factor 4; NK, natural killer cells; ROBLD3: roadblock domain containing 3; SBDS, Shwachman—Bodian—Diamond syndrome; STAT, signal transducer and activator of transcription. *Ten or fewer unrelated cases reported in the literature. **Table 5** includes seven newly described genetic defects of phagocyte number and/or function including Barth syndrome, Cohen syndrome, and poikiloderma with neutropenia. In these three clinically well-known diseases, the genetic defects have been elucidated, although their molecular pathogenesis remains ill-defined. A new cause of autosomal recessive chronic granulomatous disease, namely a deficiency of the cytosolic activating protein p40 phox, has now been found in two CGD patients and is included under defects of respiratory burst. Under the heading of Mendelian susceptibility of mycobacterial disease (MSMD), two new entities were added: (a) a subgroup of X-linked gp91 phox deficiency with isolated susceptibility to mycobacteria and a defect of the respiratory burst in macrophages only; (b) an autosomal dominant form of IRF8-deficiency, resulting from a lack of CD1c+ myeloid dendritic cells that would normally secrete IL-12. The clinical phenotype of MSMD may vary, depending on the nature of the genetic defect. Finally, GATA2 deficiency was recently identified as the cause of the Mono MAC syndrome, with multilineage cytopenias (of monocytes, peripheral dendritic cells, NK- and B-lymphocytes) resulting in opportunistic infections (including mycobacteria), alveolar proteinosis, and malignancy. Table 6 | Defects in innate immunity. | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cell | Functional defect | Associated features | OMIM
number | |--|---|-----------------|--|---|---|-----------------| | 1. Anhidrotic ectoderm | nal dysplasia with immunodef | iciency (EDA-ID |)) | | те стименты выполня по том на подости под | | | (a) EDA-ID, X-linked
(NEMO deficiency) | Mutations of <i>NEMO</i> (<i>IKBKG</i>), a modulator of NF-κB activation | XL | Lymphocytes + monocytes | NF-κB signaling
pathway | Various infections (bacteria, Mycobacteria, viruses, and fungi) Colitis EDA (not in all patients) Hypogammaglobulinemia to specific antibody polysaccharides deficiency | 300248 | | (b) EDA-ID,
autosomal-
dominant ^a 2. TIR signaling pathw | Gain-of-function mutations of <i>IKBA</i> , resulting in impaired activation of NF-kB | AD | Lymphocytes + monocytes | NF-kB signaling
pathway | Various infections (bacteria,
viruses, and fungi)
EDA
T cell defect | 612132 | | (a) IRAK-4 deficiency | Mutations of <i>IRAK-4</i> , a component of TLR- and IL-1R-signaling pathway | AR | Lymphocytes + granulocytes + monocytes | TIR–IRAK signaling
pathway | Bacterial infections (pyogenes) | 607676 | | (b) MyD88
deficiency | Mutations of <i>MYD88</i> , a component of the TLR and IL-1R signaling pathway | AR | Lymphocytes +
granulocytes +
monocytes | TIR–MyD88 signaling pathway | Bacterial infections
(pyogenes) | 612260 | | 3. HOIL1 deficiency ^a | Mutation of <i>HOIL1</i> , a component of LUBAC | AR | Lymphocytes +
granulocytes +
monocytes | NF-kB signaling
pathway | Bacterial infections
(pyogenes)
Autoinflammation
Amylopectinosis | Not
assigned | | 4. WHIM (Warts,
hypogammaglobu-
linemia, infections,
myelokathexis)
syndrome | Gain-of-function
mutations of <i>CXCR4</i> , the
receptor for CXCL12 | AD | Granulocytes +
lymphocytes | Increased response
of the CXCR4
chemokine receptor
to its ligand CXCL12
(SDF-1) | Warts/human papilloma virus
(HPV) infection
Neutropenia
Reduced B cell number
Hypogammaglobulinemia | 193670 | | 5. Epidermodysplasia v
EVER1 deficiency | verruciformis
Mutations of <i>EVER1</i> | AR | Keratinocytes
and leukocytes | EVER proteins may
be involved in the
regulation of cellular
zinc homeostasis in
lymphocytes | HPV (group B1) infections and cancer of the skin (typical EV) | 226400 | | EVER2 deficiency | Mutations of EVER2 | AR | Keratinocytes
and leukocytes | EVER proteins may
