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Figure 4. Modulation of regional characteristics of hNCCs. A) Schematic representation of culture conditions for the induction and maintenance of
hNCCs. RA, retinoic acid (100 nM). B) Schematic distribution of marker-positive cells in the muine embryo. DI, diencephalon; MB, midbrain; BA1 to BA4,
branchial arch 1 to branchial arch 4; ¥l to 16; thombomere 1 to thombomere 6. C) The mRNA expression of regional specifier genes in hNCCs. p75”8" cells
were collected at the end of the hNCC induction by FACS and seeded onto fibronectin-coated dishes. RNAs were extracted when cells reached a semi-
confluent state and used for RT'qPCR. The relative expression level of each gene was demonstrated using the value of cells cultured in CDM (OTX2 and
DIX1) or CDM + RA (HOXA2 and HOXA3) as 1.0. Average + SD. N5 3, biological triplicate.

d010.1371fourrel pore. 0112291.6004
The effects of SB, which has been shown to inhibit Activin/Nodal/TGFb
signaling and induce neural cells and hNCCs from hPSCs without the help of
other chemicals, were firstly evaluated [14]. In accordance with the reported data,
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CDM supplemented with SB successfully delivered p7578" cells with a PAX6-
positive neuroectoderm from 201B7 (date not shown), while the induction
efficiency of p757€" cells was approximately 35% (0 nM in Hgure 1C). The
activation of Wnt signaling was previously shown to play a key role in the
induction of hNCCs [14, 15], and can be achieved using the GSK3b inhibitor BIO
or CHIR. Therefore, we attempted to determine the most effective concentration
of CHIR with a fixed concentration of SB (10 nM) to induce p75”¢" cells. The
results obtained revealed that CHIR successfully induced p75™8" cells in a dose-
dependent manner up to 1 mV,, whereas higher concentrations of CHIR markedly
inhibited the production of p75™® cells (Figure 1C). We finally examined the
effects of BMP signaling on this induction. The addition of BMP4 markedly
inhibited the production of p757€" cells, and these results were compatible with
BMP signal inhibiting neural differentiation (Figure S1A). However, the treatment
with DMH1 (10 nV), a specific inhibitor of SMAD1/5/8 phosphorylation, also
reduced the p75™€" fraction (Figure S1B). The inhibitory effect of DMHI on the
induction of p75 was confirmed at different dosages, and other cytoplasmic
(ILDN193189) or extracellular (Noggin) inhibitors for BMP signaling also
decreased the efficiency (Figure S1C). Therefore, the combination of SB (10 mdV)
and CHIR (1 nM) most effectively induced p75™" cells from 201B7 hiPSCs. This
result was reproduced in other hPSCs such as hESCs (H9, KhES], and KhES3)
and episomal hiPSCs (414C2) (Fgure 1D). Most cells outgrowing from colonies
were stained with NCC markers, p75 and TEAP2A, whereas the cells in colonies
were positive for PAX6, a marker for the neuroectoderm (Figure 1F).

p7578P cells expressed early NCC markers

The expression of marker genes were compared between p75™* and p75°™ cells (
Fgure 24). Sorted p757€" cells expressed a number of genes in the early stage of
NCCs, such as SOX10, TWIST, and TEAP2A genes. In contrast, the expression of
these genes was significantly lower in the p75°" fraction than in p75™€" fraction.
The expression of PAX3, which is a marker both for NCCs and neurons, was high
in both the p75"€® and p75°" fractions. The expression of PAX6 and SOX1,
which are neural markers, was higher in the p75°" fraction, which is consistent
with some populations of p75-negative or TEAP2A-negative cells expressing PAX6
(Eigure 15). These results indicated the relative enrichment of NCC cells in the
P75 cell population.

In an attempt to further characterize p757 € cells, genome-wide expression
profiles were compared between sorted p75™® cells and their corresponding
hPSCs using a cDNA microarray (Affymetrix Gene 1.0 SI), and we found that the
overall profiles of p75™€" cells derived from several PSCs were similar to each
other (Figure S2). Based on the previous report [32], 46 genes were selected as
markers for distinct NC-subpopulations and the expression level of these genes
were compared between hNCCs and parental PSCs (Fgure 2B). hNCCs in this
study highly expressed early stage-related genes such as neural plate border
specifier (PAX3) and NC specification (SNAI2, NGER, TFAP2A, SOX9, and
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Figure 5. Derivation of peripheral neural cells, glia, and melanocytes from hNCCs. A) Neuronal
differentiation of 201B7-derived hNCCs. Cells were stained with an antibody against peripherin (red) and Tuj-
1 (green). B) The glial differentiation of 201B7-derived hNCCs. Cells were stained with an antibody against
GFAP. Scale bar, 50 mm. C) Melanocyte differentiation of 201B7-derived hNCCs. The mRNA expression
levels of MITF and c-KIT genes were shown as a relative value using the value in 201B7-derived hNCCs and
201B7 as 1.0, respectively. Average + SD. N5 3, biological triplicates.
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S0X10), but also some region-specifying genes (FFNB2 for cranial, PDGFRA for
cardiac, and SOX5 for trunk region), suggesting the heterogeneous population of
p757 cells, which were designated hNCCs hereafter. The profiles of the current
hNCCs were compared with those of two PSC-derived NCCs, which were induced
by different protocols in previous studies [15, 32] (Figure S3). Although the three
types of PSC-derived NCCs all highly expressed some genes, such as SNAI2, their
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Figure 6. Derivation of corneal endothelial cells from hNCCs. A) Schematic protocol for the induction of comeal endothelial cells. B) Phase contrast
images of cells before (D8) and after (D19) the induction. Scale bay; 200 mm. C) The expression of ZO-1 in cells at D12. Cells were stained with an antibody
against ZO-1. D) The mRNA expression of comeal endothelial cell marker genes. RNAs were extracted from cells at D10, D12, and D15. The expression
level of each gene was demonstrated as a relative value using the value in human primary comeal endothelial cells as 1.0. Average + SD. N5 3, technical
triplicate. We performed this CEC induction twice and confirmed its reproducibility.

