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Patients with 2q37 deletions manifest brachydactyly mental
retardation syndrome (BDMR). Recent advances in human
molecular research have revealed that alterations in the histone
deacetylase 4 gene (HDAC4) are responsible for the clinical
manifestations of BDMR. Here, we report two male patients
with 2q37.3 deletions. One of the patients showed a typical
BDMR phenotype, and HDAC4 was included in the deletion
region. HDAC4 was preserved in the other patient, and he
showed a normal intelligence level with the delayed learning
of complex motor skills. Detailed neuropsychological examina-
tions revealed similar neuropsychological profiles in these two
patients (visuo-spatial dyspraxia) that suggested developmental
dyspraxia. These observations suggested that some other candi-
date genes for neuronal development exist in the telomeric
region of HDAC4. © 2614 Wiley Periodicals, Inc.

Key words: 2q37.3 deletion; intellectual disability; autism
spectrum disorder; developmental dyspraxia; brachydactyly
mental retardation syndrome (BDMR); Albright hereditary
osteodystrophy-like syndrome (AHO-like); histone deacetylase
4 gene (HDAC4)

INTRODUCTION

Chromosomal deletions in the 2q37 region have been identified in
over 100 patients with brachydactyly mental retardation syndrome
(BDMR), which is synonymous with Albright hereditary
osteodystrophy-like syndrome (AHO-like) [Villavicencio-Lorini
et al., 2013]. BDMR is a complex disorder that presents with a
spectrum of clinical features, including developmental delay,
obesity, autism spectrum disorder, and craniofacial and skeletal
abnormalities, including brachydactyly type E in approximately
50% of the cases [Williams et al., 2010]. A recent genotype-
phenotype correlation study has revealed that the histone deace-

© 2014 Wiley Periodicals, Inc.
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tylase 4 gene (HDAC4) is located on the overlapping 2q37 deletions
that have been reported in patients with BDMR and intragenic
mutations of HDAC4 have been identified in patients with BDMR
who did not show 2q37 deletions, indicating that HDACA4 is
responsible for this clinical condition [Williams et al., 2010].

It is controversial whether additional telomeric regions of
HDACH are related to certain clinical features. In this study, we
describe two patients with subtelomeric-invisible-small 2q37.3
deletions. One of the patients showed a typical BDMR phenotype,
and the deletion region included HDAC4. This was consistent with
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previous knowledge. However, the deletion that was identified in
the other patient did not include HDAC4. We evaluated these
patients in order to gain a better understanding of the genotype-
phenotype correlation regarding the neuropsychological manifes-
tations of patients with 2q37 deletions.

MATERIALS AND METHODS
Materials

Peripheral blood samples were obtained from the patients and their
families after obtaining informed consent from them and a per-

mission from the institution’s ethnical committee. DNA was
extracted from the peripheral blood samples with a QIAamp
DNA mini kit (QIAGEN, Venlo, The Netherlands). For the fluo-
rescence in-situ hybridization (FISH) analysis, metaphase spreads
were prepared from the peripheral blood samples with a standard
method as previously described [Shimojima et al., 2009, 2011].

Molecular and Cytogenetic Analysis

Genomic copy numbers were analyzed with a SurePrint G3 Hmn
CGH 60 k Oligo Microarray Kit (Agilent Technologies, Santa Clara,
CA) according to a method described elsewhere [Shimojima
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etal., 2009, 2011]. Genomic copy number aberrations were visual-
ized with the Agilent Genomic Workbench version 6.5 (Agilent
Technologies). In order to confirm the results of the chromosomal
microarray testing, a FISH analysis was performed with the human
bacterial artificial chromosomes (BACs) RP11-1077A16
(chr2q37.3:242,263,100-242,478,658), which was used as a target
probe, and RP11-137A4 (chr2p22.2:37,211,567-37,360,171),
which was used as a marker probe. Both probes were selected
from the University of California Santa Cruz (UCSC) genome
browser (http://www.gwenome.ucsc.edu). All of the genomic posi-
tions refer to the human reference genome build 19.