be involved in the
regulation of cellular
zinc homeostasis in
lymphocytes | HPV (group B1) infections and cancer of the skin (typical EV) | 226400 | | Predisposition to se STAT2 deficiency^a | vere viral infection Mutations of <i>STAT2</i> | AR | T and NK cells | STAT2-dependent
IFN-α and -β
response | Severe viral infections
(disseminated vaccine-strain
measles) | Not
assigned | ## Table 6 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cell | Functional
defect | Associated features | OMIM
number | |--|---|-------------|--|---|---|-----------------| | (b) MCM4
deficiency ^a | Mutations in <i>MCM4</i> | AR | NK cells | DNA repair disorder | Viral infections (EBV, HSV,
VZV)
Adrenal failure
Short stature | 609981 | | 7. Herpes simplex ence | ephalitis (HSE) | | | | | | | (a) TLR3 deficiency ^a | (b) Mutations of <i>TLR3</i> | AD
AR | Central nervous system (CNS) resident cells and fibroblasts | TLR3-dependent IFN- α , - β , and - λ induction | Herpes simplex virus 1
encephalitis (incomplete
clinical penetrance for all
etiologies listed here) | 613002 | | (b) UNC93B1
deficiency ^a | (a) Mutations of
UNC93B1 | AR | CNS resident cells and fibroblasts | UNC-93B-dependent IFN- α , - β , and - λ induction | Herpes simplex virus 1 encephalitis | 610551 | | (c) TRAF3
deficiency ^a | (c) Mutations of <i>TRAF3</i> | AD | CNS resident cells and fibroblasts | TRAF3-dependent IFN- α , - β , and - λ induction | Herpes simplex virus 1 encephalitis | 614849 | | (d) TRIF deficiency ^a | (c) Mutations of <i>TRIF</i> | AD
AR | CNS resident cells and fibroblasts | TRIF-dependent IFN- α , - β , and - λ induction | Herpes simplex virus 1 encephalitis | 614850 | | (e) TBK1 deficiency ^a | (c) Mutations of <i>TBK1</i> | AD | CNS resident cells and fibroblasts | TBK1-dependent IFN- α , - β , and - λ induction | Herpes simplex virus 1 encephalitis | Not
assigned | | 8. Predisposition to inv | asive fungal diseases ^a | | | | | | | CARD9 deficiency | Mutations of <i>CARD9</i> eous candidiasis (CMC) | AR | Mononuclear phagocytes | CARD9 signaling pathway | Invasive candidiasis infection Deep dermatophytoses | 212050 | | g. climine indecediane
(a) IL-17RA
deficiency ^a | (a) Mutations in <i>IL-17RA</i> | AR | Epithelial cells,
fibroblasts,
mononuclear
phagocytes | IL-17RA signaling
pathway | CMC
Folliculitis | 605461 | | (b) IL-17F deficiency ^a | (b) Mutations in <i>IL-17F</i> | AD | T cells | IL-17F-containing dimers | CMC
Folliculitis | 606496 | | (c) STAT1
gain-of-function | (c) Gain-of-function
mutations in <i>STAT1</i> | AD | T cells | Gain-of-function
STAT1 mutations that
impair the
development of
IL-17-producing T cells | CMC Various fungal, bacterial, and viral (HSV) infections Autoimmunity (thyroiditis, diabetes, cytopenia) Enteropathy | 614162 | | (d) ACT1 deficiency ^a | (c) Mutations in ACT1 | AR | T cells,
fibroblasts | Fibroblasts fail to
respond to IL-17A and
IL-17F, and their T
cells to IL-17E | CMC
Blepharitis, folliculitis, and
macroglossia | 615527 | | 10. Trypanosomiasis ^a | Mutations in APOL-I | AD | | APOL-I | Trypanosomiasis | 603743 | #### Table 6 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cell | Functional
defect | Associated features | OMIM
number | |--|--|-------------|---------------|---|--|----------------| | 11. Isolated
congenital asplenia
(ICA) | Mutations in <i>RPSA</i> | AD | Spleen | RPSA encodes
ribosomal protein SA,
a component of the
small subunit of the
ribosome | Bacteremia (encapsulated
bacteria)