doi*10.1371foumal pone.0112291.g006

expression profiles were considerably different, suggesting the protocol-dependent
heterogeneity of PSC-derived NCCs.

Sustained expansion of hNCCs with original characteristics

We investigated whether hNCCs could be stably expanded. The growth of hNCCs
cultured in the hNCC induction medium (CDM with SB and CHIR) was very
dow (data not shown). We employed a cultured condition using CDM
supplemented with SB, EGF (20 ng/ml), and FGF2 (20 ng/ml) based on the
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Figure 7. Derivation of hMSCs from hNCCs. A) Schematic protocol for the induction of hMSCs. B) Phase contrast images of cells before (D8) and after
(D21) the induction. Scale bax, 200 mm. C) Expression of surface markers in hBM-MSCs (hBMS0) and 201B7-dexived MSCs (201B7-MSC). D) Hierarchical
clustering analyses by genome-wide gene expression piofiles. RNAs were extracted fiom hBM-MSCs (BM90, BMO1 and BM94), induced-MSCs, and the
comesponding hNCCs and hiPSCs. E) Differentiation properties of induced-MSCs. The induction for osteogenic (01, chondrogenic (CD), and adipogenic (Al
lIneages was performed as descrbed in the Materials and Methods section and evaluated by Alizarin Red staining (0D, Alcian Blue staining (CD), and Oi
Red O staining (AD, respectively. Scale bar, 100 mm. F) Population of SSEA4-positive cells. G) The expression levels of phuipotent markers (OCT3/4,
NANOG and SOX2) in hPSCs, hNCCs, and hMSCs. Average + SD. N5 3, biological triplicates.
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Figure 8. Derivation of hMSCs from hNCCs under defined culture conditions. A) Schematic protocol for
the induction of hMSCs from hNCCs under defined culture conditions. B) Phase contrast images of cells 0, 7,
and 21 days after the hNCC and hMSC induction, respectively. Scale bay, 200 mm. C) Expression of hMSC-
related swface markers in hMSCs induced under defined culture conditions. D) Osteogenic differentiation (O
properties of hMSCs induced under defined culture conditions. hMSCs were cultured durng the induction

period n STK2 as a control.
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findings of previous studies [33], and consequently observed marked improve:
ments in growth and the stable proliferation of hNCCs even after 10 passages (
Hgures 34, B). The expanded hNCCs maintained their original cell morphology

and all cells expressing NCC markers, such as TFAP2A (Figure 3C). The global

gene expression profiles of hNCCs after prolonged expansion (PN10) were similar
to those of early-passage cells (PNO) (Figure S4A and S4B correlation coefficient
5 0.96 to 0.989) and markedly different from those of original hPSCs (Figures 3D
and 4C).
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Modulation of the characteristics of hNCCs by insulin and retinoic
acid (RA)

The results of the microarray analyses revealed that induced hNCCs expressed
some genes characteristic to cranial NCCs (high for OTX2 and DIX1; low for
HOXA2 and HOXAS3) (date not shown). A previous study demonstrated that the
depletion of insulin from CDM (growth-factor free CDM; hereafter referred to as
gfCDM) induced a more anterior neuroectoderm (rostral hypothalamic
progenitor-like cells), while retinoic acid (RA) exhibited posteriorizing activity
[15]. Therefore, we compared the expression of regional markers in hNCCs
cultured with gfCDM, CDM, and CDM with RA (100 nM) (Hgure 44). As
expected, the expression of OTX2, a marker for mesencephalic NCCs (Fgure 4B)
[34], was slightly higher under the gfCDM condition than under the CDM
condition (Fgure 4C). The DIX1 gene, a marker for first and second branchial
arch NCCs (Hgure 4B [35], was expressed in cells cultured under all conditions,
and was the highest in CDM with the RA condition (Figure 4C). The expression of
the HOXA2 and HOXAS3 genes, which are markers of the second and third
branchial arches, was negligible under the gfCDM and CDM conditions (
Hgures 4B, O) [36, 37]. Taken together, these results indicated that the regional
identities of hNCCs could be modulated by exogenous signals including insulin
and RA.

