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Figure 5. Licopyranocoumarin and glycyrurol protected cells against MPP™-induced disappearance of mitochondrial membrane
potential. (A) NGF-differentiated PC12D cells were treated with various concentrations of licopyranocoumarin or glycyrurol in the presence of
0.3 mM MPP* for 48 h, Collected cells were stained with JC-1 and analyzed by flow cytometry. (B) The ratio of cells exhibiting disappearance of
mitochandrial membrane potential was analyzed. Values are the means of three independent experiments; bars, s.d. "p<0.05, " p<0.01 compared

with MPP" group cells.
doi:10.1371/journal.pone.0100395.9005

systemt,  Membrane-bound nicotinamide adenine  dinucleotide
phosphate (NADPH) oxidase {Nox) is known to be a neurotoxin-
related oxidase enzyme system [64,65], and enzymatic antioxi-
dants include superoxide dismutase (SOD), glutathione peroxidase
(GPx), thioredoxin reductase (TPx) and catalase [66]. Therefore, it
is likely that LPC and GCR might induce the imbalance by
inhibiting oxidase activity directly or neurotoxin-induced activa-
tion of oxidase system. Furthermore, we can't exclude the
possibility that LPC and GCR could induce the expression or

identified as neuroprotective substances from Glygyrhiza contained
i choigjoki-io and  daio-kanzo-to. LPC or GCR  exert their
neuroprotective effects by inhibiting MPP"-induced ROS produc-
tion and thus limiting JNK activation, and causing a subsequent
decrease in AW, Owr proposed mechanism is illustrated in
Figure 9. Further studies are required to elucidate the molecular
mechanisms for the suppression of ROS generation by LPC and
GCR in PC12D cells. Our findings enliven the prospect of using
LPC, GCR, choi-joki-to and daip-kanzo-to as effective and safe

activation of antioxidant enzymes.
In summary, we identified choi-ppki-to and daio-kanzo-to as
neuroprotective herbal medicines, and both LPC and GCR were

natural therapeutic agents in PD; in vive trials in MPTP animal
models are needed.
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Figure 6. Licopyranocoumarin and glycyrurol decreased MPP*-induced intracellular ROS generation. (A) NGF-differentiated PC12D cells
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doi:10.1371/journal.pone.0100395.g006
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Figure 7. Licopyranocoumarin and glycyrurol lacked potency
for scavenging free radicals. Antioxidant activities of licopyrano-
coumarin (LPC) and glycyrurol (GCR) were measured by (A) a B-
carotene bleaching assay system and (B) a DPPH radical scavenging
assay. Kaempferol served as the positive control. Values are the means
of three independent experiments; bars, s.d. ##p<0.01 compared with
antioxidant activity of kaempferol.
doi:10.1371/journal.pone.0100395.g007

Materials and Methods

Reagents

MPP*, Rotenone, linoleic acid, 2,2-Diphenyl-1-pocrylhydrazyl
(DPPH), SP600125 and mouse monoclonal anti-B-actin antibodies
were purchased from Sigma Chemical Co. (St. Louis, MO). Taxol,
cisplatin, JC-1 and pyridinium iodide were purchased from Wako
Pure Chemical Industries, Ltd. (Osaka, Japan). Nerve growth
factors, CM-HyDCFDA, and B-carotene standard were purchased
from Alomone Labs (Jerusalem, Israel), Life Technologies
(Carlsbad, CA) and Kanto h Chemical Co. (Tokyo, Japan),
respectively. Rabbit polyclonal anti-JNK antibody and rabbit
monoclonal anti-phospho-JNK antibody were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA) and Cell Signaling
(Beverly, MA), respectively. Horseradish peroxidase-conjugated
anti-mouse and anti-rabbit IgG used as a secondary antibodies
were from GE Healthcare (Little Chalfont, UK).

Cell cultures
" PC12D was identified a new subline of PC12 pheochromocy-
toma cells (PC12D célls) in which neurites are extended within
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24 h in response to cAMP-enhancing reagents as well as in
response to nerve growth factor (NGF) [30]. PC12D cells were
cultured in Dulbecco’s modified Eagle medium supplemented with
5% (v/v) inactivated fetal bovine serum, 10% (v/v) inactivated
horse serum, 100 U/mL penicillin G, 0.6 mg/mL L-glutamine,
and 0.1 mg/mL kanamycin at 37°C with 5% CO,. PC12D cells
were differentiated by 100 ng/mL NGF treatment for 48 h.

Cell viability assays

For the trypan blue dye exclusion assay, differentiated PC12D
cells were cultured in 48-well dishes. Drug-treated or untreated
cells were stained with trypan blue (Sigma Chemical Co.), and the
ratio of viable cells was determined using a hemocytometer. Cell
viability (%) means the ratio of the number of trypan blue-
impermeable cells to total cell count. IC5q values were calculated
by linear regression analysis from the inhibition of MPP*-induced
cell death at different concentrations of the drug.

Cell cycle analysis

To examine apoptosis, differentiated PC12D cells were
harvested after drug treatment. The cells were washed with PBS
and fixed with 70% ethanol at 4°C for more than 1 h. The cells
were then stained with propidium iodide (PI) solution according to
a previously reported protocol [67]. The labeled nuclei were
subjected to flow cytometry (FCM, Beckman-Coulter, Miami, FL).

Measurements of mitochondrial membrane potential

Changes in mitochondrial membrane potentials were assessed
JC-1 (5,5,6,6'-tetrachloro-1,1",3,3’ -tetrachylbenzimidazolylcar-
bocyanineiodide) (Wako) was used according to the manufactur-
er’s protocol. Briefly, treated cells were collected by pipetting and |
removing medium. Next, the cells were incubated in medium
containing 2.5 pug/ml JC-1 for 20 min at 37°C. Cells were then
washed with PBS. JC-1 fluorescence was measured by a flow
cytometer.

Measurement of intracellular ROS

Intracellular ROS production was measured using CM-
H,DCFDA. The cells were plated at a density of 12x10% cells
per 12-well dish. The cells were treated with MPP* and test
compounds for 12 h, and then trypsinized and collected. After the
cells were washed with PBS, incubated with 2.5 uM CM-
H,DCFDA in HBSS at 37°C for 30 min, and then washed again
with PBS three times. The relative levels of fluorescence were
quantified by using a flow cytometer.

B-carotene bleaching assay

This assay was carried out according to the B-carotene
bleaching method [68]. A mixture of B-carotene and linoleic acid
was prepared by adding a mixture of 0.3 mg of B-carotene in
3 mL chloroform, 40 mg linoleic acid and 400 mg Tween 20.
Chloroform was removed and 100 mL of distilled water was
added to form an emulsion with continuous shaking. Aliquots
(0.1 mL) of the B-carotene/linoleic acid emulsion were mixed with
1 uL of sample solution and incubated in a water bath at 50°C.
The oxidation of the emulsion was monitored spectrophotomet-
rically by measuring absorbance at 470 nm over a 60-min period.
Control samples contained 1 pL of methanol. Antioxidant activity
is expressed as percent inhibition relative to control after 60 min
incubation using the following equation:

AA(%) = 100(DR, - DR)/DR,,
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Figure 8. Licopyranocoumarin and glycyrurol attenuated MPP"-induced JNK activation. (A) NGF-differentiated PC12D cells were treated
with various concentrations of licopyranocoumarin (LPC) or glycyrurol (GCR) and 0.3 mM MPP* for 36 h, and JNK and phosphor-JNK level were
detected by Western blot. NGF-differentiated PC12D cells were treated with SP600125 and 0.3 mM MPP* for 48 h. Thereafter (B) cell viability was
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three independent experiments; “p<0.01 compared with MPP* group cells.

doi:10.1371/journal.pone.0100395.g008
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Figure 9. Suggested model for neuroprotection of licopyrano-
coumarin and glycyrurol against MPP*-induced toxicity in
PC12D cells. Both licopyranocoumarin and glycyrurol exert neuro-
protective effects against MPP*-induced toxicity via suppression of ROS
generation and of JNK activation.
doi:10.1371/journal.pone.0100395.g009

/

PLOS ONE | www.plosone.org

where AA = antioxidant activity; DR, = degradation rate of the
control = [In(a/4)/60]; DR, =degradation rate in presence of the
sample = [In{a/5)/60]; a= absorbance at time 0; b= absorbance at
60 min.

DPPH radical scavenging assay

The DPPH radical scavenging effect of test compounds was
determined according to the previously described method [68].
The reaction mixtures contained 100 pL ethanol, 125 uM DPPH,
and test compounds. After 2 min of incubation at room
temperature, the absorbance was recorded at 517 nm.

Extraction and isolation of licopyranocoumarin and
glycyrurol-from Glycyrrhiza
Compounds were extracted from dried and pulverized Glycyr-

rhiza (50 g) with 90% EtOH, then filtrated and concentrated in

vacwo. This suspension was adjusted to pH 7.0, followed by
extraction with EtOAc (5 L) twice; the organic layer was
concentrated to yield residue (3.76 g). The EtOAc extract was
fractionated by centrifugal partition chromatography (CPC) with
CHCl;:MeOH:H,O (5:6:4). The obtained crude active extract
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was applied on Sephadex LH20 column chromatography
(Sephadex LH-20, 70 pM; GE Healthcare, NJ, USA), and eluted
with MeOH. The active fraction (250.6 mg) was further purified
by preparative octadecyl silyl (ODS) HPLC (YMC-Pack ODS-
AQ, YMC Co. Ltd., Japan) with 40% aqueous CH;CN to give
pure licopyranocoumarin (10.8 mg) and glycyrurol (4 mg),
respectively. ’

Western blotting

Cells were lysed m RIPA buffer (25 mM HEPES (pH 7.2),
1.5% Triton X-100 (Wako), 1% sodium deoxycholate (Wako),
0.1% SDS, 0.5 M NaCl (Wako), 5 mM EDTA, 50 mM NaF
(Sigma), 0.1 mM sodium vanadate (Sigma) and 1 mM phenyl-
methylsulfonyl fluoride (PMSF) with sonication. The lysates were
centrifuged at 13,000 rpm for 15 min to yield the soluble cell
lysates. For immunoblotting, cell lysates were subjected to SDS-
polyacrylamide gel electrophoresis. Proteins were transferred onto
a polyvinylidene fluoride membrane (Millipore) by electroblotting
and then incubated with appropriate antibodies. Immune
complexes were detected with an Immobilon Western kit
(Millipore), and luminescence was detected with a LAS-1000 mini
(Fujifilm Co., Tokyo, Japan).

Statistical analysis
All statistical analyses in bar plots were performed with a two-
tailed paired Student’s #test.
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Supporting Information

Figure S1 The correlation between contents of Glycyr-
rhiza and neuroprotective acuwty in herbal medicines.

(TIE)

Figure S2 Toxicity of EtOAc extract of Glycyrrhiza.
NGF-differentiated PC12D cells were treated with various
concentrations of EtOAc extract of Glhgyrrhiza for 48 h. Cell
viability was evaluated by trypan blue dye exclusion assay.