Neuropsychological Examinations

Both patients were evaluated with a comprehensive neuropsycho-
logical examination. The Wechsler Intelligence Scale for Children-
I (WISC-III) was used to evaluate general intelligence. The
Developmental Test of Visual Perception (DTVP) was adminis-
tered to evaluate visual perception [Fazzi et al., 2004]. The Devel-
opmental Voluntary Movement Test-Revised (DVMT-R) was used
to assess motor coordination and control [Yamane et al., 1990].
This test is a standardized childhood assessment for subjects who
are 2—6 years old, and it consists of 40 items in three categories of
voluntary movement: finger movement (three subscales: finger
flexion, finger extension, and hand coordination), face and oral
movement (three subscales: lips and cheeks, tongue, and speech),
and upper and lower extremity movement (three subscales: jump-
ing, balancing, and body coordination). The age at which 90% of the
children acquire each tested movement is considered to determine
their normal range of performance. Patients had to imitate the
examiner’s performance, and their performance was evaluated by
the examiner as their developmental age, at which 90% of the
children acquired each performance. We used the Childhood

Autism Rating Scale (CARS) that was translated into Japanese to
assess autistic symptoms [Schopler et al., 1980; Kanai et al., 2004;
Taniai et al., 2008]. ’

RESULTS
Genomic Copy Number Aberrations

Both patients showed genomic copy number aberrations in the
region of2q37.3. The genotype data are depicted in the genome map
in Figure. 1. Patient 1 showed a genomic copy number loss of 3.2—
Mb from the telomere, indicating arr 2g37.3(239,966,964—
243,199,373) x 1. Patient 2 also showed a genomic copy number
loss of 2.3Mb from the telomere, indicating arr 2q37.3
(240,912,892-243,199,373) x 1. There were no other aberrations
in either patient. The subsequent FISH analyses confirmed simple
terminal deletions in the metaphase spreads in both patients
(Fig. 2). Because all four parents declined to be genotyped, it is
unknown whether these aberrations were de novo or inherited.

Clinical Description

Patient 1. A 16-year-old, right-handed, Japanese boy was born
at 38 weeks gestation after an unremarkable pregnancy with a birth
weight of 2,570 g (10-25th centile) to healthy non-consanguineous
parents. His family history was not remarkable, and his younger
brother was healthy. He had delayed developmental milestones,
e.g., he did not walk until 19 months or talk until 24 months. He
showed a moderate intellectual disability and attended a special
school.

At present, his height is 165 cm (10-25th centile), and his weight
is 58 kg (25-50th centile). The patient has a distinctive face with
frontal bossing, down-slanting palpebral fissures, a wide and flat
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nasal bridge, a thin upper lip vermilion, and micrognathia. Bra-
chydactyly of the fourth finger is noted on both hands. Neurological
examination revealed that he was alert and well oriented. He
showed no cranial nerve deficits and had no hemiparesis or ataxia.
The muscle tone of his arms and legs was normal, as were his muscle
stretch reflexes, and no pathological reflexes were elicited. His
sensitivities to light touch, pain, temperature, vibration, and joint
motion were also normal. The findings of his brain magnetic
resonance imaging (MRI) and electroencephalography (EEG)
were within normal limits. His fluent speech indicated a higher
expressive language ability than his comprehension level. His good
interpersonal communication ability suggested a social personality;
however, he showed clumsiness when using tools including scissors
and toothbrushes. He had difficulty with clothing. Cognitive assess-
mentsrevealed a moderate intellectual disability that was associated
with mild impairments in attention, performance, and visual-
perceptual cognition. High-performance capability testing revealed
difficulty in finger imitation, left and right alternating movement,
and mouth-opening operations.

Patient 2. A 5-year-old, right-handed, Japanese boy was
born at 40 weeks of gestation to healthy non-consanguineous
parents with a weight of 3,090 g (50-75th centile), a length of
48.2 cm (25-50th centile), and an occipito-frontal circumference
of 33.5 cm (mean). His Apgar score was nine at 1 min. There was
no remarkable family history, and his older brother was healthy.
He started to walk independently and speak meaningful words at
18 months, indicating a mild delay. For this reason, he had
opportunities to attend special intervention training. At that
time, he was thought to have insufficient muscle power and
clumsiness in his fingers.