Derivation of peripheral neurons, glia, and melanocytes from
hNCCs

We next examined the differentiation potentials of induced hINCCs. Neuronal
differentiation was initiated by sphere formation and promoted by culture media
containing a mixture of factors (BDNF, GDNFE, NGF, and NT-3). Cells expressed
b-tubulin and peripherin after 14 days, which indicated differentiation into
peripheral neurons (Figure 54). Rurther cultivation under the same conditions (4
to 6 weeks) promoted the glial differentiation of hNCCs (Hgure 5B).

Melanocytes are well-known derivatives of NCCs. Using a previously described
method that included CHIR, EDN3, and BMP4 [15, 38], induced hNCCs
expressed microphthalmia-associated transcription factor (MITE and ¢ KIT,
markers for melanocytes (Figure 5C). These differentiation properties were
compatible with those of NCCs in vivo.

Derivation of cormeal endothelial cells from hNCCs

Cranial NCCs have been shown to exhibit the ability to differentiate into corneal
endothelial cells in vivo [39, 40]. Therefore, we examined whether hNCCs grown
in gfCDM, which preferentially expressed more anterior NCC markers (

Tgures 4B, ), could differentiate into cells harboring the characteristics of
corneal endothelial cells. When 201B7-derived hNCCs were cultured in the
conditioned medium of corneal endothelial cells for twelve days (Fgure 64), cells
changed their morphology into that of polygonal corneal endothelial-like cells (
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Fgure 65 and started to express the corneal endothelial marker, ZO-1 (

Hgure 60). Descemet’s membrane is known to consist of collagen type 4 and
collagen type 8, which are derived from the corneal endothelium [41]. The mRNA
expression of the COL4A1 and COL8A1 genes was confirmed in induced
endothelial-like cells (Figure 6D). These results strongly suggested that the hNCCs
induced in this study possessed the characteristics of cranial NCCs, which exhibit
the potential to differentiate into cranial NCC-derived structures. .

Derivation of hMSCs from hNCCs

Cranial NCCs also have differentiation properties toward mesenchymal cells,
which construct the cranio-facial skeleton, and may be referred as MSCs [3]. In
order to derivate hMSCs from hINCCs, the culture medium was changed from
that for ANCC to aMEM with 10% FBS (Figure 74), which we used previously for
human bone marrow-derived MSCs (hBM-MSCs) [24]. Through the induction of
hMSCs, the expression of NGFR and SOX10 reduced rapidly within 48 hours
(PNO) of the medium change, while that of PAX3 and TFAP2A reduced gradually
until passage 3 (Fgure S5A). Conversely, the expression of MSC markers (CD73,
CD105, and CD44) increased rapidly within 48 hours, reached a maximum by
passage number 2, and maintained their expression at a level comparable to that
in BMMSCs (Fgure S5B). These results indicated that the transition from NCCs
to MSCs was gradual during passage number three. Cells passaged three times in
the medium showed a typical fibroblastic morphology similar to that of hMSCs (
Fgure 7B), and expressed surface markers for hMSCs (positive for CD73, CD105,
and CD44, and negative for CD45) (Fgure 7C). Microarray analyses revealed that
hINCC-derived MSCs had a global expression pattern similar to that of primary
hBM-MSCs (Fgure 7D). Differentiation properties toward osteogenic, chondro-
genic, and adipogenic lineages are one of the criteria required for MSCs [42],
which were clearly confirmed in hNCC-derived MSCs (Hgure 75). FACS analysis
showed that there was no SSEA4-positive cells (Figure 7F) and the expression of
PSC marker genes was below detectable levels (Flgure 7G).

Derivation of osteogenic cells from hiPSCs under defined culture
conditions

We determined the feasibility of inducing terminally differentiated cells from
iPSCs under defined culture conditions (Figure 8). 987A3 hiPSCs were used as the
initial material, which have been generated and maintained under feeder-free and
xeno-free conditions [21]. Cells were dissociated into single cells, seeded on
iMatrix-coated dishes (0.83-1.35 celly/em?, and cultured with StemFit medium
for five days. hNCCs were then induced for seven to ten days (Figure 84). The
efficiency of hNCC induction under these conditions was 40.9+ 5.5% (+ SD.
N5 3, biological triplicate). The induction of hMSCs was performed using CDM
for MSCs (STK?2) instead of aMEM/10% FBS (Fgure 84). After several passages
of hNCCs in STK2, the morphology of cells changed from cuboidal to fibroblastic,
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similar to that of hBM-MSCs (Figure 8B). The expression patterns of surface
markers were compatible with those of hMSCs (positive for CD73, CD105, and
CD44, and negative for CD45) (Figure 8C) and the differentiation properties for
osteogenic, chondrogenic, and adipogenic lineages were confirmed when the
standard FBS-containing induction medium was used (Figure S6). Osteogenic
differentiation was also confirmed using the chemically-defined osteogenic
medium (STK3) (Fgure 8D). These results indicated that all steps from iPSC to
osteogenic cells could be performed under defined culture conditions.

Discussion

In the present study, we developed a simple and efficient induction method for
hNCCs from hPSCs. The induction efficiency of this method was high (70-80%)
irrespective with the type of hPSC. The induced hINCCs exhibited the cranial NCC
characters under maintenance culture conditions, while further treatment with
insulin and RA marginally posteriorized hNCCs. Consistent with the expression of
cranial NCC markers, induced hNCCs could differentiate into corneal endothelial
cells, which is a characteristic of cranial NCCs.

