Biological significance of associated genes in MS

To explore the biological significance of the genes constituting the significant
pathways, we conducted a gene ontology (GO) analysis by using Cytoscape plug-in,
clueGO for significant subnetworks identified in both data sets. GO analysis
(biological process) identified up to nine significantly enriched categories in all
regions except fusiform cortex (Figure 3, Figure S4, Table S6). The category
“negative regulation of neuron differentiation” was significantly enriched in inferior
parietal (enrichment: 73.5, Pcorr = 1.73><10'5), paracentral (enrichment: 82.8, Peorr =
1.51x10®), superior parietal (enrichment: 32.3, Poor = 8.74x107) and terms related to
glutamate biology were identified in banks of superior temporal sulcus (“Glutamate
secretion,” enrichment: 49.5, P, = 5.06x107°) and superior frontal (“Glutamate
receptor signaling pathway,” enrichment: 21.5, Peor = 5.18x10*). Terms associated
with calcium channel were also identified in two regions (superior frontal, enrichment:
41.9, Py = 8.41%x10°°, supramarginal, enrichment: 40.0, Peo,r = 7.84x10™). The most
i significant GO categories in individual regions were “SMAD protein signal
transduction” (inferior parietal, enrichment: 302.8, Poor = 4.42x10°9),
“phosphatidylinositol 3 kinase activity” (isthmus of cingulate gyrus, enrichment 350.4,
Peorr = 6.81x10°%) “fluid transport” (paracentral, enrichment: 71.6, Peor = 1.97%107),

positive regulation of protein kinase B signaling cascade” (precuneus, enrichment:

30.4, Peorr = 3.49%10°°) and “positive regulation of phsphoprotein phosphatase

activity” (superior frontal, enrichment: 90.8, Peorr = 1.02x107).
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Discussion

We identified nine cortical regions in which the average thickness of cases and
controls was significantly different and conducted a GWAS within MS patients to
identify genetic variants that could associate with this phenotype. The thinner regions
were distributed mainly along the parietal lobe, with portions of frontal and temporal
lobes also involved. This pattern is somewhat different than reported in previous
studies, in which the frontal and temporal lobes were predominantly involved
(Achiron et al., 2013, Calabrese et al., 2010a, Sailer et al., 2003). The isthmus of the
cingulate gyrus and the banks of superior temporal sulcus, were significantly thinner
in CIS cases than in controls. When comparing established MS (SP, PP, and PRMS)
and controls, eight of the nine regions of interest (except for superior parietal cortex
in RRMS) were similarly involved. The finding that these regions were reproducibly
identified even in different disease courses underscores the importance of these ROI
in MS. Interestingly, cortical thickness in almost all ROl correlated with EDSS,
suggesting the relevance of these regions in the development of disability in MS.

' Intriguingly, 8 out of 9 ROI (except banks of superior temporal sulcus) were
previously reported as highly heritable based on twin studies (Joshi ef al., 2011,
Kremen et al., 2010, Rimol et al., 2010), indicating a genetic effect to cortical thinning
in MS.

Possibly due to the limited size of the cohorts analyzed, no marker exceeded a

genome-wide significant p value (p < 9.42x1 0'8), and no replication was observed
between the two data sets at the SNP level. However, markers detected in GWAS
explain a limited fraction of the heritable component of common diseases and traits
and a sizable proportion of risk alleles are still being missed under an assumption

that each marker has independent effect (Bodmer & Bonilla, 2008).
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Recently, novel approaches to GWAS analysis have been proposed. These
strategies focus on the combined effects of several loci, acknowledging that each
may make a small contribution to the overall phenotype, and potentially providing
valuable insights into the genetic basis of common disease ((Imsgc) et al., 2010,
Purcell et al., 2009). By analyzing gene-wise p-values we report replication of more
nominally significant genes (p < 0.05) than expected by chance in two data sets (IP
and FUS) (Table S2). Also, while discrepancies existed between studies (probably
due to the limited size of the smaller dataset), the list of nominally significant genes
in each cohort contain more shared associations than expected (Table S3). However,
when genes arranged in interaction networks were compared between the two
cohorts, higher replication rates were observed (Table 3). This strategy produces
comparable results to the more established approach extending a fixed genetic
distance from the lead SNP to the next recombination hotspot and maximizes the
potential of finding bona fide associations((Imsgc), 2013). In fact, proteins encoded
by nominally associated genes were more connected in the PIN than what would be
expected by chance in most of the regions (Figure 2). Thus, analyzing nominal gene-
level significance and studying genes in the context of biological networks seems a
reasonable approach for these data sets.