At present, his height is 108.7 cm (50-75th centile) and his
weight is 18.8 kg (50-75th centile). He does not show any dys-
morphism. His behaviors are performed at his own pace, and he
rarely follows our suggestions. He also shows obsessive tendencies
and mild attention impairments. His fine motor skills are poor, and
he has difficulty with left-right alternating movements. He shows
difficulty using scissors. No abnormalities were observed on brain
MRI or EEG.

Neuropsychological Examinations

The detailed data for the standard neuropsychological tests are
shown in Table I. :

Although patient 2 showed a normal intelligence quotient (IQ),
patient 1 showed moderate intellectual disability with a full IQ of 44.
Both patients showed a discrepancy between verbal IQ (VIQ) and
performance IQ (PIQ); the VIQ was higher than the PIQ in both. All
of the results on the subsets of WISC-III are depicted in Figure 3.
The patterns of the subset scores were quite similar to each other
(Fig. 3). In particular, lower scores were common in the similarities
and arithmetic of the verbal subsets and in the coding and picture
arrangement of the performance subsets.

On the DTVP, both patients had low scores for finding hidden
figures. Similarly, both patients also had low scores for movements
of the lips and cheeks and body coordination on the DVMT-R. The
CARS scores were similar in both patients and were not indicative of
autism.

100

al Test of Visual Percep-
, Childhood Autism Rating

DISCUSSION

In this study, we identified 2q37.3 deletions in two unrelated male
patients. One of the patients (patient 1) showed typical manifes-
tations of BDMR with brachydactyly, moderate intellectual disabil-
ity, and facial dysmorphism. The 2q37.3 deletion that was identified
in this patient was 3.2 Mb in size and included HDAC4 (Fig. 1,
Supplemental Table SI). This was in accordance with the fact that
his BDMR phenotype indicated HDAC4 involvement, and hap-
loinsufficiency of HDAC4has been recognized to be responsible for
BDMR [Williams et al., 2010; Morris et al., 2012; Villavicencio-
Lorini et al., 2013].

Williams et al. have suggested that the phenotypic features of a
subject with a 2q37 deletion consist of a variety of findings that
overlap with other syndromes, including Smith-Magenis syndrome
(SMS) [Williams et al., 2010]. Patients with SMS show a variety of
congenital anomalies, intellectual disabilities, and behavioral ab-
normalities. The retinoic acid-induced 1 gene (RAII) thatislocated
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in the 17p11.2 deletion region is the gene that is responsible for
SMS. Because RAII expression is reduced in patients with HDAC4
deletions and mutations, there is an expected interaction between
HDAC4 and RAI1 [Williams et al., 2010]. Thus far, no findings
have contradicted the notion that the behavioral abnormalities
in patients with 2q27 deletions are derived from HDAC4
haploinsufficiency.

In this study, we identified an additional patient (patient 2) with
a 2q37.3 deletion who showed no BDMR phenotypes and no
intellectual disability. This can be easily explained by the fact
that the identified smaller deletion did not include HDAC4
(Fig. 1). However, patient 2 showed some overlapping symptoms
with patient 1, including obsessive tendencies, mild attention
impairments, and clumsiness. Because there have been several
reports on an association between 2q37 deletions and autistic
behaviors [Ghaziuddin and Burmeister, 1999; Wolff et al., 2002;
Lukusa et al., 2004; Galasso et al., 2008; Mazzone et al., 2012], we
suspected that our patients might also be on the autism spectrum.
Therefore, we performed neuropsychological examinations and
compared the results of these two patients.