Our protocol was independent of the BMP signal. In our protocol, DMH1, a
specific BMP inhibitor, clearly attenuated the induction efficiency of the p75™2
fraction (Figure S1). This result clearly contradicted the findings of previous
studies (no effect [14] or increased efficiency [15]). The marked differences in the
findings of these studies may be attributed to the seeding density used at the
beginning of induction. The seeding density of our protocol was approximately 2-
4 clumps/em? (approximately 20 cells/'cm®, while other studies used
16 10* cellyem?® [26]. Both CNS and neursl crest fates were previously observed
when cells were seeded at a low density, while CNS cells primarily formed at a
high density [43]. In accordance with these findings, the efficiency of the NCC
induction was markedly decreased if clumps were seeded at a higher density (data
not shown). The high density of hNCCs may have exaggerated local BVMP
signaling secreted from the hNCCs themselves. Therefore, we combined high
density seeding with the BMP inhibitor treatment; however, the efficiency was still
low (data not shown). Based on these results, we could not account for the
differences between our protocol and those of previous studies.

In order to compare the hNCCs in this study with those in previous studies, we
analyzed gene expression profiles of hNCCs published previously. The
comparison of the relative induction levels of NCC specific genes revealed that
hNCCs differentiated by our protocol and previous studies showed similarities in
some aspects, but overall profiles were different from each other (Fgure S3).
These results indicated that induction protocols reported in this study and in the
previous studies induced different subset of hNCCs.

Induced hNCCs exhibited differentiation properties for multiple cell lineages
including peripheral neurons, ghal cells, melanocytes, and corneal endothelial
cells, and also delivered hMSCs that further differentiated into osteogenic,
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chondrogenic, and adipogenic cells. These properties are compatible with NCCs
being multipotent stem cells [3]. However, clonal analyses are indispensable for
confirming the stemness of induced hNCCs. Previous clonal analyses revealed that
63-65% of the hNCC clones could differentiated into multi-lineage cells positive
for markers of neurons, glial cells, and smooth muscle cells [43, 44], suggesting
that hNCCs induced from hPSCs were multipotent on the clonal level. Although
stemness has yet to be investigated in this study, induced hINCCs in this protocol
will be a promising cell source for various types of research.

Human diseases that have been related to the development of hNCCs include
Hirschsprung's disease, DiGeorge syndrome, Waardenburg syndrome, Charcot-
Marie-tooth disease, Hermansky-Pudlak syndrome, familial dysautonomia,
Chediak-Higashi syndrome, and CHARGE syndrome [45, 46]. hNCCs containing
the mutations responsible for these diseases can be induced from hiPSCs
established from the respective patients; therefore, this will be a powerful tool for
creating in vitro disease models that can contribute to a more detailed
understanding of the pathogenesis of NCC disorders and also to the development
of novel therapeutic modalities [15]. In addition, hNCCs have been shown to be
the cell-of-origin of some cancers such as neuroblastoma [47], which indicates
that hNCCs can be used in in vitro transformation experiments. We have already
confirmed that the survival rate of freeze-stocked hNCCs was satisfactory and the
freeze and thaw process had no impact on the growth and differentiation
properties of these cells (data not shown). These are favorable features for a
material in research because it is important to use cells of the same quality in
order to evaluate reproducibility.

Induced hNCCs-deridatives can also be used for cell therapy. In this regard,
hNCC-derived hMSCs will be a very useful material. hMSCs have been used in a
wide range of regenerative medicines, and promising results have been reported in
some cases [48, 49]. In contrast with the advances reported in clinical applications,
many issues related to the biology of hMSCs have yet to be investigated, one of
which is the cell-of-origin of hMSCs. hNCCs may be the precursors of hMSCs
based on the finding that craniofacial skeletal tissues are derived from NCCs [50].
This has also been supported in lineage tracing experiments using PO-cre mice
[51, 52]. Current sources of hMSCs include bone marrow, fat tissue, synovium,
and umbilical cord; however, it remains unclear whether NCC-derived cells exist
n all of these adult tissues and serve as the source of hMSCs. A comparison
between hNCC-derived MSCs and somatic tissue-derived hMSCs may provide
more information related to this issue.

One of the limitations of current hMSCs is their imited proliferative activity,
which may pose problems in their application to conditions requiring a large
amount of cells. This can be overcome if hNCC-derived MSCs are used because
hNCCs can be induced from hPSCs, which have unlimited proliferative activity.
Two issues are important for this application. One is to be free from infectious
substances that may be derived from animal materials. Using iPSCs generated and
maintained under feeder-free and xeno-free conditions, we successfully induced
hNCCs and hMSCs with minimum animal material (BSA in CDM) (Fgure 84).
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Furthermore, we generated terminally differentiated cells (osteogenic cells) from
these MSCs under chemically defined media. To the best of our knowledge, this is
the first study to demonstrate the induction of osteogenic cells under feeder-free
and serumr-free conditions from PSCs. The other concern relates to the
contamination of undifferentiated cells, particularly parental hPSCs, which may
lead to serious conditions such as the formation of malignant tumoxs [53]. We
confirmed that hINCC-derived hMSCs were free from SSEA4-expressing cells and
the expression of PSC-marker genes was below detectable levels (Hgures 7F, Q).
Although more precise and meticulous analyses are required to prove the safety of
these cells, the results of the present study have provided evidence to promote the
use of hNCC-derived hMSCs for cell therapy.