(T1F)

Figure 83 Licopyranocoumarin and glycyrurol prefer-
entially showed cytoprotective effects in neuronal cells.
HeLa cells or NGF-differentiated PC12D cells were treated with
various concentrations of licopyranocoumarin (LPC) or glycyrurol
(GCR) in the presence of 0.3 pM Rotenone for 48 h. Cell viability
was evaluated by trypan blue dye exclusion assay.

(TIF)
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Despite the multitude of intensive research, the exact pathophysiological mechanisms underlying
movement disorders including Parkinson's disease, multiple system atrophy and Huntington’s disease
remain more or less elusive. Treatments to halt these disease progressions are currently unavailable.
With the recent induced pluripotent stem cells breakthrough and accomplishment, stem cell research, as
the vast majority of scientists agree, holds great promise for relieving and treating debilitating movement
disorders. As stem cells are the precursors of all cells in the human body, an understanding of the molecular
mechanisms that govern how they develop and work would provide us many fundamental insights into
human biology of health and disease. Moreover, stem-cell-derived neurons may be a renewable source
of replacement cells for damaged neurons in movement disorders. While stem- cells show potential for
regenerative medicine, their use as tools for research and drug testing is thought to have more immediate
impact. The use of stem-cell-based drug screening technology could be a big boost in drug discovery
for these movement disorders. Particular attention should also be given to the involvement of neural

stem cells in adult neurogenesis so as to encourage its development as a therapeutic option.

Il

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Scientists have known of the existence of stem cells, the
unspecialized cells found in all multicellular organisms that can
self-renew through self-division and differentiate into diverse

specialized cell types, for over a century. Yet it has been only

since the late 1990s, when human embryonic stem cells were first
cultured in the laboratory, that the field of stem cell research has
become the focus of intense scientific interest.

There are essentially three kinds of stem cells: embryonic
stem (ES) cells, which are isolated from the inner cell mass of
blastocysts; adult stem cells, which are found in various developed
tissues such as bone marrow cells; and induced pluripotent
stem (iPS) cells, which are artificially derived from a non-pluripotent
cell, typically an adult somatic cell, by inducing a “forced”
expression of specific genes.

One of the most astounding applications of stem cells is in
the treatment and cure of a wide variety of movement disorders
including Parkinson’s disease (PD), multiple system atrophy (MSA)
and Huntington’s disease (HD). Several ways of how stem cells are
being explored and used in both basic and clinical applications
of current movement disorders research include disease modeling,
drug toxicity screening/drug discovery, gene therapy and cell
replacement therapy.
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In most cases, it is difficult to obtain the damaged cells in a
disease and to study them in detail. Stem cells, either carrying
the disease gene or engineered to carry disease genes, offer
an alternative for laboratory studies. Researchers are able to
model disease processes in vitro and perform more relevant and
informative biological assays, thereby better understanding the
mechanisms underlying the disease. Stem cells have also been used
in the laboratory to screen for new drugs. It has been revealed
that very few drugs have been tested on human-diseased cells
before human testing, Liver and heart toxicity problems account for
about 30% of drugs that fail in early-stage clinical trials, indicating
a need for more efficient means of drug toxicity testing before
clinical trials. The use of stem cells with specific diseases may
correct this situation. Furthermore, given their unique regenerative
abilities, stem cells offer the possibility of a renewable source of cell
replacement therapies for neurological diseases.

However, stem cell research has been controversial and has raised
ethical dilemmas primarily concerning the creation, treatment,
and destruction of human embryos inherent to research involving
ES cells. The recent discovery of iPS cells, hailed as a potential
alternative to ES cells, provides researchers with a unique tool
to derive neurons from patient-specific iPS cells for the study of
neurological diseases. More importantly, iPS cell research obviates
many ethical and resource-related concerns posed by ES cells while
prospectively matching their potential for scientific use.

In recent years, the discovery of constitutive ongoing neurogene-
sis in the adult human brain has challenged-the traditional view of
a fixed circuitry in functionally normal brains, and has raised high
hopes that the adult brain may have the capacity for self-renewal
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after injury, thereby sidestepping the need for transplantation.
Primary neural precursor cells reside in specialized zones called
“neurogenic niches”. A population of neural stem cells (NSCs)
preserves enough germinal character to maintain neurogenesis
throughout life and, once differentiated, their daughter cells
" integrate into already existing neuronal networks. Whether adult
neurogenesis can be induced under certain circumstances in regions
that lack constitutive adult neurogenesis remains controversial, but
several studies have reported the isolation of NSCs from different
regions of the adult brain, including the substantia nigra pars
compacta (SNc). Therefore, there has been considerable interest
within the scientific community to gain understanding of the
possible correlation between neurogenesis and pathogenesis of
movement disorders, which could help the future development of
novel therapeutic intervention.

2. Stem cell therapy for PD and MSA

There has been a long history of fetal tissue transplantation for
the treatment of patients with advanced PD. Despite the wake of
a long series of encouraging open-label studies, initial enthusiasm
for cell replacement therapy by grafting fetal neuronal precursor
cells into the striatum has vanished after two double-blind placebo-
controlled clinical trials showing only moderate symptomatic
improvement and the occurrence of severe disabling dyskinesia.
These problems should be solved before fetal tissue transplantation
can be considered a therapeutic option for PD [1].

Studies have shown ES cell transplanted into the brains of PD rat
model differentiated into dopaminergic neurons, restoring partial
neural function [2]. PD rodent models subjected to engraftment of
dopaminergic neurons derived from human ES cells demonstrated
complete behavioral restoration and motor function improvement.
Similarly, parkinsonian monkeys receiving transplantation showed
excellent DA neuron survival, function and lack of neural
overgrowth, indicating potential for the development of cell-based
therapies in PD [3].

It was recently shown that reprogramming mouse embryonic
fibroblasts with four transcription factors Oct4, Sox2, Kif4, and
c-Myc induces pluripotency [4], enabling generation of iPS cells
from patients with a variety of diseases [5]. iPSC-derived midbrain
dopaminergic neurons from a patient with a triplication in the
a-synuclein gene (SNCA) showed accumulation of a-synuclein, in-
herent overexpression of markers of oxidative stress, and sensitivity
to peroxide-induced oxidative stress, precisely recapitulating the
cause of disease in the patients [6,7]. Comparably, PARK2 iPSC-
derived neurons exhibited mitochondrial dysfunction associated
with increased oxidative stress and o-synuclein accumulation,
resembling pathogenic changes in patient brains [8]. Neurons
derived from mutant PINK1 iPS cells displayed impaired recruitment
of lentivirally expressed Parkin to mitochondria, increased mito-
chondrial copy number and upregulation of PGC-1¢, an important
regulator of mitochondrial biogenesis, upon mitochondrial depolar-
ization [9]. LRRK2 mutant iPSC-derived DA neurons demonstrated
increased susceptibility to oxidative stress, consistent with existing
understanding of early PD phenotypes [10]. Such disease-specific
iPS cells offer an unprecedented opportunity to recapitulate both
normal and pathologic human tissue formation in vitro, thereby
facilitating disease investigation and drug development.

Furthermore, generation of iPS cells provides a new avenue for
transplantation therapy as it can avoid immunorejection, a major
complication in current transplantation medicine. Wernig et al. [11]
reported upon transplantation into the fetal mouse brain, iPSC-
derived neural precursor cells extensively differentiate into glia and
neurons. Functional recovery was observed after transplantation of
iPSC-derived midbrain dopamine neurons into the adult brain of

Parkinsonian rats, Risk of tumor formation from grafted cells was
minimized by the separation of contaminating pluripotent cells and
committed neural cells using fluorescence-activated cell sorting.
Encouraging data from rodent studies then prompted subsequent
assessment in a primate model. Kikuchi et al. [12] observed that
human iPSC-derived neural progenitor cells grafted in the brain
of a primate PD model survived as dopaminergic neurons for as
long as six months, implying the therapeutic potential of human
iPS cells. Direct reprogramming of mouse and human fibroblasts
into induced neural stem cells (iINSCs) has been proven feasible
with a single factor, Sox2. iINSCs express NSC markers and resemble
wild-type NSCs in their morphology, self-renewal, ability to form
neurospheres and differentiate into several types of mature neurons
as well as astrocytes and oligodendrocytes, indicating multipotency.
Importantly, implanted iNSCs can survive and integrate in mouse
brains without tumorigenic potential. As an additional merit, this
method allows shortening of the duration for neuronal cell creation
from fibroblasts [13].

Adult stem cells comprise mesenchymal stem cells, hematopoietic
stem cells, ectodermal stem cells and so on. Scientific interest
in adult stem cells is spotlighted on their ability to divide or
self-renew indefinitely, and generate all the cell types of the
organ from which they originate, potentially regenerating the
entire organ from a few cells. Numerous studies using expanded
and/or induced bone marrow-derived mesenchymal stem cells
have been reported for animal models and yet only three clinical
studies with intracerebral or intravasal application of these cells
have been reported for PD and MSA patients. In two open-
label studies, subventricular application of both allogenic and
autologous bone marrow-derived mesenchymal stem cells showed
improvement of motor behavior as reflected by reduction of UPDRS
ON and OFF scores in most but not all PD patients [14,15]. In a
randomized placebo-controlled trial involving a small number of
cognitively intact MSA-C patients, mesenchyrnal stem cell therapy
was safe and was able to delay the progression of neurological
deficits with functional improvement in the follow-up period in
some of the patients [16].

3. Adult neurogenesis in Parkinson’s disease

Increasing evidence points to the presence of adult neural stem
cells in many areas of the mammalian brain, mainly in the
hippocampus and subventricular zone (SVZ) near the lateral
ventricle. It is well known that changes occurring in the SVZ
depend upon the pathological condition. Dopamine is an important
molecule in neurogenesis. Therefore many investigators now focus
on neurogenesis in PD. Hoglinger et al. [17] reported reduction
in the numbers of proliferating cells in the SVZ of postmortem
brains of PD patients, implying that generation of neural precursor
cells is impaired in PD as a consequence of dopaminergic
denervation. However, controversy regarding neurogenesis in the
SVZ in PD models persists. Some groups reported decreased
neural precursor proliferation while some reported increased neural
precursor proliferation in the SVZ of PD models. )
Likewise, whether dopaminergic neurogenesis occurs in the
adult substantia nigra (SN) in PD brains or in PD animal models
remains a matter of debate. So we evaluated nigral neurogenesis
in animal models and PD autopsy brains. We first performed
retroviral labeling in a PD rodent model and observed efficient -
labeling of proliferating cells in SN with retroviral transduction of
green fluorescent protein. But many of these labeled cells became
microglia and none had differentiated into tyrosine-hydroxylase
(TH)-positive neurons. Second, staining for intrinsic markers of
neurogenesis showed that there were no proliferating cells in the
SN of PD patients but a large number of polysialylated neural cell
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adhesion molecule (PSA-NCAM)-positive cells were detected in SN
pars reticulata (SNr) of some PD patients. In rat and primate models,
dopamine-depleted hemispheres showed more PSA-NCAM staining
than the intact side. A small number of TH and PSA-NCAM double
positive cells, indicative of newly differentiated dopaminergic
neurons, were detected [18]. However, no TH and PSA-NCAM

double positive cells in PD patients were detected. Despite not .

being conclusive enough, these results suggest enhanced neural

reconstruction in PD, which may be important in the design of new

therapies against the progression of PD.