No spleen | 271400 | XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; NF_KB, nuclear factor kappa B; TIR, Toll and interleukin 1 receptor; IFN, interferon; HVP, human papilloma virus; TLR, Toll-like receptor; IL, interleukin. Eight new disorders have been added to **Table 6**. Three new entries have been added in the table. One is a new PID with the association of recurrent bacterial infections, autoinflammation, and amylopectinosis caused by AR HOIL1 mutations found in two kindreds. The second is severe viral infection, for which three genetic etiologies have been discovered. AR-STAT2 deficiency and AR-CD16 deficiency have been found in one kindred each. AR MCM4 deficiency has been found in several Irish kindreds. The third is isolated congenital asplenia identified in 18 patients from 8 kindreds. XR-EDA-ID is highly heterogeneous clinically, both in terms of developmental features (some patients display osteopetrosis and lymphedema, in addition to EDA, while others do not display any developmental features) and infectious diseases (some display multiple infections, viral, fungal, and bacterial, while others display a single type of infection). The various OMIM entries correspond to these distinct clinical diseases. Table 7 | Autoinflammatory disorders. | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Functional defects | Associated features | OMIM
number | |---|---|-------------|--|--|--|----------------| | 1. Defects effecting the | inflammasome | | | | | | | (a) Familial
Mediterranean fever | Mutations of MEFV (lead to gain of pyrin function, resulting in inappropriate IL-1β release) | AR | Mature
granulocytes,
cytokine-activated
monocytes | Decreased production
of pyrin permits
ASC-induced IL-1
processing and
inflammation following
subclinical serosal
injury; macrophage
apoptosis decreased | Recurrent fever,
serositis, and
inflammation
responsive to
colchicine. Predisposes
to vasculitis and
inflammatory bowel
disease | 249100 | | (b) Mevalonate kinase
deficiency (hyper IgD
syndrome) | Mutations of MVK (lead to a block in the mevalonate pathway). Interleukin-1beta mediates the inflammatory phenotype | AR | | Affecting cholesterol synthesis; pathogenesis of disease is unclear | Periodic fever and
leukocytosis with high
IgD levels | 260920 | | (c) Muckle-Wells
syndrome | Mutations of CIAS1 (also called PYPAF1 or NALP3) lead to constitutive activation of the NLRP3 inflammasome | AD | PMNs monocytes | Defect in cryopyrin,
involved in leukocyte
apoptosis and NF-kB
signaling and IL-1
processing | Urticaria, SNHL,
amyloidosis | 191900 | | (d) Familial cold
autoinflammatory
syndrome | Mutations of <i>CIAS1</i> (see above) Mutations of <i>NLRP12</i> | AD | PMNs,
monocytes | Same as above | Non-pruritic urticaria,
arthritis, chills, fever,
and leukocytosis after
cold exposure | 120100 | ^aTen or fewer unrelated cases reported in the literature. Al-Herz et al. # Table 7 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Functional defects | Associated features | OMIM
number | |---|--|-------------
--|--|---|----------------| | 5. Neonatal onset
multisystem
inflammatory disease
(NOMID) or chronic
infantile neurologic
cutaneous and articular
syndrome (CINCA) | Mutations of <i>CIAS1</i> (see above) | AD | PMNs,
chondrocytes | Same as above | Neonatal onset rash,
chronic meningitis, and
arthropathy with fever
and inflammation | 607115 | | 2. Non inflammasome-re | lated conditions | | | | | | | (a) TNF
receptor-associated
periodic syndrome
(TRAPS) | Mutations of TNFRSF1
(resulting in increased TNF
inflammatory signaling) | AD | PMNs,
monocytes | Mutations of 55-kDa TNF receptor leading to intracellular receptor retention or diminished soluble cytokine receptor available to bind TNF | Recurrent fever,
serositis, rash, and
ocular or joint
inflammation | 142680 | | (b) Early-onset
inflammatory bowel
disease | Mutations in <i>IL-10 (results in increase many proinflammatory cytokines)</i> | AR | Monocyte/
macrophage,
activated T cells | IL-10 deficiency leads to
increase of TNFγ and
other proinflammatory
cytokines | Early-onset enterocolitis
enteric fistulas, perianal
abscesses, chronic
folliculitis | 124092 | | (b) Early-onset
inflammatory bowel
disease | Mutations in <i>IL-10RA (see above)</i> | AR | Monocyte/
macrophage,
activated T cells | Mutation in IL-10 receptor alpha leads to increase of TNFγ and other proinflammatory cytokines | Early-onset enterocolitis