Supporting Information

Fgure S1. Fffect of the BMP signal on the induction of p75™€" cells. hiPSCs
(201B7) were treated in NCC induction media with BMP4 (10 ng/ml) (A) or
DMH1 (10 nM) (B), and the fraction of p75-positive cells was analyzed by FACS
C) Fffects of BMP signal inhibitors on the induction of p75™€" cells. 201B7 cells
were treated with each BMP inhibitor at the indicated dosage, and the fraction of
P75 positive cells was analyzed by FACS

doi:10.1371/journal pone.0112291.5001 (TIFE

Kgure S2. Global comparison of the expressions of genes between PSCs and
p757E" cells. A) A volcano plot showing the P value for differences in the
expression of each gene between the average of PSC lines (H9, KhES1, 414C2, and
201B7) and the average of corresponding p757€" cells. A total of 562 entities
downregulated and 447 entities upregulated in p757 " cells were identified as a
differentially expressed gene set. B Heat map analyses revealed global similarities
among hNCCs derived from each PSC line.

doi:10.1371/journal pone.0112291.5002 (TIFFH

Fgure S3. Fxpression of NCC marker genes in induced NCCs from PSCs. The
induction ratio of NCC markers relative to a corresponding pluripotent baseline
was demonstrated in each induced NCC. iPS NCCs, GSFE44727.

WAO09 _NC_Dayl1, 45223. Marker genes for each sub-population of NCC were
labeled using the indicated colors.

doi*10.1371/journal.pone.0112291.5003 (TIFH

Fgure S4. Comparison of gene expression profiles between hNCCs at different
passages by scatter plotting. RINAs were extracted from hINCCs derived from
201B7 (A) and KhESL (B at different passages (PNO, PN4 and PN10), and
analyzed using microarrays. C) Correlation coefficient analysis was performed
using these data.

doi:10.1371/journal pone.0112291.5004 (TIFE)

Fgure 5. The expression of markers for hNCCs and hMSCs in each passage. A
gradual transition from hNCCs to hMSCs was observed in hNCC markers (A)
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and hMSC markers (B). Average + SD. N5 3, biological triplicates. Regarding
BMSCs, cDNA was prepared from the bone marrow stromal cells of four healthy
donors (BM25, 26, 34, and 107), and the average was presented as BMSCs in each
graph.

doi:10.1371/journal. pone. 01122915005 (TIFD

Hgure S6. Osteogenic-, chondrogenic-, adipogenic induction from feeder-free
hiPSCs through hNCC-derived hMSCs. Differentiation properties of hNCC-
MSCs. The induction for osteogenic (OI), chondrogenic (CD), and adipogenic
(AD lineages was performed as described in the Materials and Methods section
and evaluated by Alizarin Red staining (OI), Alcian Blue staining (CI), and Oil
Red O staining (AI), respectively. Scale bar, 200 mm.
doi:10.1371/journal.pone.0112291.s006 (TIFH

Table S1. Information of primary antibodies used in this study.
doi1:10.1371/journal.pone.0112291.5007 (TIF)

Table 2. Information of PCR primers used in this study.
doi:10.1371/journsl. pone.0112291.5008 (TIH
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Abstract

Background: The limits of viability in extremely premature
infants are challenging for any neonatologists in developed
countries. The neurological development and growth of ex
tremely preterm infantshave come to be the emerging issue
following the management in the neonatal intensive care
unit. Objective: Tb assess potential associations between
changes in practice and survival/neurodevelopmental out-
come, and clinical outcomes of extremely preterm infants
bomn at the limit of viability studied in a tertiary center. Study
Design: A retrospective study enrolled 51 infants who had
no congenital disorders, and were bom at 2224 weeks of
gestational age (GA) in 2000-2009 in ourinstitution. Clinical
variables and interventions were studied with regard to one-
year survival and developmental quotient (DQ) at 3 years of
age. Results: The one-yearsurvival rate of 24 preterm infants
bom in 2005-2009 (79%) was higher than that of the 27 in-
fants bom in 2000-2004 (562%, p = 0.04). Ifants bom after
2005 underwent less tocolysis (54 vs. 94%, p < 0.01) and

more frequently antenatal steroid therapy (32 vs. 6%, p =
0.01) than those bom before 2004. The post-2005 survivors
(n=19) received more frequently indomethacin therapy (89
vs. 50%, p = 0.03) and eady parenteral nutrition (95 vs. 36%,
p <0.01) than the pre-2004 survivors (n = 14). There were no
differences in the proportion of infants who attained a DQ of
>50 at 3 years of age between pre-2004 (9/13, 69%) and
post-2005 groups (10/17, 59%). Multivariate analysis indicat-
ed that extremely premature birth at GA <24 weeks was the
sole critical factor for a DQ of >50 in survivors. Conclusions:
The pernatal care after 2005 improved the overall survival
rate, but not the neurological outcome of preterm survivors
at the limit of viability. Neurodevelopmental impairments
were associated with extremely premature birth at GA <24
weeks. © 2013 S Karger AG, Basel