4. Stem cell therapy for Huntington’s disease

- Huntington’s disease (HD) is characterized by a loss of brain
striatal neurons that occurs as a consequence of an expansion of
a cytosine adenine guanine (CAG) trinucleotide repeat encoding
polyglutamine (polyQ) in the first exon of the Huntingtin gene.
Therapeutic strategies are largely based on the amelioration
of mutant huntingtin-related metabolic impairment and cellular
toxicity. Yet cell replacement may be a potential therapy when
cell death has become prominent in later stages of the disease.
Numerous preclinical studies reported the efficiency of human fetal
striatal tissue in providing functional recovery in various rodent
and non-human primate models of striatal neuronal loss. On this
basis, several clinical trials have assessed fetal cell transplantation
for treatment in HD patients. Delivery of fetal striatal primordium
into the caudate putamen of patient’s brain was done via surgical
stereotactic method. Yet due to heterogeneity in experimental
design and small sample size, these clinical trials provided divergent
data and reported modest improvements even in the best of cases.
Some patients showed symptomatic improvement following the
transplant but disease progression ensued with no greater survival.
To address this issue, three ongoing randomized controlled clinical
trials are reassessing fetal graft efficacy.

The ethical and immunological concerns associated with fetal
allografts, along with-the practical need to obtain tissue that is
precisely staged, accurately dissected and freshly collected, imply
that availability of fetal tissues for cell transplantation in the
brain is likely to be extremely limited. Thus there is an urgent
and active search for alternative sources. Human ES serve as a
readily renewable source of potential medium spiny neurons for cell

replacement therapy in HD patients. In vivo differentiation of striatal _

progenitor derived from human ES cells into striatal neurons follow-
ing xenotransplantation into adult rats has first been described by
Aubry et al. [19], opening an avenue of human ES cell therapy for HD.
However, long-term proliferation of human neural progenitors leads
to xenograft overgrowth in the rat brain, hindering its clinical use.
HD-specific iPS cells have also been generated and reproduced CAG-
' repeat-expansijon-associated gene expression phenotypes upon
differentiation into neural cells, representing a well-characterized
resource to elucidate the disease mechanism in HD and providing
a human stem cell platform for screening new candidate

therapeutics [20]. Also, An et al. [21] reported that iPS cells derived

from the HD patient could be corrected by the replacement of
the expanded CAG repeat with a normal repeat using homologous
recombination, and the correction persists upon differentiation into
striatal neurons in vitro and in vivo. Notably, correction of the HD-
iPSCs normalized pathogenic HD signaling pathways and reversed
disease phenotypes in neural stem cells. The ability to make patient-
specific, genetically corrected iPS cells from HD patients is crucial
for the eventual use of these cells in cell replacement therapy.

As mentioned earlier, neurogenesis has recently been observed
in the adult human brain, suggesting the possibility of endogenous
neural repair. Curtis et al. [22] first reported augmentation of
neurogenesis as reflected by increased progenitor cell proliferation

in the subependymal layer adjacent to the caudate nucleus,
in response to neuronal cell loss in the caudate nucleus
in HD. Degree of cell proliferation increased with pathological
severity and increasing CAG repeats in the HD gene. Most
importantly, proliferating cells were shown to-express neuronal
markers, indicating the generation of neurons and glial cells
in diseased human brain. These results provide evidence for
the regenerative potential of the human brain. Further, on the
basis that ependymal overexpression of brain-derived neurotrophic
factor (BDNF) stimulates neuronal addition to the adult striatum
from subependymal progenitor cells'while Noggin potentiates this
process by suppressing subependymal gliogenesis and increasing
progenitor availability, Cho et al. [23] found that BDNF and
Noggin induced striatal neuronal regeneration, delayed motor
impairment, and extended survival in R6/2 huntingtin transgenic
mice, suggesting a new therapeutic strategy for HD.

5. Challenges of stem cell research

Before stem cells can be used to treat a myriad of disorders, many
technical obstacles that hinder the clinical use must be overcome.
The first major concern is that ES- and iPS-derived grafts have been
reported to induce formation of teratomas. The tumor formation
depends on the extent to which the cells are selectively enriched
and differentiated prior to transplantation. Contamination with
undifferentiated multipotent cells permits teratogenesis in the host.
There are a number of successful engraftments of human ES cells-
derived cells within the brain as treatment for PD and HD without
tumor formation. But these studies were conducted in rodents
and did not include long assessment periods. This problem may
be solved with the establishment of safe stem cells incorporated
with an anti-tumorigenic system by virus-mediated suicidal gene
introduction [24]. These suicidal genes can serve as cell death
switches that halt potentially deadly reactions.

Second, human ES cells express low levels of human leukocyte
antigen class I molecules in both undifferentiated and differentiated
states -and might elicit immune responses. To address this issue,
researchers found that short-term immune-dampening treatment
enables human embryonic stem cells to avoid rejection after
transplantation. Breakthrough of iPS cells also potentially allows
generation of patient-specific donor cells that would likely,
although not certainly, evade rejection as autograft. However, some
researchers opined that iPSC-derived neurons will not be suitable
for transplantation until the oncogenes and retroviruses used are
replaced with more controlled methods of reprogramming. The
problems that remain would likely be overcome through years of
intensive research,

Recently a critical issue regarding clinical use of unapproved
stem cell treatment in many clinics in some countries has
been revealed. Those clinics claimed success in treating patients,
including PD patients, but none has published data from
controlled clinical trials. PD experts expressed concerns that these
treatments might provide anecdotal, poorly controlled and transient
improvement in patients and were dubious if the infused cells:
would survive for more than a few days in patients because so
far there are neither scientific nor clinical data to support long-
term benefits of hematopoietic or neural stem cell therapies for
PD patients. Leading researchers now emphasize the need to strictly
regulate stem cell therapy by requiring the organizations using
stem cells to register their research and clinical activities, source
of stem cells and ethical procedures.

6. Conclusion

In summary, stem cell research has made tremendous progfess
to date, offering new and promising potentials for the use of
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these cells as therapeutic agents. However, it has also been the
subject of much debate, and a great deal of research is required
to overcome the existing technical hurdles including tumorigenesis
and immune response so as to enable development of novel
approaches that could be translated into effective and well-tolerated
clinical application. Though in its infancy, generation of iPS cells is
a breakthrough in stem cell research that, in the long term, may
lessen the need to use human ES cells that is always at the crux of
-ethical concerns.
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HOT TOPICS

Since the genetic interaction between parkin and PINK1'2
and the involvement of these genes in mitochondrial autoph-
agy® (mitophagy) has been identified, mitophagy has
emerged as one of the hottest topics in PD research.
Recent studies show that PINK1 acts as an upstream factor
for parkin and is essential for both phosphorylation and acti-
vation of parkin that is consequently recruited to damaged
mitochondria. However, because a phosphomimetic parkin
mutation cannot fully rescue the phenotype of PINK1 defi-
ciency, it was suspected that PINK1 has substrates other
than parkin.

In this paper,® Koyano et al. address this question. By
using phosphate-affinity (Phos-tag) polyacrylamide gel elec-
trophoresis, they found that ubiquitin is phosphorylated at
Ser65 in Hela cells treated with GCCP, a mitochondrial
uncoupler, in a PINKi-dependent manner. They next
showed that the combination of phosphomimetic ubiquitin
and parkin are sufficient for full activation of parkin even in
the absence of PINK1. Finally, they proposed a hypothesis
for the mechanism underlying parkin activation, namely that
phasphorylated ubiquitin unlocks the autoinhibition of the
catalytic domain of parkin allosterically. Two other recent
articles have also reported on PINK1-mediated phosphoryla-
tion of ubiquitin.>®

Ubiquitin, a . widely used posttranslational modifier, is
posttranslationally modified by PINK1. The ssgmﬂcance of
phosphorylation of ubiquitin are not known.

Advance in PD Research Explored a New Field
on Ubiquitin Biology

The discovery of modified ubiquitin will certainly open up
new horizons in ubiquitin biology. From a clinical perspec-
tive, phosphorylated ubiquitin may represent a novel and
specific biomarker for mitochondrial damage in neurodege-
nerative disorders, including PD. ® ’

Hodaka Yamakado
Kyoto University Graduate School of Medicine, Kyoto, Japan
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ABSTRACT

The best validated susceptibility variants for Parkinson's disease are located in the a~synuclein (SNCA)
and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K
haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing
to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2
p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined
4 SNCA variants (rs181489, rs356219, rs11931074, and rs2583988), the MAPT H1-haplotype—defining
variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (n = 10,322) and Asian (n = 2289)
series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all p >
0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA ge-
notypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H
genotypes. Our results indicate that the association of LRRK2 p.R1398H with Parkinson’'s disease is

Genetics independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

With an estimated prevalence of between 1% and 2% in in-
dividuals more than 65 years of age, Parkinson’s disease (PD) is one
of the most common age-related neurodegenerative disorders (de
Lau and Breteler, 2006; Postuma and Montplaisir, 2009). Long
thought of as a sporadic disease, PD now has a well-established
genetic component that includes both disease-causing mutations
as well as risk-modifying susceptibility variants (Gasser et al., 2011).
Of the PD susceptibility variants that have been identified thus far,
the best validated have involved those located in the a-synuclein
(SNCA) gene, which also contains several pathogenic mutations that
are linked to familial PD, and in the microtubule-associated protein
tau (MAPT) gene (Gasser et al,, 2011). More specifically, associations
with PD have been identified in both Caucasian and Asian pop-
ulations at the 3’ and 5 ends of the SNCA gene (Mizuta et al., 2006;
Mueller et al., 2005; Pankratz et al., 2009; Ross et al., 2007; Satake
et al, 2009; Simén-Sanchez et al,, 2009; Winkler et al, 2007),
whereas the H1 haplotype in MAPT is associated with PD in Cau-
casians but not in Asians, owing to the almost complete absence of
the H2 haplotype in the latter group (Evans et al,, 2004; Healy et-al,,
2004; Skipper et al., 2004; Tobin et al.,, 2008; Wider et al., 2010).