enteric fistulas, perianal
abscesses, chronic
folliculitis | 146933 | | (b) Early-onset
inflammatory bowel
disease | Mutations in <i>IL-10RB (see above)</i> | AR | Monocyte/
macrophage,
activated T cells | Mutation in IL-10 receptor beta leads to increase of TNFy and other proinflammatory cytokines | Early-onset enterocolitis
enteric fistulas, perianal
abscesses, chronic
folliculitis | 123889 | | (c) Pyogenic sterile
arthritis, pyoderma
gangrenosum, acne
(PAPA) syndrome | Mutations of <i>PSTPIP1</i> (also called C2BP1) (affects both pyrin and protein tyrosine phosphatase to regulate innate and adaptive immune responses) | AD | Hematopoietic
tissues,
upregulated in
activated T cells | Disordered actin
reorganization leading
to compromised
physiologic signaling
during inflammatory
response | Destructive arthritis,
inflammatory skin rash,
myositis | 604416 | | (d) Blau syndrome | Mutations of <i>NOD2</i> (also called CARD15) (involved in various inflammatory processes) | AD | Monocytes | Mutations in nucleotide
binding site of CARD15,
possibly disrupting
interactions with
lipopolysaccharides and
NF-kB signaling | Uveitis, granulomatous
synovitis,
camptodactyly, rash,
and cranial
neuropathies, 30%
develop Crohn's disease | 186580 | | 10. Chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anemia (Majeed syndrome) ^a | Mutations of <i>LPIN2</i> (increased expression of the proinflammatory genes) | AR | Neutrophils, bone marrow cells | Undefined | Chronic recurrent
multifocal
osteomyelitis,
transfusion-dependent
anemia, cutaneous
inflammatory disorders | 609628 | #### Table 7 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Functional defects | Associated features | OMIM
number | |--|--|-------------|------------------------------------|--|---|----------------| | 11. DIRA (deficiency of
the interleukin 1
receptor antagonist) ^a | Mutations of <i>IL-1RN</i> (see functional defect) | AR | PMNs,
monocytes | Mutations in the IL-1
receptor antagonist
allow unopposed action
of Interleukin 1 | Neonatal onset of
sterile multifocal
osteomyelitis,
periostitis, and
pustulosis | 612852 | | 12. DITRA – deficiency
of IL-36 receptor
antagonist | Mutation in <i>IL36RN</i> (see functional defect) | AR | Keratinocyte
leukocytes | Mutations in IL-36RN
leads to increase IL-8
production | Pustular psoriasis | 614204 | | 13. SLC29A3 mutation | Mutation in SLC29A3 (?) | AR | Leukocyte, bone cells | Macrophage activation? | Hyperpigmentation hypertrichosis | 602782 | | 14. CAMPS (CARD14 mediated psoriasis) | Mutation in <i>CARD14</i> (see functional defect) | AD | Mainly in
keratinocyte | Mutations in CARD14 activate the NF-κB pathway and production of IL-8 | Psoriasis | 173200 | | 15. Cherubism | Mutation in <i>SH3BP2</i> (see functional defect) | AD | Stroma cells,
bone cells | Hyperactivated
macrophage and
increased NF-kB | Bone degeneration in jaws | 11840 | | 16. CANDLE (chronic atypical neutrophilic dermatitis with lipodystrophy) | Mutation in <i>PSMB8</i> (see functional defect) | AD | Keratinocyte, B cell adipose cells | Mutations cause increase IL-6 production | Dystrophy, panniculitis | 256040 | | 17. HOIL1 deficiency | Mutation in <i>HOIL1</i> (see functional defect) | AR | PMNs, fibroblast | Mutation in <i>HOIL1</i>
leads to IL-1β
dysfunction | Immunodeficiency
autoinflammation
amylopectinosis | 610924 | | 18. PLAID (PLCy2
associated antibody
deficiency and immune
dysregulation) | Mutation in <i>PLCG2</i> (see functional defect) | AD | B cells, NK, mast cells | Mutations cause activation of IL-1 pathways | Cold urticaria hypogam-