Introduction

Recent progress in the perinatal and neonatal care has
greatly improved the prognosis of critically ill or prema-
ture newborn infants. The limits of viability in extremely
premature infants are challenging for any neonatologist
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in developed countries [1-4]. Between 2004 and 2007, the
one-year survival rate of infants born at 22-26 weeks of
gestational age (GA) in Sweden attained 70%, ranging
from 9.8% at GA 22 to 85% at GA 26 weeks [5]. In 2005,
the survival rates of apanese infants during their stay in
aneonatal intensive care unit (NICU) were 34.0, 54.2 and
76.6% in infantsborn at GA 22, 23, and 24 weeks, respec-
tively [6]. On the other hand, the post-NICU neurological
development and growth of extxemely preterm infants
have come to be the emerging issue.

Antenatal steroid therapy was reportedly associated
with a significant decrease in the mortality of preterm
infants born at GA 22-23 weeks [7]. This intervention
was actively introduced in our tertiary center after 2005
for women at high risk of preterm delivery after GA 22
weeks. The alive-born premature infants are at high-risk
for a constellation of life-threatening events including
cerebral bleeding and sepsis. A small number of survi-
vors at the limit of viability still have an increased risk of
physiological and neurodevelopmental problems requir-
inglong-term medical support and socioeconomical ser
vices. To assess potential associations between changes
in practice and survival/neurodevelopmental outcome,
we performed the present study in all infants born at GA
2224 weeks and treated at a single tertiary center from
2000 to 2009. The favorable limits of viability and neu-
rodevelopmental outcome are discussed with special ref-
erence to the prenatal and postnatal management.

Materials and Methods

Study Subjects

The study population included all infants delivered at GA 22—
24 weeks at the Kyushu University Hospital in Japan from danuary
1st 2000 to December 31st 2009 (fig. 1). The maternal and neona-
tal records of all infants were studied retrospectively. The informa-
tion collected included previous obstetric history, the present
pregnancy and delivery, infant morbidity, treatment, survival, and
neurodevelopmental outcome up to 3 years of age. A total of 51
alive infants, all free from congenital diseases, reached the NICU
for intensive treatment.

Perinatal period was defined as comprising late pregnancy
from GA 22 weeks until birth, labor and delivery, and the first week
of life in accordance with the recommendations of the World
Health Organization (WHO). Live birth and perinatal mortality
were also defined by the WHO recommendations (http://www.
who.int/whr/ 2005/ en/index.html). Perinatal mortality included
stillbirths and early neonatal deaths. Stillbirth was defined as fetal
death before onset of labor. Intrapartum death was defined as still-
birth when the fetus was alive at the start of labor. Early neonatal
death refers to a death of alive-born infant within the first 7 days
of life, while death covers the remaining period up to the first year
of life. GA was determined as the best obstetric estimate based

2 Neonatology
DOI- 10.1159/000355818

82 infants

2000-2004 2005-2009
Delivered at

GA 22-24 weeks

Stillbirth or
Intrapartum death

Treated in NICU

Fg. 1. Demographic characteristics of infants born at 22-24 weeks
of GA delivered in 2000-2009 in our single institution. During the
10-year study period, 82 infants were delivered at GA 2224 weeks,
including 42 in 2000-2004 and 40 in 2005-2009. Of the 42 and 40
infants, 10 and 12 were stillbirths or intrapartum deaths, and the
32 and 28 were delivered aslive-born infants, Of the 32 and 28 live-
born infants, 5 and 4 were unable to enter the NICU because of
severe asphyxia or extreme prematurity, and 27 and 24 were treat-
ed in the NICU.

on the last menstrual period, standard obstetric parameters, and
ultrasonographic findings. Iatrogenic delivery represented a
delivery medically or surgically induced due to maternal and/or
fetal indications [8]. Antenatal steroid therapy was defined as the
administration of any corticosteroid to the mother between GA 22
and 34 weeks for accelerating fetal hing maturation [9]. Surfactant
administration included at least 1 dose of surfactant. Indometha-
cin treatment was conducted for closure of a patent ductus arte-
riosus (PDA) diagnosed critically or by echocardiography. Infants
with body weight below the 10 percentile of the mean of the
Apanese birth size standard data were classified as small for GA
(8GA) [101.