Variation in the leucine-rich repeat kinase 2 (LRRK2) gene,
which like SNCA harbors disease-causing mutations of its own has
also been associated with susceptibility to PD in both Caucasian
and Asian populations. The majority of proposed LRRK2 PD risk
variants have been relatively rare (minor allele frequencies [MAFs]
between 1% and 5%) and have included p.G2385R and p.R1628P in
Asian populations as well as the more recently identified p.A419V
(in Asians), and p.M1646T (in Caucasians) (Di Fonzo et al,, 2006;
Farrer et al., 2007; Ross et al, 2008, 2011; Tan et al, 2010). The
most common LRRKZ PD risk factor to date, identified by several
groups_including our own, has involved a 3-variant (p.N551K-
R1398H-K1423K) protective haplotype in both populations
(Ross et al., 2011; Tan et al, 2010). It has been shown that the

p.1398H variant has reduced kinase activity in comparison to the
wild-type p.R1398 (Tan et al. 2010). Given these data, the
p.R1398H (rs7133914) substitution, which occurs with a MAF of
approximately 7% in Caucasians and 10% in Asians (Heckman et al,,
in press; Tan et al,, 2010), is the most likely functional variant on
the haplotype. The protective effect of p.R1398H appears to be
strongest in Asians, in whom consistent odds ratios of 0.75 and
0.73 have been observed in studies by Tan et al. (2010) and Ross
et al. (2011), with a similar odds ratio of 0.79 observed in a
smaller study by Chen et al. (2011). In Caucasians, the odds ratio
for p.R1398H observed in the aforementioned study by Ross et al.
in a series of 6995 patients and 5595 control subjects was 0.89.
This is very similar to the findings of a large meta-analysis of
genome-wide association studies, in which, albeit not nominally
significant, LRRK2 p.R1398H (MAF~6.7%) had a protective odds
ratio of 0.92 and 95% confidence limits ranging from 0.83 to 1.02 in
regard to susceptibility to PD (Nalls et al, 2011; personal
communication).

To best determine risk of PD for a given individual and to
elucidate potential future therapeutic implications, it is important
not only to identify individual genetic risk factors but also to un-
derstand how these risk factors interact with one another. How-
ever, sample sizes needed to reasonably evaluate evidence of such
gene—gene interactions are usually fairly large and can be difficult
to achieve. This is because the risk factor of interest in an inter-
action study (presence of the genotype of interest for both vari-

“ants) occurs much less frequently than the genotype for the

individual variants, which can result in a lack of precision in
estimated interaction effects. Collaboration between members of
the Genetic Epidemiology of Parkinson’s Disease (GEO-PD) Con-
sortium and the resulting large number of patients with PD and
controls offers the opportunity to effectively examine how recog-
nized susceptibility variants for PD may or may not interact with
one another. Such a study was previously undertaken by the
GEO-PD Consortium, in which SNCA and MAPT variants were
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examined in relation to risk of PD and found to have independent
effects (Elbaz et al, 2011). The identification of PD susceptibility
variants in LRRK2 raises the question of whether the effects of these
variants may be modified by those in SNCA or MAPT, or vice versa,
The aim of this study was to evaluate the interaction of the common
LRRK2 susceptibility variant p.R1398H with SNCA and MAPT vari-
ants in relation to risk of PD using Caucasian and Asian patient—
control subject series obtained through the GEO-PD Consortium,

2. Methods
2.1. Subjects

As of 2013, the GEO-PD Consortium includes 57 sites from 29
countries and 6 continents that have agreed to share DNA and data
for 38,686 patients with PD and 34,871 control subjects (hitp://
www.geopd,org/). A total of 20 sites participating in the GEO-PD
Consortium provided data to be used in the current study as
part of a project initiated in 2009. The majority of the Caucasian
subjects used in this study were also included in the previously
mentioned GEO-PD SNCA-MAPT interaction study (Elbaz et al,
2011), and the subjects included in this study are a subset of
those included in the previously referred to investigation of LRRK2
exonic variants in relation to PD (Ross et al., 2011). To be consistent
with the association analysis in the latter study involving LRRK2
exonic variants, carriers of LRRK2 pathogenic variants (n = 64)
were excluded. Subjects were not genotyped for known patho-
genic SNCA mutations and therefore this was not part of our
exclusion criteria. In total, 7342 patients with PD and 5269 control
subjects from 13 different countries on 4 continents were studied.
These subjects were divided into a Caucasian series (5991 patients
with PD, 4331 controls, 16 sites, 10 countries) and an Asian series
(1351 patients with PD, 938 controls, 4 sites, 3 countries). Table 1
provides demographic information for the Caucasian and Asians
series, whereas site-specific information is displayed in
Supplementary Table 1.

Patients were diagnosed with PD using standard criteria
(Bower et al,, 1999; Gelb et al., 1999; Hughes et al,, 1992). Controls
were individuals free of PD or a related movement disorder at the
time of examination. All subjects were unrelated within and bet-
ween diagnosis groups. The Mayo Clinic Institutional Review Board
approved the study; each individual site received local institu-
tional review board approval, and all subjects provided informed
consent.

2.2. Genetic analysis

Four SNCA variants (3’ end of gene: rs181489, rs356219,
1s11931074; 5’ end of gene: rs2583988) as well as the MAPT
H1-haplotype defining variant rs1052553 were genotyped because
of consistently replicated associations with PD (Healy et al.,, 2004;
Mueller et al.,, 2005; Mizuta et al., 2006; Pankratz et al., 2009; Ross
et al, 2007; Satake et al, 2009; Skipper et al, 2004; Simén-
Sanchez et al., 2009; Tobin et al,, 2008; Wider et al., 2010; Winkler
et al., 2007). These 5 variants were chosen for the aforementioned
GEO-PD SNCA-MAPT interaction study (Elbaz et al., 2011). The REP1
polymorphism located in the SNCA promoter has also been associ-
ated with PD (Kriiger et al.,, 1999; Maraganore et al., 2006); however,
because the 263-bp allele (which has shown the strongest associa-
tion with PD) is relatively rare, we did not evaluate REP1 in the
current study. The LRRK2 variant rs7133914 (p.R1398H) was also
selected for inclusion because of the aforementioned findings
demonstrating that is the most likely functional variant on a 3-
variant haplotype (all 3 variants in strong linkage disequilibrium
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Table 1
Subject characteristics for the Caucasian and Asian series
Variable Patients with PD Controls
Caucasian series n = 5991 n == 4331
Age,y 69 4 11 (18-106) 65 & 15 (21~107)
Gender
Male 3453 (58%) 2045 (47%)
Female 2538 (42%) 2286 (53%)
Age at onset, y 59+ 12 (18-96) NA
Asian series = 1351 0= 938

Age,y 61 4 12 (20-91) 60 = 11 (23-89)
Gender
Male 672 (50%) 322 (34%)
Female 679 (50%) 616 (66%)
Age at onset, y 54 & 12 (20-89) NA

Sample mean £ SD (minimum-—maximum) is given for age of subjects and age at
onset, Information was unavailable regarding age in the Caucasian series (147 pa-
tients with PD, 21 controls) and Asian series (371 patients with PD, 298 controls).
Information was unavailable regarding age at onset in the Caucasian series (723
patients) and Asian series (8 patients),

Key: NA, not applicable; PD, Parkinson’s disease; SD, standard deviation,

with 1% > 0.84 in controls) that affects risk of PD in a protective
manner (Ross et al,, 2011; Tan et al., 2010).

DNA was sourced from blood and was stored in a freezer at —80 °C.
All samples were de-identified with an anonymous code from each
site and only a minimal clinical dataset. All LRRK2 and SNCA geno-
typing was done using MassArray iPLEX chemistry and analyzed using
Typer 4.0 (Sequenom, San Diego, CA). MAPT 151052553 was genotyped
using an ABI Tagman genotyping assay on an ABI 7900HT Fast Real-
Time PCR system and analyzed using SDS 2.2.2 software (Applied
Biosystems, Foster City, CA). All genotyping was performed at the
Mayo Clinic Florida neurogenetics laboratory (Jacksonville, FL). Primer
sequences are provided in Supplementary Table 2 for all variants
except for- MAPT rs1052553. Positive control DNA was run for each
variant. Call rates in each series were >95%. There was no evidence of
departure from Hardy—Weinberg equilibrium in controls for any of
the sites (all p > 0.05 after Bonferroni correction).

2.3. Statistical analysis

All analysis was performed separately for the Caucasian and
Asian series. Associations of individual SNCA variants, MAPT
rs1052553, and LRRK2 p.R1398H with PD, and pairwise in-
teractions of LRRK2 p.R1398H with SNCA and MAPT variants in
relation to PD, were evaluated using odds ratios (ORs) and 95%
confidence intervals (CIs) from fixed-effects logistic regression
models adjusted for site. Interactions were evaluated on a multi-
plicative scale only because it has been shown that when at least
one of the interacting factors is protective, biological interactions
are expected to result in departure from multiplicative effects
(Weinberg, 1986). :

We considered LRRK2 p.R1398H under a dominant model
(presence vs. absence of the minor allele) in all analyses owing to
the very small number of homozygotes of the minor allele,
whereas SNCA variants were evaluated under an additive model
(effect of each additional minor allele), dominant model, recessive
model (presence of 2 copies vs. 0 or 1 copy of the minor allele) and
genotype model (general comparison across genotypes). MAPT
rs1052553 was also evaluated under additive, dominant, recessive,
and genotype models, but with effects corresponding to the major
allele to be consistent with previous reports in which ORs corre-
spond to the H1 risk allele. In Caucasians, 3-gene interactions were
also examined. Sensitivity of results to model adjustment for age
and gender and to the use of random-~effects models (DerSimonian
and Laird, 1986) were also assessed when evaluating interactions.

132



266.e8

Between-site heterogeneity in interaction ORs was examined
using 2 tests based on the Q statistic, and also by estimating the
I? statistic, which measures the proportion of variation in inter-
action ORs between sites due to heterogeneity beyond chance
(Higgins and Thompson, 2002).

A relatively large number of statistical tests of gene—gene
interaction were performed in our analyses (24 in the Caucasian
series and 8 in the Asian series). To adjust for multiple testing and
to control the family-wise error rate at 5%, we used a Bonferroni
correction separately for each series, after which p values <0.0021
(Caucasian series) and <0.00625 (Asian series) were considered as
statistically significant. All statistical analyses were performed
using R Statistical Software (version 2.14.0; R Foundation for
Statistical Computing, Vienna, Austria).

3. Results

A summary of allele and genotype frequencies for SNCA variants,
MAPT rs1052553, and LRRK2 p.R1398H in our Caucasian and Asian
patient-control series is provided in Supplementary Table 3, along
with country-specific frequencies. The SNCA variants rs181489 and
152583988 as well as MAPT rs1052553 were observed extremely
rarely in Asian patients and controls and, as such, were not assessed

Table 2
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in association analysis. SNCA variants were in relatively weak link-
age disequilibrium in controls (r* < 0.32) with the exception of
rs181489 and rs356219 in the Caucasian series (12 = 0.58), 15181489
and rs2583988 in the Caucasian series (2 = 0.53), and rs356219 and
rs11931074 in the Asian series (r® = 0.97).

To best interpret the results of gene—gene interaction analysis, it
is helpful to first understand the effects of individual variants on
risk of PD, and therefore single-variant associations with PD for the
SNCA, MAPT, and LRRK2 variants, which have largely been reported
before in the aforementioned GEO-PD studies (Elbaz et al.,, 2011;
Ross et al,, 2011), are displayed in Supplementary Table 4. As has
been previously shown, all variants were significantly associated
with PD.