Although patient 2 did not show intellectual disability (IQ = 90),
he exhibited a significant difference between his VIQ (99) and his
PIQ (82). This pattern is the same in patient 1 who had a VIQ =56
and a PIQ = 44. In the verbal subsets, both of the patients showed
weakness in the similarities and arithmetic. In the performance
subsets, both patients showed weakness in coding and picture
arrangement. From these patterns, deficits in visual-motor skills
were suspected. The DTVP and DVMT-Rresults also showed similar
patterns. Both patients showed weakness in imitations of body
movement, indicating disabilities of visuospatial perception.
Based on these results, we suspected developmental dyspraxia
[Dewey, 1995]. The CARS scores (24.5 and 25.5 in patient 1 and
2, respectively) were not suggestive of autism. Although intellectual
disability was identified only in patient 1, the other neuropsycho-

- Patient 1

e Pationt 2

logical characteristics were similar. Therefore, the intellectual dis-
ability that was observed in patient 1 can be explained by HDAC4
involvement, but the other common neuropsychological abnormal-
ities cannot because patient 2 did not show HDAC4 involvement.

Williams et al., 2010 have described a similar patient who had a
smaller deletion (#2282) and who showed autistic behavior [Wil-
liams et al., 2010]. However, the authors concluded that these
phenotypic features were coincidental. Leroy et al., 2013 have also
described a similar patient whose deletion did not include HDAC4
but who had a duplication that included HDAC4 [Leroy
et al,, 2013]. They suggested an alternative explanation that the
other genes that are located in the telomeric region from HDAC4
may be related to autistic behavior. Unfortunately, detailed neuro-
psychological examinations have never been performed in these
patients. Therefore, an accumulation of the results of such exami-
nations would disclose whether the telomeric region of 2q37 is
related to autistic behaviors.

Missense mutations of the kinesin family member 1 A gene
(KIF1A) have been revealed as the causative mutations for autoso-
mal recessive spastic paraplegia [Erlich et al., 2011;Klebe
et al., 2012]. Later, a de novo mutation in KIFIA was reported
in a patient with nonsyndromic intellectual disability (MIM
601255) [Hamdan et al., 2011]. This indicated that a KIFIA
haploinsufficiency could cause some neurological impairments,
although behavior abnormalities were not described in those
reports. The serine/threonine kinase 25 gene (STK25) is a genetic
modifier of tau phosphorylation [Matsuki et al., 2012]. Because
depletion of this molecule inhibits axon specification [Matsuki
et al., 2010], a STK25 haploinsufficiency may contribute to the
behavioral abnormalities that have been observed in patients with
2q37.3 deletions [Shrimpton et al., 2004]. The glypican 1 gene
(GPCI) has been reported as a good candidate gene for BDMR
[Syrrou et al., 2002; Shrimpton et al., 2004; Chaabouni et al., 2006].
Recently, it has been reported that GPCI controls brain size by
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regulating fibroblast growth factor signaling in early neurogenesis
[Jen et al., 2009], and there have been some reports that have
described the contributions of GPC1 in neuronal functions [Abas-
kharoun et al., 2010; Wilson and Stoeckli, 2013].

The D-2-hydroxyglutarate dehydrogenase gene (D2HGDH) is
involved in D-2-hydroxyglutaric aciduria (MIM 600721), which is
a neurometabolic disorder that is characterized by developmental
delays, epilepsy, hypotonia, and dysmorphic features. However,
this disease is caused by an autosomal recessive trait [Struys
et al., 2005]. Felder et al., 2009 have confirmed a downregulation
of the FERM, RhoGEF, and pleckstrin domain protein 2 gene
(FARP2); the high-density lipoprotein binding protein gene
(HDLBP); and the PAS domain containing serine/threonine kinase
gene (PASK) in the lymphoblastoid cell lines that were derived from
apatient with a 2q37 deletion [Felder et al., 2009]. These three genes
were selected as candidates because of their structural and func-
tional relationships to the pathways that are involved in neuronal
and/or skeletal development, and they have been shown to be
considerably downregulated in a patient with a 2q37 deletion
[Felder et al., 2009]. Because PASK is required for axonal ensheath-
ment [Leiserson et al., 2000], deletion of this gene may be related to
neuronal impairments in patients with 2g37 deletions.

As mentioned above, there are several genes that contribute to
neuronal functions, and haploinsufficiencies of these genes may be
related to the developmental dyspraxia or autistic features that are
observed in patients with 2q37.3 deletions. Therefore, the identifi-
cation of more patients with 2q37.3 deletions and detailed geno-
type-phenotype correlations should help to determine the gene(s)
that are responsible for neuronal dysfunctions.
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