Follow-up evaluations, including interval health history, neu-
rologic evaluations, and developmental assessments (developmen-
tal quotient, DQ), were performed at 3 years of age. Developmen-
tal testing was performed using the Kyoto Scale of Psychological
Development 2001 (KSPD) by trained testers. KSPD is a Japanese
standard developmental test and is used to assess disabled children
by most of public health centers [11]. It is an individualized face-
to-face test administered by experienced psychologists to assess
child’s development in the following three areas’ postural-motor
(fine and gross motor functions); cognitive- adapuve (non-verbal
reasoning or visuospatial perceptions assessed using materials
such as blocks, miniature cars, and marbles), and language-social
(interpersonal relationship, socializations and verbal shilities). DQ
was calculated by dividing the developmental age by chronological
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Table 1. Perinatal characteristics and interventions for 60 live-
born infants at GA 22-24 weeks

Table 2. Neonatal characteristics and interventions of survivors
born at 22-24 weeks of GA over one year

2000-2004 2005-2009 p

2000-2004 2005-2009 p

n=32 (=29 vaue =14 (=19  value

Obstetric characteristics : Neonatal characteristics
CAM or p-PROM 16 (50) 17(6D 0.28 Male sex 8(57) 9(47) 0.84
Preeclampsia 2(6) 6(21) 0.09 Multiple birth 1(7) 2(11) 0.74
Tnterventions 1-min Apgar score <4 8(57) 16 (84) 0.18
Tatrogenic preterm delivery - 8(25) 8(29 0.49 5 min Apgar score <4 3 gz)]) 8 ?%)) 0.38
Tocolytic treatment 09 15(GH <001 E}SGAA S 2(23) 8 (27) 006

Ce&x@ section 12(39) 15 (59 016 [ntorventions

Neonatal interventions High-frequency oscillation 10 (71) 19 (100) 0.05
Intubationatbirth ~  25(789  24(86) 0.34 Indomethacin 7(50  17(89) 0.03
Surfactant administration 19 (B9 2007 0.24 Ligation 32D 6(32 0.80
i ; Farly parenteral nutrition 5(36) 18(95) <0.01
Figures in parentheses indicate percentages. CAM = Chorio- Transfusion 13(93 19 (100) 0.88

ammionitis; p- PROM = preterm-premature rupture of mem-
brane. Iatrogenic delivery means delivery was induced by mater
nal and/or fetal indications. Antenatal steroid therapy was
defined as administration of any corticosteroid to the mothers
between GA 22 and 34 weeks for accelerating fetal lung matura-
tion. S

Hgures in parentheses indicate percentages. Infants with body
weight below the 10 percentile of the mean of the Japanese birth
size standard data were classified as SGA. Indomethacin treatment
was performed for the closure of PDA diagnosed clinically or by
echocardiography.

age and then multiplying the quotient by 100. The mean and one
standard deviation of DQ was 100.6 and 13.4, respectively. Accord-
ing to the protocol dapanese Society for Follow-up Study of High-
Risk Infants, we defined as a normal or borderline developmental
status a DQ score over 70, amild status asaDQ from 50 to 70, and
amoderate to severe status asa DQ less than 50 [12]. The study was
approved by the Institutional Review Boards of Kyushu University.

Statistics

Differences between groups were tested for significance by the
2 test. Multivariate logistic regression analysis was conducted for
survival over one year and normal to mild neurodevelopmental
delay (DQ >50) as independent varisbles; dependent variables in-
cluded perinatal characteristics, interventions and morbidities.
Only dependent variables with a p value <0.25 on univariate anal-
yeis were entered into the multiple logistic models. The statistical
analyses were conducted using Fxcel statistics (SSRI, Japan) for
Windows and SPSS software (v19; SPSS, Chicago, T, USA). Re-
sults with p values <0.05 were considered significant.

Results

Survival of Infants Born at 22-24 Weeks of GA

between 2000-2004 and 2005-2009

During the 10-year study period, a total of 82 infants
were delivered at GA 22-24 weeks, including 42 in 2000~
2004 and 40 in 2005-2009 (fig. 1). Ten and 12 of them

Survival and Neurodevelopmental
Outcome of Extremely Premature Infants

were stillbirths or intrapartum deaths, and 32 and 28
were delivered as live-born infants in 2000-2004 and
2005-2009, respectively. In 2000-2004, 18 (56%) infants
died within 365 days of life including 15 early (0-6 days)
and 3late (7-27 days) neonatal deaths, and 14 (44%) sur-
vived over one year. In 2005-2009, 9 (32%) infants died,
including 7 early and 1 late neonatal death, and 19 (68%)
survived to 1 year. This difference in survival rate is sta-
tistically significant (p = 0.04). When perinatal charac-
teristics and interventions were compared, the 32 live-
born infants in the second period underwent less fre-
quently maternal tocolysis (54 vs. 94%, p < 0.01) and
more frequently antenatal steroid therapy (32 vs. 6%, p =
0.01) than 28 born in the first period (table 1). No other
profile differed significantly between the two groups
(table 2).

Survival Factors for Infants Born at 22-24 Weeks of

CA :

When neonatal characteristics and interventions were
compared between the 14 (in 2000-2004) and 19 (in
2005-2009) survivors, the post-2005 survivors received
more frequently indomethacin therapy (89 vs. 50%, p =
0.03) and early parenteral nutrition (95 vs. 36%, p <0.01)
than the pre-2004 ones (table 2).