Evaluations of pairwise interactions of LRRK2 p.R1398H with
SNCA variants and MAPT rs1052553 in relation to PD for the
Caucasian series are shown in Table 2. To simplify our presen-
tation of interaction results, we have focused on additive and
genotype models for SNCA and MAPT variants in Table 2, because
all of these variants had the strongest association with PD under
an additive model except SNCA rs11931074 (which was also
strongly associated with PD under an additive model), and
because genotype models allow for the most general test of
interaction. Gene—gene interactions under dominant and

Interactions of LRRK2 p.R1398H with SNCA and MAPT variants in regard to susceptibility to Parkinson’s disease (PD) in the Caucasian series under additive and genotype models

Variant/genotype LRRK2 p.R1398H Sample genotype count Test of association Test of interaction
and frequency OR (95% CI) p value

SNCA rs181489 .
cC GG 3908 (39.9%) 1.00 (reference) NA Additive model
cC GA or AA 599 (6.1%) 0.82 (0.69-0.98) 0.030 OR = 1.06
cT GG 3636 (37.1%) 1.14 (1.04-1.25) 0.0070 95% Cl = 0.88—-1.28
CcT GA or AA 542 (5.5%) 1.08 (0.90—1.30) 042 | p =052
T GG 967 (9.9%) 1.65 (1.42—1.92) 1.4E-10 Genotype model®
1T GA or AA 136 (1.4%) 1.40 (0.98—2.00) 0.066 p=014

SNCA 15356219
AA GG 3087 (30.9%) 1.00 (reference) NA . Additive model
AA GA or AA 440 (4.4%) 0.82 (0.67—-1.01)" 0.060 OR =098
AG GG 4142 (41.5%) 1.15 (1.04—1.26) 0.0060 95% ClI'= 0.82~1.17
AG GA or AA 628 (6.3%) 1.11 (0.93-1.32) 0.27 p =081
GG GG 1476 (14.8%) 1.51 (1.33—1.73) 7.2E-10 Genotype model®
GG GA or AA 219 (2.2%) 1.10 (0.83—1.46) 0.51 p =032

SNCA 1511931074
GG GG 7443 (74.6%) 1.00 (reference) NA Additive model
GG GA or AA 1061 (10.5%) 0.85 (0.74-0.97) . 0.017 OR = 1.06
GT GG 1300 (12.9%) 134 (1.18-1.51) 6.8E-6 95% CI = 0.79—1.43
GT GA or AA 232 (2.3%) 1.32 (1.00—1.74) 0.052 p = 0.69
T GG 59 (0.6%) 1.46 (0.84—-2.62) Q.19 Genotype model?
TT GA or AA 12 (0.1%) 0.67 (0.20—2.24) 0571 p =061

SNCA 152583988
cC GG . 4495 (44.6%) 1.00 (reference) NA Additive model
cc GA or AA 677 (6.7%) 0.82 (0.69—0.97) 0.019 OR = 1.07
cT GG 3480 (34.6%) 1.20 (1.09-1.31) 0.0001 95% Cl = 0.89—1.29
cT GA or AA 500 (5.0%) 1,13 (0.93-1.37) 0.23 p =047
T GG 800 (7.9%) 142 (1.21-1.67) 1.9E-5 Genotype model®
T GAor AA 117 (1.2%) 1.22 (0.84—1.80) 0.30 p=0.56

MAPT rs1052553°
GG GG 364 (3.6%) 1.00 (reference) NA Additive model
GG GA or AA 58 (0.6%) 0.54 (0.30—0.97) 0.041 OR=1.05
GA GG 2617 (25.7%) 1.10 (0.88—1.38) 0.41 95% Cl = 0.85~1.30
GA GA or AA 398 (3.9%) 1.05 (0.78—1.41) 0.75 p =065
‘AA GG 5881 (58.0%) 1.36 (1.10-1.70) 0.0055 Genotype model?
AA GA or AA 858 (8.4%) 1.19 (0.92—-1.53) 0.19 p =029

ORs and P values result from fixed-effects logistic regression models. For tests of association, the 2 given variants were combined into 1 variable, and the model was adjusted
for site. For tests of interaction, models included each of the 2 variants, their interaction, and site. Additive models and genctype models refer to the characterization of SNCA
and MAPT variants; only dominant models were considered for LRRK2 p.R1398H because of the small number of rare homozygotes for this variant. Interaction ORs under an
additive model are interpreted as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to each additional risk allele for SNCA
and MAPT variants, or alternatively as the multiplicative increase in the effect of each additional risk allele for SNCA and MAPT variants on PD corresponding to presence of the

minor allele for LRRK2 p.R1398H.
Key: Cl, confidence interval; OR, odds ratio.

# Tests of interaction under a genotype model do not produce a single interaction OR, and therefore only a P value is given.

b The A allele for MAPT rs1052553 corresponds to the H1 haplotype.
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recessive models for SNCA and MAPT variants are shown in
Supplementary Tables 5 and 6. In site-adjusted analyses, no in-
teractions of LRRKZ p.R1398H with SNCA and MAPT variants
approached significance after multiple testing adjustment under
any statistical model (all interaction p = 0.10}; the protective
effect of p.R1398H on risk of PD observed in similar magnitude
for different genotypes of SNCA and MAPT variants, whereas the
risk effects of SNCA and MAPT variants were seen similarly for
subjects with and without a copy of the minor allele for
p.R1398H. All interaction ORs were close to 1.0 in magnitude
indicating lack of any interaction with LRRK2 p.R1398H, the only
exceptions involving rare genotypes for MAPT rs1052553 under a
dominant mode! (Supplementary Table 5) and SNCA rs11931074
under a recessive model (Supplementary Table 6), which are best
interpreted with caution owing to the non-significant in-
teractions and very low genotype frequencies. The lack of inter-
action of LRRK2 p.R1398H with MAPT and SNCA variants was also
observed when adjusting for age and gender (Supplementary
Table 7) in those subjects with that information available (98%)
and also when using a random effects model (Supplementary
Table 8). Results of country-specific interaction analysis are
shown in Supplementary Table 9. Between-site heterogeneity
regarding interactions with LRRK2 p.R1398H was low for SNCA
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rs356219, rs11931074, and 152583988 (I* = 0%, p > 0.45) and
moderate for SNCA rs181489 and MAPT 151052553 (I* = 25%—
36%, p = 0.075) (Supplementary Table 8).

More detailed analysis combining genotypes across all 3 genes
for SNCA variants, MAPT rs1052553, and LRRK2 p.R1398H in the
Caucasian series is displayed in Supplementary Table 10 and Fig. 1,
where rare homozygotes were collapsed with heterozygotes for
each variant to avoid extremely rare 3-variant genotype combi-~
nations. There was no evidence of any interaction in these 3-gene
analyses (all, p > 0.63).

Interactions of LRRK2 p.R1398H with SNCA variants
15356219 and rs11931074 in the Asian series are examined in
Table 3 in analyses adjusted for site. Individual effects of LRRK2
p.R1398H and SNCA variants on risk of PD were observed
consistently across variants in the other gene, with no statisti-
cally significant evidence of gene—gene interaction (all interac-
tion, p = 0.14). All interaction ORs were between 117 and 1.39,
indicating a slight but nonsignificant reduction of the protective
effect of LRRK2 p.R1398H on risk of PD when the risk allele for
SNCA variants was present, and a similar small and nonsignifi-
cant enhancement of the SNCA risk effects, given the protective
genotype for p.RI1398H (Fig. 2). Results were similar when
adjusting for age and gender (Supplementary Table 7) in the
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Fig. 1. (A) Individual and combined effects of SNCA rs181489, MAPT 151052553, and LRRK2 p.R1398H on risk of Parkinson's disease (PD) in the Caucasian series. For SNCA rs181489,
the risk genotype was CT or TT {i.e., presence of the minor allele). (B) Individual and combined effects of SNCA rs356129, MAPT 151052553, and LRRK2 p.R1398H on risk of PD in the

.Caucasian series. For SNCA rs356129, the risk genotype was AG or GG (i.e., presence of the minor allele). (C) Individual and combined effects of SNCA rs11931074, MAPT 151052553,
and LRRK2 p.R1398H on risk of PD in the Caucasian series. For SNCA rs11931074, the risk genotype was GT or TT (i.e., presence of the minor allele), (D) Individual and combined
effects of SNCA rs2583988, MAPT rs1052553, and LRRK2 p.R1398H on risk of PD in the Caucasian series. For SNCA rs2583988, the risk genotype was CT or TT (i.e,, presence of the
minor allele). (A—D) For MAPT 151052553, the risk genotype was AA (i.e., presence of 2 copies of the major allele); for LRRK2 p.R1398H, the protective genotype was GA or AA (i.e.,
presence of the minor allele). NA indicates that a given SNP was not involved in the particular portion of the analysis.
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Table 3
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Interactions of LRRK2 p.R1398H with SNCA variants in regard to susceptibility to Parkinson’s disease (PD) in the Asian series

Variant/genotype LRRK2 p.R1398H Sample genotype Test of association Test of interaction
count and frequency OR (95% CI) p value
Additive/genotype
models?
SNCA rs356219
AA GG 282 (12.9%) 1.00 (reference) N/A Additive model
AA GA or AA 83 (3.8%) 0.64 (0.39—1.06) 0.087 OR = 1.17
AG GG 808 (37.0%) 1.59 (1.21-2.09) 0.0009 95% Cl = 0.87—1.59
AG GA or AA 232 (10.6%) 1.19 (0.84—1.69) 033 p =030
GG GG 623 (28.5%) 2.09 (1.56-2.79) 6E-7 Genotype model?
GG GA or AA 156 (7.1%) 1.84 (1.23-2.77) 0.0031 p =059
SNCA 1511931074 ’ :
GG GG 302 (13.3%) 1.00 (reference) N/A Additive model
GG GA or AA 89 (3.9%) 0.61 (0.37-0.98) 0.044 OR = 1.25
GT GG 843 (37.2%) 1.55 (1.19-2.02) 0.0012 95% Cl = 0.93-1.69
GT GA or AA 243 (10.7%) 1.06 (0.75—1.49) 0.75 p=10.14
T GG 630 (27.8%) 1.90 (1.43-2.51) 7.8E-6 Genotype model?
T GA or AA 158 (7.0%) 1.75 (1.18-2.61) 0.0059 p=031
Dominant model® :
SNCA rs356219
AA GG 282 (12.9%) 1.00 (reference) N/A OR = 1.23
AA GA or AA 83 (3.8%) 0.64 (0.39~1.06) 0.087 95% Cl = 0.71-2.14
AG or GG GG 1431 (65.5%) 1.78 (1.38-2.31) 1.10E-5 p =047
AG or GG GA or AA 388 (17.8%) 1.41 (1.03-1.92) 0.030
SNCA 1511931074
GG GG 302 (13.3%) 1.00 (reference) N/A OR=1.25
GG GA or AA 89 (3.9%) 0.61 (0.37-0.98) 0.043 95% Cl = 0.74-2.15
GTor TT GG 1473 (65.0%) 1.69 (1.31-2.17) 4.3E-5 p =041
GTor T GA or AA 401 (17.7%) 1.28 (0.95-1.73) 0.11
Recessive model®
SNCA 15356219
AA or AG GG 1090 (49.9%) 1.00 (reference) N/A OR =122
AA or AG GA or AA 315 (14.4%) 0.72 (0.56~0.93) 0.011 95% Cl = 0.78—1.92
GG GG 623 (28.5%) 1.48 (1.21-1.83) 0.0002 p=038
GG GA or AA 156 (7.1%) 1.31 (0.93-1.87) 0.13
SNCA rs11931074
GG or GT . GG 1145 (50.6%) 1.00 (reference) N/A OR = 1.39
GG or GT GA or AA 332 (14.7%) 0.66 (0.52—0.85) 0.0011 95% Cl = 0.90-2.17
T GG 630 (27.8%) 1.38 (1.12-1.69) 0.0020 p=0.14
T GA or AA 158 (7.0%) 1.27 (0.90—1.80) 0.18

ORs and p values result from fixed-effects logistic regression models. For tests of assaciation, the 2 given variants were combined into 1 variable, and the model was adjusted
for site. For tests of interaction, models included each of the 2 variants, their interaction, and site. Additive models, genotype models, dominant models, and recessive models
refer to the characterization of SNCA variants; only dominant models were considered for LRRK2 p.R1398H because of the small number of rare homozygotes for this variant.