maglobulinemia | 614878 | AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; PMN, polymorphonuclear cells; ASC, apoptosis-associated speck-like protein with a caspase recruitment domain; CARD, caspase recruitment domain; CD2BP1, CD2 binding protein 1; PSTPIP1, proline/serine/threonine phosphatase-interacting protein 1; SNHL, sensorineural hearing loss; CIAS1, cold-induced autoinflammatory syndrome 1. Autoinflammatory diseases are clinical disorders marked by abnormally increased inflammation, mediated predominantly by the cells and molecules of the innate immune system, with a significant host predisposition. While the genetic defect of one of the most common autoinflammatory conditions, PFAPA, is not known, recent studies suggest that it is associated with activation of IL-1 pathway and response to IL-1 beta antagonists. Muckle–Wells syndrome, familial cold autoinflammatory syndrome and neonatal onset multisystem inflammatory disease (NOMID), which is also called chronic infantile neurologic cutaneous and articular syndrome (CINCA) are caused by similar mutations in CIAS1 mutations. The disease phenotype in any individual appears to depend on modifying effects of other genes and environmental factors. ^aTen or fewer unrelated cases reported in the literature. Table 8 | Complement deficiencies. | Disease | Genetic defect;
presumed pathogenesis | Inheritance | Functional defect | Associated features | OMIM
number | |-----------------------|---|-----------------------------|--|--|------------------------------| | 1. C1q deficiency | Mutation in C1QA, C1QB,
C1QC: classical complement
pathway components | AR | Absent CH50 hemolytic activity,
defective activation of the
classical pathway
Diminished clearance of
apoptotic cells | SLE, infections with encapsulated organisms | 120550;
601269;
120575 | | 2. C1r deficiency | Mutation in <i>C1R</i> : classical complement pathway component | AR | Absent CH50 hemolytic activity, defective activation of the classical pathway | SLE, infections with encapsulated organisms | 216950 | | 3. C1s deficiency | Mutation in <i>C1S</i> : classical complement pathway component | AR | Absent CH50 hemolytic activity,
defective activation of the
classical pathway | SLE, infections with encapsulated organisms | 120580 | | 4. C4 deficiency | Mutation in <i>C4A, C4B</i> : classical complement pathway components | AR | Absent CH50 hemolytic activity, defective activation of the classical pathway, defective humoral immune response to carbohydrate antigens in some patients | SLE, infections with encapsulated organisms | 120810;
120820 | | 5. C2 deficiency | Mutation in <i>C2</i> : classical complement pathway component | AR | Absent CH50 hemolytic activity, defective activation of the classical pathway | SLE, infections with encapsulated organisms, atherosclerosis | 217000 | | 6. C3 deficiency | Mutation in <i>C3</i> : central complement component | AR, gain-of-
function AD | Absent CH50 and AH50
hemolytic activity defective
opsonization
Defective humoral immune
response | Infections; glomerulonephritis Atypical hemolytic–uremic syndrome with gain-of-function mutations | 120700 | | 7. C5 deficiency | Mutation in <i>C5</i> : terminal complement component | AR | Absent CH50 and AH50 hemolytic activity; defective bactericidal activity | Neisserial infections | 120900 | | 8. C6 deficiency | Mutation in <i>C6</i> : terminal complement component | AR | Absent CH50 and AH50 hemolytic activity; defective bactericidal activity | Neisserial infections | 217050 | | 9. C7 deficiency | Mutation in <i>C7</i> : terminal complement component | AR | Absent CH50
and AH50 hemolytic activity; defective bactericidal activity | Neisserial infections | 217070 | | 10. C8 α-γ deficiency | Mutation in <i>C8A, C8G</i> : terminal complement components | AR | Absent CH50 and AH50 hemolytic activity; defective bactericidal activity | Neisserial infections | 120950 | | 11. C8b deficiency | Mutation in <i>C8B</i> : Terminal complement component | AR | Absent CH50 and AH50
hemolytic activity; defective
bactericidal activity | Neisserial infections | 120960 | | 12. C9 deficiency | Mutation in <i>C9</i> : Terminal complement component | AR | Reduced CH50 and AP50
hemolytic activity; deficient
bactericidal activity | Mild susceptibility to
Neisserial infections | 613825 |