Neonatology 3
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Table 3. Clinical variables associated with a DQ >50 at 3 years of age

Varisble Infants born at 22-24 weeks of GA treated in NICU (n = 489
univariate multivariate
OR 95% CI p value OR 95% CI p value
GA <24 weeks 0.19 0.05-0.67 0.02 0.14 0.03-0.67 0.01
Parenteral nutrition 4.82 1.38-16.76 0.02 1.01 0.09-10.78 0.99
Ligation 7.88 1.42-43.66 0.03 0.19 0.01-2.39 0.20
Transfusion 9.47 1.10-8L.73 0.05 8.87 0.97-81.37 0.05
High-frequency oscillation 5.19 1.00-26.95 0.08 524 0.45-61.75 0.19
Indomethacin 243 0.74-7.98 0.24 9.75 0.67-141.9 0.10
1-min Apgar score <4 0.45 0.12-1.63 0.37
Male sex 0.59 0.18-1.90 0.56
Birthweight <400 g 329 0283916 0.70
Tatrogenic preterm delivery 121 0.34-4.29 0.77
5-min Apgar score <4 0.68 0.19-2.43 0.78
Multiple birth 0.56 0.10-3.26 0.82
SGA: 1.17 0.23-5.94 0.85
Cesarean section 111 0.35-3.54 0.86
Tocolytic treatment 0.89 0.24-3.37 0.86
Antenatal steroid 1.37 0.35-5.34 0.92

OR = Odds ratio; CI = confidence interval. I ogistic regression analysis was used to investigate the indepen-
dent variables on a DQ >50. Obstetric characteristics and interventions, neonatal characteristics and interven-
tions with a p value <0.25 on univariate analysis were entered into the multivariate logistic models.

! Three patients in whom neurodevelopmental status was not evaluated were excluded.

Neurological Morbidity of Survivors Born at

22-24 Weeks of GA at 3 Years of Age

Three patients (1 in the first and 2 in the second peri-
od) were not evaluated because of moving or being treat-
ed for malignancy. Seven (54%) of 13 evaluable survivors
attained a normal or borderline developmental status
(DQ >70) in 20002004, and 7 (41%) of 17 survivors ob-
tained that level in 2005-2009. Four (31%) infants in the
pre-2004 group and 7 (41%) in the post-2005 group had
amoderate or severe developmental delay (DQ <50). The
proportion of infants who attained a DQ >50 did not
reach statistical significance in the first and the second
study period (69 vs. 59%, p = 0.84).

Neurodevelopmental Factors for Attaining a DQ >50

at 3 Yearsof Age

The attainment of a DQ >50 in survivors at 3 years of
age was negatively associated with GA <24 weeks (p =
0.02), and positively associated with ductus ligation (p =
0.02) and parenteral nutrition (p = 0.03) when assessed
by univariate analysis. Multivariate analysis indicated a
significant association only with GA <24 weeks (p = 0.01;
table 3).

4 Neonatology
DOI: 10.1159/000355818

Discussion

The survival rate of infants born at GA 22-24 weeks
increased significantly from 52 to 79% in a tertiary center
during the decade studied. In addition, the percentage of
SGA increased from 0 to 32% between the two periods.
The improved survival might be due to the prenatal man-
agement including the restraint of tocolytic treatment
and the more extensive use of antenatal steroid therapy,
aswell asto the neonatal management such asthe promo-
tion of indomethacin treatment and parenteral nutrition.
However, at 3 years of age survivors born in 2005-2009
did not attain a more favorable neurodevelopment than
those born in 2000-2004. The premature birth at GA <24
weeks was the most critical factor influencing neurode-
velopment in survivors.

Antenatal steroid therapy has been reported to de
crease the mortality of infants with GA 22-25 weeks [7,
13]. Prophylactic indomethacin may have short-term
benefits for preterm infants including a reduction in the
incidence of symptomatic PDA, PDA surgical ligation,
and severe IVH [14]. From 2006, we routinely introduced
indomethacin prophylaxis for preterm infants born at

Ochigi et al.
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<25 weeks of GA to reduce the risk of intraventricular
hemorrhage. However, the timing of administration var-
ied with the clinical condition of patients or individual
physician preference. The nutritional problems of pre-
term infants have become particularly relevant to surviv-
al from NICU, as numerous studies have underlined the
importance of parenteral nutrition for short- and long-
term neurodevelopmental outcomes. The post-2005 sur-
vivors received more high-frequency oscillation therapy
(71 vs. 100%, p = 0.05) than the pre-2004 ones. However,
it is controversial to what extent indomethacin, paren-
teral nutrition and high-frequency oscillation could affect
the mortality of these infants [15].

In the present study, although the survival of preterm
infants at the limit of viability increased SLgmﬁcan’dy
over a decade, the neurodevelopment of the survivors
(DQ >50), did not improve, and actually it deteriorated
from 69 to 59%. However, since the total number of sur-
vivors who attained aborderline or normal development
(DQ >70) was small, this trend did not reach statistical
significance or was it possible to evaluate it with a multi-
variate analysis. We did not have enough infants in our
single institute to evaluate survival and neurodevelop-
mental outcome at GA 22, 23 and 24 weeks. There are a
few reports on the neurological outcome of survivors at
GA 22 weeks [6, 16]. The cohort study of the Neonatal
Research Network, Japan, revealed that the proportion of
unimpaired or minimally impaired was 12.0% at GA 22
weeks and 20.0% at GA 23 weeks [17]. Infants born at GA
22-25 weeks are fragile and vulnerable to medical inter-
ventions because of the extreme immaturity of organ sys
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