Key: Cl, confidence interval; OR, odds ratio.

4 Interaction ORs under an additive model are interpreted as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to each
additional risk allele for SNCA variants, or alternatively as the as the multiplicative increase in the effect of each additional risk allele for SNCA variants on PD corresponding to

presence of the minor allele for LRRK2 p.R1398H.

b Interaction ORs under a dominant model are interpreted as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD corresponding to
presence of the risk allele for SNCA variants, or alternatively as the as the muitiplicative increase in the effect of presence of the risk allele for SNCA variants on PD correspondmg

to presence of the minor allele for LRRK2 p.R1398H.

¢ Interaction ORs under a recessive model are interpreted as the multiplicative increase in the effect of the minor allele for LRRK2 p.R1398H on PD correspondmg to presence
of 2 risk alleles for SNCA variants, or alternatively as the as the multiplicative increase in the effect of presence of 2 risk alleles for SNCA variants on PD corresponding to

presence of the minor allele for LRRK2 p.R1398H.

d Tests of interaction under a genotype model do not produce a single mteractmn OR, and therefore only a p value is given.

subgroup of Asian individuals for whom that information was
available (71%) and also under a random effects model
(Supplementary Table 8). Interactions between LRRK2 p.R1398H
and SNCA variants under additive and recessive models are
shown in Supplementary Table 11 separately for each Asian
country; between-site heterogeneity in interactions with LRRK2
p.R1398H was moderate for both SNCA rs356219 and rs11931074
in the Asian series (I> = 46%-55% p > 0.084, Supplementary
Table 8).

4. Discussion

Recently, a 3-variant (p.N551K-R1398H-K1423K) haplotype
in the LRRK2 gene was shown to affect susceptibility to PD in a
protective manner in both Caucasian and Asian populations
(Ross et al., 2011; Tan et al., 2010). The p.R1398H substitution
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appears to be the most likely functional variant, as it is located
in the conserved Roc domain, and there is supporting evidence
of reduced kinase activity (Tan et al., 2010). Although a number
of previous investigations have examined interactions between
the well-validated PD susceptibility variants located in the SNCA
and MAPT genes (Biernacka et al,, 2011; Elbaz et al., 2011; Goris
et al., 2007; Mamah et al, 2005; McCulloch et al., 2008:
Simén-Sanchez et al, 2009; Trotta et al, 2012; Wider et al,,
2011), no study reported to date has examined interactions of
LRRK2 p.R1398H with SNCA and MAPT variants. The results of
our large case-control study involving both Caucasian and Asian
individuals indicate that the protective - effect of LRRK2
p.R1398H is observed consistently for different SNCA and MAPT
genotypes, whereas, similarly, the SNCA and MAPT risk effects
are observed for individuals with and without the protectlve
p.R1398H allele.
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Fig. 2. (A) Individual and combined effects of SNCA rs356219, SNCA rs11931074, and LRRK2 p.R1398H on risk of Parkinson’s disease (PD) in the Asian series. SNCA rs356219 and
1511931074 were considered under a recessive model (i.e.,, presence vs, absence of 2 copies of the minor allele). For SNCA rs356219, the risk genotype was GG. For SNCA rs11931074,
the risk genotype was TT. (B) Individual and combined effects of SNCA rs356219, SNCA rs11931074, and LRRK2 p.R1398H on risk of PD in the Asian series. SNCA rs356219 and
511931074 were considered under a dominant model (i.e., presence vs. absence of the minor allele). For SNCA rs356219, the risk genotype was AG or GG, For SNCA 1511931074 , the
risk genotype was GT or TT. (A and B) For LRRK2 p.R1398H, the protective genotype was GA or AA (i.e., presence of the minor allele). NA indicates that a given SNP was not involved

in the particular portion of the analysis.

Despite the relatively large number of interactions and statistical
models considered, the independent effects on PD risk for LRRK2
p.R1398H, MAPT rs1052553, and SNCA variants were observed with
a very high level of consistency in our study. This was most
apparent in the large Caucasian series, for which all interaction ORs
were between 0.80 and 1.13, with the exception of the 2 afore-
mentioned instances involving rare genotypes for MAPT rs1052553
and SNCA 1511931074. In addition, between-site heterogeneity in
interaction effects was low to moderate in Caucasians. Although the

protective effect of LRRK2 p.R1398H. on risk of PD was observed
consistently across SNCA variant genotypes in Asians, perhaps the
least convincing evidence of lack of gene—gene interaction was
observed in this series. Albeit not approaching significance even
before adjustment for multiple testing, the magnitude- of this
observed protective effect was slightly smaller when the risk ge-
notype for SNCA variants was present, whereas, conversely, the
observed risk effects of SNCA variants were marginally stronger in
individuals with the protective p.R1398H genotypes. In addition,
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heterogeneity in interaction effects between sites was highest in
the Asian series. However, it is important to highlight that it would
be very unusual to observe a complete lack of gene—gene interac-
tion (i.e., interaction OR = 1) in all scenarios simply because of
natural sampling variability, particularly given the number of
possible interactions that were examined. Nonetheless, given the
smaller size of our Asian series in comparison to the Caucasian
series, it will be important to validate our findings in larger series of
Asian individuals.

Recent studies have supported our earlier work indicating that
the effects of SNCA and MAPT variants on PD risk are independent
of one another (Biernacka et al.,, 2011; Trotta et al,, 2012; Wider
et al, 2011). Although our current study is the first to date to
examine the potential interaction of the protective LRRK2
p.R1398H substitution with MAPT and SNCA variants in regard to
risk of PD, previous studies have evaluated interactions with, or
combined effects of, LRRK2 variants and those in SNCA and MAPT.
In their analysis of 1098 patients with PD and 1098 matched
controls from the United States (a subset of which were also used
in the current study), Biernacka et al. (2011) found no statistically
significant evidence of gene—gene interaction when considering 8
intronic LRRK2 variants, 10 SNCA variants (8 intronic, 1 3’ down-
stream and 1 5’ Rep1), and 8 MAPT variants (6 intronic, 1 3’ UTR,
and 1 H1/H2). Wang et al. (2012) concluded that other genes,
including MAPT and SNCA, modified LRRK2-related risk for PD in a
Chinese cohort of 2013 sporadic PD patients and 1971 controls.
This was based on findings that, in comparison to individuals
harboring only the LRRK2 p.G2385R or p.R1628P risk variants, the
risk of PD is increased in individuals with these and other PD risk
variants. However, it is unclear whether this represents indepen-

dent or interactive effects, and the sample sizes of the combined

risk-variant groups examined were quite small. The results of
these studies are consistent with those of our own, with the effect
of LRRK2 variants on PD susceptibility appearing to be indepen-
dent of SNCA and MAPT risk factors for PD.

The strengths of our study, including the large sample size and
“inclusion of subjects from a variety of different populations, are
important to highlight; however, several limitations should also be
acknowledged. A key question is whether the lack of interaction of
LRRK2 p.R1398H with SNCA and MAPT variants is a consequence of
sample size or the frequencies of the examined variants. To assess
the possibility of a false-negative association, it is most helpful to
examine 95% confidence limits for observed interaction odds ratio
estimates (Goodman and Berlin, 1994). These confidence limits
were generally relatively tight in the larger Caucasian series,
indicating a lack of a biologically significant interaction in this
population, but were wider in the Asian series, further high-
lighting .the need for validation of our findings in that series. In
addition, as is generally the case for large-scale collaborative
studies attempting to address a focused research question that
involves a-small number of genetic variants, without available
genome-wide population control markers, population stratifica-
- tion could potentially have had an impact on our results. However,
this potential limitation is lessened by the fact that our logistic
regression models were adjusted by site, which makes any
possible population stratification a site-specific issue. Other limi-
tations of our study include the different diagnostic criteria across
the different sites and the lack of a standardized inclusion/exclu-
sion criteria for patients with PD and controls.

In conclusion, our study provides evidence that the effect of
LRRK2 p.R1398H on risk of PD is independent of the MAPT H1-
haplotype defining variant rs1052553 and SNCA variants, and
vice versa. This lack of gene—gene interaction was apparent in
both our large Caucasian patient-control series and our smaller
Asian series. Evaluation of interactions involving individuals of

M.G. Heckman et al. / Neurobiology of Aging 35 (2014) 266.e5—266.e14

other ethnic backgrounds, other rarer LRRK2 susceptibility vari-
ants, and PD susceptibility variants at other loci (Lill et al., 2012) is
needed in order to move toward a fuller understanding of the
genetic architecture of PD susceptibility.

Disclosure statement

J.O.A, MJE, and ZKW. report holding a patent on LRRK2
genetic variability. MJ.F. has received royalties for licensing of
genetically modified LRRK2 mouse moadels. D.M.M. declares a
patent pending entitled “Methods to Treat PD.” CK. and RK.
declare receiving payment in their role as consultants for Cen-
togene and Takeda Pharmaceutical, respectively. All other authors
declare that they have no conflicts of interest.