Out of the 194 genes that were nominally significant in both data sets, 53 were
observed in more than one region. This finding correlates well with a previous report

that both global and regionally specific genetic factors influence cortical surface

areas (Eyler et al., 2011). Variation within NPAS3 was a robust finding in 8 out of the
9 ROI. NPAS3 encodes a member of the basic helix-loop-helix and PAS domain-
containing family of transcription factors and the protein is involved in neurogenesis.
Chromosomal abnormalities that affect the coding potential of this gene are

associated with schizophrenia and mental retardation (Pickard et al., 2005) and
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SNPs within this domain are associated with efficacy of antipsychotic iloperidone in
patients with schizophrenia (Lavedan et al., 2009).

Of interest, most of the genes identified in this study do not harbor variants
associated with susceptibility, most of which are involved in inflammatory processes
((Imsgc) et al., 2011, Patsopoulos et al., 2011). Thus, our results underscore the
need to differentiate genetic variation that affects susceptibility, from that affecting
endophenotypes such as neural degeneration (Kutzelnigg et al., 2005, Wegner et al.,
2006). In this model, inflammation is a pervasive feature in the pathology of MS, and
varying degrees of neurodegeneration ensue thereafter. Results from the work

presented here suggest that part of the variability in neurodegeneration might be due

to genetic variation. Notable exceptions are FOXP1 (paracentral), SDKT (fusiform,
paracentral, precuneus, superior frontal, superior parietal and supramarginal),
SLC2A4RG (paracentral), and WWOX (precuneus and superior parietal). NXPH1
had nominally significant effect on cortical thickness of inferior parietal cortex in both
data sets and EPHA4 was included in a significant pathway for superior frontal

' cortex. SNPs proximal to these genes have been recently reported to have a
significant effect on GM density of frontal lobe in Alzheimer’s disease. Interestingly,
GO categories related to glutamate biology were significantly enriched in banks of
superior temporal sulcus and superior frontal cortex. We previously identified a

module with high relevance to glutamate biology by using GWAS for glutamate

concentration in MS and reported that individuals carrying a higher number of
associated alleles from genes in the module showed greater decreases in brain
volume over 1 year of follow-up (Baranzini et al., 2010). Thus, pathways related to
glutamate may influence cortical thickness as well as overall brain volume. The GO
categories “glutamate toxicity” and “neuron differentiation” were also involved in

more than one region highlighting their potential role in the neurodegenerative
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process seen in MS. For example, PAX6 is a critical gene shown to regulate
development of central nervous system and axon guidance (Georgala ef al., 2011). It
is then plausible that genes involved in neural development would influence brain
cortical thickness and disability in MS.

Other significant GO categories were “cell proliferation” and “calcium signaling”.
Multiple growth factors, their receptors (EGFR, FGF12, IGF1R, IGF2, KIT, PDGFB,
and PDGFRB) and their downstream signaling cascade (Phosphatidylinositol 3-
kinase cascade) were identified, all of which are related to cell proliferation or

survival and overlap with neural development pathways. RYR2 (Ryanodine Receptor
2), which had nominally significant p values in all regions of interest in both data sets,
mediates the release of Ca** from the endoplasmic reticulum (ER) into the cytoplasm.
The ryanodine receptor-mediated calcium release from the ER cause intra-axonal
calcium overload and results in axonal injury (Stirling & Stys, 2010). In superior
frontal cortex, genes controlling re-uptake of cytoplasmic calcium (CHRM3 and
ADCY2) were also involved. These findings suggest that dysregulation of intra-

taxonal calcium level contributes to the cortical thinning.

In summary, here we report variation of genes associated with cortical thinning, and
indirectly with disability in MS by GWAS based on two independent data sets. The
genes identified were largely independent from those harboring variants associated
with MS risk and were involved in glutamate signaling, neural development and an
adjustment of intracellular calcium concentration. These results suggest that
excitotoxicity and genetic vulnerability for axonal damage can poise the MS brain to
initiate the cascade that will result in neurological disability. This study highlights the
genetic influence on an aspect of neurodegeneration of MS and may be helpful in

the search for therapeutic targets of disability in MS.
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Figure Legends
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1Figure 1. A Manhattan plot showing the gene-level p values of both GWASSs for
thickness of inferior parietal cortex. Gene-level p values from the GWAS in UCSF
data set are displayed at the top, and those corresponding to the GWAS in Basel
data set are at the bottom. Genes that are not nominally significant (p > 0.05) are
displayed as gray points and nominally significant genes are displayed as blue points.

Genes that are nominally significant in both two data sets are displayed as red points.
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Figure 2. The number of connections among significant genes is evaluated in the
background of 1,000 random simulations. (A) The total number of edges is plotted as
a function of the number of significant genes for each region. (B) The size of the
largest connected component is plotted as a function of the total number of edges.
The colored lines represent the 50th (red), 75th (blue), 90th (green), 95th (purple),
and 99th (orange) percentiles obtained through simulations with random gene sets of

similar size.
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