Acknowledgements

This work was supported by a grant from The Michael J. Fox
Foundation for Parkinson’s Research (0.A.R, MJ.F). Original
funding for the GEO-PD was supported by a grant from The
Michael J. Fox Foundation for Parkinson’s Research Edmond J. Safra
Global Genetics Consortia program (D.M.M.). The Mayo Clinic
Jacksonville is a Morris K. Udall Center of Excellence in Parkinson’s
Disease Research (grant no. P50 NS072187) and was supported by
a the gift from the family of Carl Edward Bolch, Jr, and Susan Bass
Bolch (R]J.U., ZKW., O.AR.). O.AR. acknowledges funding support
from the National Institutes of Health (grant no. RO1 NS078086).
This research was undertaken, in part, thanks to funding from the
Canada Excellence Research Chairs program (MJ.F, CV.G.). Leading
Edge Endowment Funds, provided by the Province of British
Columbia, LifeLabs, and Genome BC, support the Dr Donald Rix BC
Leadership Chair (MJ.F). D.MM. acknowledges the National
Institutes of Health for funding support (grant no. RO1ES10751). .
Studies at individual sites were supported by a number of different
funding agencies world-wide including; Italian Ministry of Health
(Ricerca Corrente, Ricerca Finalizzata); the Swedish Parkinson
Academy; the Swedish Parkinson Foundation; the Federal Ministry
for Education and Research (BMBF, NGFNplus; 01GS08134) (R.K.);
the NGFNplus (Neuron-Parkinson-subproject 7) (S.G.); CHRU de
Lille, University of Lille 2, INSERM; French Ministry PHRCs (1994/,
2002/1918, 2005/1914); Association France Parkinson (2005);
Fondation de France 2004-013306; Fondation de la Recherche
Médicale (2006); PPF (synucléothéque 2005—2009); the 2 Centres
de Ressources Biologiques (IPL-Lille, CHRU-Lille) and its scientific
committee (A.D., M.C.C.H., Philippe Amouyel, Florence Pasquier,
Régis Bordet); funding from France-Parkinson Association and the
program “Investissement d’avenir” ANR-10-JAIHU-06; the Swedish
Research Council; the Swedish Society for Medical Research; the
Swedish Society of Medicine; funds from the Karolinska Institutet
and the Parkinson Foundation in Sweden (K.W.); the National In-
stitutes of Health and National Institute of Neurological Disorders
and Stroke (grant nos. 1RC2NS070276, NS057567, ' and
P50NS072187); Mayo Clinic Florida Research Committee CR pro-
grams (MJE, ZKW.); the Geriatric Medical Foundation of
Queensland (G.D.M.); a career. development award from the
Volkswagen Foundation and from the Hermann and Lilly Schilling
Foundation (CK.); the Research Committee of University of
Thessaly (code 2845); and Laboratory of Neurogenetics, Biomedi-
cine Department, CERETETH, Larissa, Greece (code 01-04-207)
(G.H, ED.). '

A number of individuals must be acknowledged for their con-
tributions to make this work possible; Ferdinanda Annesi, PhD;
Patrizia Tarantino, PhD (Institute of Neurological Sciences, National
Research Council); Monica Gagliardi, PhD, (Institute of Neurological
Sciences, National Research Council, Cosenza Italy), Chiara Riva,

137



M.G. Heckman et al. / Neurobielogy of Aging 35 (2014) 266.¢5-266.¢14

PhD (Department of Neuroscience and Biomedical Technologies,
University of Milano-Bicocca, Monza, ltaly); Roberto Piolti, MD
(Department of Neurology, Ospedale San Gerardo, Monza, Italy);
Alessandro Ferraris MD, PhD (IRCCS Casa Sollievo della Sofferenza
Hospital, Mendel Laboratory, San Giovanni Rotondo, Italy); Aurélie
Duflot, (UMR837 Inserm-Univ Lille 2, CHRU de Lille}, Jean-Philippe
Legendre, Nawal Waucquier (Neurologie et Pathologie du Mouve-
ment, Clinique de Neurologie du CHU de Lille). Anna Rita Bentivo-
glio, MD, PhD, Tamara lalongo, MD, PhD, Arianna Guidubaldi, MD,
Carla Piano, MD (Institute of Neurology, Catholic University, Rome,
Italy); Phil Hyu Lee, MD, PhD (Department of Neurology, Yonsei
University College of Medicine, Seoul, Korea); Jan Reimer (Depart-
ment of Neurology, Skane University Hospital, Sweden); Hiroyo
Yoshino, PhD, Manabu Funayama, PhD, Yuanzhe Li, MD, PhD
(Juntendo University School of Medicine, Tokyo, Japan). From the
Queensland Parkinson's Project: R.S. Boyle and A. Sellbach (Princess
Alexandra Hospital, Brisbane), J. D. O’Sullivan (Royal Brisbane and
Women’s Hospital, Brishane), G.T. Sutherland, G.A. Siebert and
N.NW. Dissanayaka (Eskitis Institute for Cell and Molecular
Therapies, Griffith University, Nathan, QLD).

Finally, we acknowledge all of the patients and control subjects
who kindly donated DNA to make collaborative studies like these
possible

A full list of GEO-PD consortium member sites is provided in the
Supplementary Text.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.neurobiolaging.
2013.07.013.

References

Biernacka, JM. Armasu, SM. Cunningham, LM, Ahiskog, LE., Chung, S|[.
Maraganore, D.M., 2011, Do interactions between SNCA, MAPT, and LRRK2 genes
contribute to Parkinson's disease susceptibility? Parkinsonism Relat, Disord. 17,
730-736.

Bower, J.H., Maraganore, D.M., McDonnell, S.K., Rocca, W.A,, 1999. Incidence and
distribution of parkinsonism in Olmstead County, anesota 1976-1990.
Neurology 52, 1214~1220.

Chen, L, Zhang, S., Liu, Y., Hong, H., Wang, H., Zheng, Y., Zhou, H., Chen, J., Xian, W,,
He, Y, Li, J, Liu, Z, Pei, Z, Zeng, J, 2011 LRRK2 R1398H polymorphism is
associated with decreased risk of Parkinson’s disease in a Han Chinese popu-
lation, Parkinsonism Relat. Disord. 17, 291~292.

de Lau, LM., Breteler, M.M., 2006. Epidemiology of Parkinson’s disease. Lancet
Neurol, 5, 525535,

DerSimonian, R, Laird, N., 1986. Meta-analysis in clinical trials. Control Clin. Trials 7,
177-188.

Di Fonzo, A, Wu-Chou, Y.H., Lu, CS., van Doeselaar, M., Simons, EJ.. Rohé, CF,
Chang, H.C, Chen, R.S., Weng, Y.H., Vanacore, N,, Breedveld, GJ., Oostra, B.A.,
Bonifati, V., 2006. A common missense variant in the LRRK2 gene, Gly2385Arg,
associated with Parkinson's disease risk in Taiwan. Neurogenetics 7, 133~138.

Elbaz, A, Ross, O.A. loannidis, J.P, Soto-Ortolaza, Al, Moisan, E, Aasly, ],
Annesi, G., Bozi, M., Brighina, L., Chartier-Harlin, M.C,, Destée, A., Ferrarese, C.,
Ferraris, A, Gibson, LM, Gispert, S, Hadjigeorgiou, G.M,, Jasinska-Myga, B.,
Klein, C, Kriiger, R, Lambert, J.C., Lohmnan, K, van de Loo, S., Loriot, MA,,
Lynch, T. Mellick, G.D., Mutez, E. Nilsson, C., Opala, G., Puschmann, A,
Quattrone, A, Sharma, M., Silburn, PA, Stefanis, L., Uitti, RJ., Valente, EM.,,
Vilariflo-Gliell, C, Wirdefeldt, K., Wszolek, ZK, Xiromerisiou, G.,
Maraganore, D.M., Farrer, M.J.; Genetic Epidemiology of Parkinson’s Disease
(GEO-PD) Consortium, 2011. Independent and joint effects of the MAPT and
SNCA genes in Parkinson disease. Ann. Neurol. 69, 778—792.

Evans, W, Fung, H.C, Steele, ], Eerola, J, Tienari, P, Pittman, A,, Silva, R.d., Myers, A,
Vrieze, EW.,, Singleton, A, Hardy, J., 2004. The tau H2 haplotype is almost
exclusively Caucasian in origin. Neurosci. Lett. 369, 183~185.

Farrer, MJ., Stone, JT., Lin, CH, Ddchsel, J.C, Hulihan, MM, Haugarvoll, K,
Ross, 0.A, Wu, R.M,, 2007, Lrrk2 G2385R is an ancestral risk factor for Pm kin-
son’s disease in Asia. Parkinsonism Relat. Disord. 13, 89~92.

Gasser, T, Hardy, J., Mizuno, Y., 2011, Milestones in PD genetics. Mov. Disord, 286,
1042-1048.

Gelb, D.J., Oliver, E., Gilman, S., 1999. Diagnostic criteria for Parkinson disease. Arch.
Neurol. 56, 33—39.

266.213

Goodman, SN, Berlin, LA, 1994, The use of predicted confidence intervals when
planning experiments and the misuse of power when interpreting results, Ann.
Intern, Med, 121, 200-206,

Goris, A, Willlams-Gray, CH., Clark, G.R,, Foltynie, T, Lewis, S.[., Brown, [, Ban, M.,
Spillantini, M.G., Compston, A, Burn, D.J, Chinnery, PF, Barker, RA., Saweer, .,
2007. Tau and alpha-synuclein in sufﬂeptibility to, and dementia in, Parkinson’s
disease. Ann. Neurol, 62, 145-153,

Healy, DG, Abou-Slelman, M., Lees, AJ, Casas, LP, Quinn, N, Bhatia, K,
Hingorani, AD., Wood, N.W,, 2004, Tau gene and Parkinson's disease: a case-
control study and meta-analysis. J. Neurol, Neurosurg. Psychiatry 75, 962965,

Heckman, MG, Soto-Ortolaza, AL, Aasly, 1.0, Abahuni, M., Annesi, G., Bacon, J.A,,
Bardien, 5., Bozi, M., Brice, A Brighina, L, Carr, J, Chartier-Harlin, M.C,,
Dardiotis, E., Dickson, D.W.,, Diehl, N.N,, Elbaz, A, Ferrarese, C,, Fiske, B,, Gibson,
J.M., Gibson, R, Had;:gwrgmu GM,. Hattori, N., loannidis, J.P,, Boczarska-
Jedynak, M, Jasinska-Myga, B., Jeon, B.S., Kim, Y., Klein, C, Kruger, R., Kyratzi, E.,
Lesage, S., Lin, CH,, Lynch, T., Maraganore, D.M,, Mellick, G.D., Mutez, E., Nilsson,
C, Opala, G, Park, §.S,, Petrucci, S, Puschmann, A, Quattrone, A, Sharma, M.,
Silburn, PA,, Sohn, Y.H,, Stefanis, 1., Tadic, V., Theuns, ], Tomiyama, H., Uitti, R J.,
Valente, EM,, Van Broeckhoven, C, van de Loo, 5., Vassilatis, DK, Vilarifio-Gliell,
C., White, LR., Wirdefeldt, I, Wszolek, ZK, Wu, RM, Hentati, F, Farrer M.},
Ross OA; on behalf of the Genetic Epidemiology of Parkinson's Disease
(GEOQ-PD) Consortium,, Population-specific frequencies for LRRK2 susceptibility
variants in the genetic epidemiology of Parkinson's disease (GEO-PD) con-
sortium, Mov, Disord. In press.

Higgins, 1P, Thompson, S.G., 2002. Quantifying heterogeneity in a meta-analysis.
Stat. Med. 21, 1539-1558.

Hughes, A, Daniel, 5.E, Kilford, L, Lees, AJ,, 1992. Accuracy of clinical diagnosis of
idiopathic Parkinson’s disease: a clinic-pathological study of 100 cases.
J. Neurol. Meurosurg. Psychiatry 55, 181~184,

Nalls, MA,, Plagnov, V., Hernandez, D.G,, Sharma, M., Sheerin, UM, Saad, M., Simén-
Sanchez, |, Schulte, C, lesage, S, Sveinbjornsdottir, S., Stefinsson, K.,
Martinez, M., Hardy, ., Heutink, P, Brice, A., Gasser, T., Singleton, A.B., Wood, NW.,
Interpational Parkinson Disease Genomics Consortium, 2011 Imputation of
sequence variants for identification of genetic risks for Parkinson's disease: a
meta~analysis of genome-wide association studies. Lancet 377, 641649,

Kriiger, R., Vieira-Saecker, AM., Kuhn, W, Berg, D, Milller, T, Kiihnl, N., Fichs, G.A.,
Storch, A, Hungs, M., Woitalla, D,, Przuntek, H., Epplen, ].T,, Schéls, L, Riess, 0.,
1999, Increased susceptibility to sporadic Parkinson's disease by a certain
combined alpha-synucleinfapolipoprotein E genotype. Ann, MNeurol. 45,
611-617.

Lill, €M, Roehr, J.T., McQueen, M.B., Kavvoura, FK, Bagade, S, Schjeide, B.M.,
Schjeide, LM., Meissner, E, Zauft, U, Allen, N.C, Liu, T, Schilling, M.,
Anderson, KJ, Beecham, G., Berg, D, Biernacka, .M., Brice, A, DeStefano, AL,
Da, C.B,, Eriksson, N, Factor, S.A., Farrer, M.J, Foroud, T, Gasser, T., Hamza, T.,
Hardy, JA, Heutink, P, Hill-Burns, EM., Klein, C, Latourelle, JC,
Maraganore, D.M,, Martin, ER., Martinez, M., Myers, RH, Nalls, M.A,
Pankratz, N,, Payami, H., Satake, W,, Scott, W.K,, Sharma, M., Singleton, A.B.,
Stefansson, K., Toda, T, Tung, ].Y., Vance, J., Wood, N.W., Zabetian, C.I, Young, P,
Tanzi, R.E,, Khoury, M.J,, Zipp, F, Lehrach, H,, loannidis, ., Bertram, L.; 23andMe
Genetic Epidemiology of Parkinson's Disease Consortium; International Par-
kinson's Disease Genomics Consortium; Parkinson's Disease GWAS Consortium;
Welcome Trust Case Control Consortium 2 (WTCCC2), 2012. Comprehensive
research synopsis and systemic meta-analyses in Parkinson's disease genetics:
the PDGene database. PLoS Genet. 8, e10002548.

Mamah, C.E, Lesnick, T.G., Lincoln, SJ., Strain, KJ., de Andrade, M., Bower, J.H.,
Ahiskog, J.E., Rocca, W.A,, Farrer, M.J., Maraganore, D.M., 2005. Interaction of
alpha-synuclein and tau genotypes in Parkinson's disease. Ann. Neurol. 57,
439—-443,

Maraganore, D.M., de Andrade, M., Elbaz, A., Farrer, M.)., loannidis, .P, Kriiger, R,
Rocca, WA, Schneider, N.K, Lesnick, T.G,, Lincoln, $.J., Hulihan, M.M., Aasly, J.0.,
Ashizawa, T, Chartier-Harlin, M.C, Checkoway, H., Ferrarese, C.,
Hadjigeorgiou, G., Hattori, N., Kawakami, H. lambert, J.C., lynch, T,
Mellick, G.D., Papapetropoulus, S., Parsian, A., Quattrone, A., Riess, 0., Tan, E.K.,
Van Broeckhoven, C.,. Genetic Epidemiology of Parkinson's Disease (GEO-PD)
Consortium, 2006. Collaborative analysis of alpha-synuclein gene promoter
variability in Parkinson disease. JAMA 296, 661~670.

McCulloch, C.C, Kay, D.M., Factor, S.A., Samii, A, Nutt, .G., Higgins, D.S., Griffith, A.,
Roberts, JW. leis, B.C, Montimurro, ]S, Zabetian, CP, Payami, H., 2008..
Exploring gene-environment interactions in Parkinson’s disease. Hum. Genet,
123, 257-265.

Mizuta, 1, Satake, W., Nakabayashi, Y., Ito, C,, Suzuki, S., Momose, Y., Nagai, Y.,
Oka, A, Tnoko, H., Fukae, J,, Saito, Y., Sawabe, M., Murayama, S., Yamamoto, M.,
Hattori, N., Murata, M., Toda, T, 2006. Multiple candidate gene analysis iden-
tifies alpha-synuclein as a susceptibility gene for sporadic Parkinson’'s disease.
Hum. Mol. Genet. 15, 1151-1158.

Mueller, J.C, Fuchs, ], Hofer, A., Zimprich, A. Lichtner, P, llig, T, Berg, D.,
Wiillner, U, Meitinger, T,, Gasser, T, 2005. Multiple regions of alpha-synuclein
are associated with Parkinson's disease. Ann. Neurol. 57, 535541,

Pankratz, N., Wilk, ].B., Latourelle, J.C,, DeStefano, AL, Halter, C, Pugh EW.,
Doheny, K.F, Gusella, [.F, Nichols, W.C, Foroud, T, Myers, R.H., PSG-PROGENI
and GenePD Inwvestigators, Coordinators and Molecular Genetic Laboratories,
2009. Genomewide association study for susceptibility genes contr 1butmg to
familial Parkinson disease. Hum. Genet. 124, 593605,

Postuma, R.B., Montplaisir, J., 2009. Predicting Parkinson’s disease—why, when, and
how? Parkinsonism Relat. Disord. 15(suppl 3), S105~S109.

138



266.e14

Ross, O.A., Gosal, D. Stone, JT, Lincoln, SJ, Heckman, M.G., lhvine, G.B.,
Johnston, J.A., Gibson, J.M., Farrer, MJ., Lynch, T,, 2007, Familial genes in sporadic
disease: common variants of alpha-synticlein gene associate with Parkinson's
disease. Mech. Agihg Dev. 128, 378—382.

Ross, O.A., Wu, Y.R, Lee, M.C., Funayama, M., Chen; M.L,, Soto, A.l, Mata, LE, Lee-
Chen, GJ., Chen, CM,, Tang, M, Zhao, Y., Hattori, N,, Farrer, M, Tan, EK,
‘Wu, RM., 2008, Analysis of Litk2 R1628P as a risk factor for Parkinson’s disease.
Ann. Neurol. 64, 88~92.

Ross, O.A, Soto-Ortolaza, Al, Heckman, M.G,, Aasly, J.0., Abahuni, N., Annesi, G,
Bacon, J.A., Bardien, S., Bozi, M., Brice, A., Brighina, L., Van Broeckhoven, C.,
Carr, J., Chartier-Harlin, M.C., Dardiotis, E., Dickson, D.W., Diehl, N.N., Elbaz, A.,
Ferrarese, C,, Ferraris, A, Fiske, B., Gibson, J.M.,, Gibson, R., Hadjigeorgiou, G.M.,

- Hattori, N., loannidis, ].P, Jasinska-Myga, B., Jeon, B.S., Kim, YJ. Klein, C,
Kruger, R, Kyratzi, E, Llesage, S. Lin, CH., lynch, T. Maraganore, D.M,
Mellick, G.D., Mutez, E., Nilsson, C, Opala, G., Park, S.S, Puschmann, A,
Quattrone, A., Sharma, M., Silburn, P.A. Sohn, Y.H, Stefanis, L, Tadic, V.,
Theuns, J., Tomiyama, H., Uitti, RJ., Valente, EM,, van de Loo, S., Vassilatis, D.K,
Vilarifio~-Guell, C., White, LR, Wirdefeldt, K., Wszolek, ZK, Wu, RM,
Farrer, MJ.; Genetic Epidemiology of Parkinson's Disease (GEO-PD) Consortium,
2011. Association of LRRK2 exonic variants with susceptibility to Parkinson's
disease: a case control study. Lancet Neurol. 10, 898—908.

Satake, W., Nakabayashi, Y., Mizuta, I, Hirota, Y., Ito, C,, Kubo, M., Kawaguchi, T,
Tsunoda, T, Watanabe, M. Takeda, A. Tomiyama, H., Nakashima, X,
Hasegawa, K., Obata, F, Yoshikawa, T.,, Kawakami, H., Sakoda, S., Yamamoto, M.,
Hattori, N., Murata, M., Nakamura, Y., Toda, T., 2009, Genome-wide association
study identifies common variants at four loci as genetic risk factors for Par-
kinson's disease. Nat. Genet. 41, 1303~1307.

Simén-Sanchez, J., Schulte, C., Bras, .M., Sharma, M., Gihbs, J.R., Berg, D, Paisan~
Ruiz, C, Lichtner, P, Scholz, S.W., Hernandez, D.G., Kriiger, R,, Federoff, M.,
Klein, C, Goate, A, Perlmutter, ], Bonin, M, Nalls, MA,, Illig, T, Gieger, C,
Houlden, H., Steffens, M., Okun, M.S,, Racette, B.A,, Cookson, M.R,, Foote, K.D,,
Fernandez, H.H., Traynor, BJ.,, Schreiber, S., Arepalli, S., Zonozi, R., Gwinn, K,, van
der Brug, M., Lopez, G., Chancock, S.J,, Schatzkin, A, Park, Y., Hollenbeck, A,
.Gao, ], Huang, X.,, Wood, N.W., Lorenz, D., Deuschl, G., Chen, H., Riess, O.,
Hardy, ].A., Singleton, A.B., Gasser, T., 2009. Genome-wide association study
reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308—1312.

Skipper, L., Wilkes, K., Toft, M., Baker, M., Lincoln, S., Hulihan, M., Ross, O.A,
Hutton, M., Aasly, ], Farrer, MJ,, 2004. Linkage disequilibrium and association of
MAPT H1 in Parkinson disease. Am. J. Hum. Genet, 75, 669—677,

«

M.G. Heckman et al. / Neurobiology of Aging 35 (2014) 266.e5—-266.e14

Tan, EK, Peng, R, Teo, Y.Y, Tan, L.C, Angeles, D., Ho, P, Chen, M.L, Lin, CH.,
Mao, XY, Chang, XL, Prakash, KM, Liu, JJ., Au, WL, Le, W.D,, Jankovic, J.,
Burgunder, J.M., Zhao, Y., Wu, R.M,, 2010. Multiple LRRK2 variants modulate
risk of Parkinson disease: a Chinese multicenter study. Hum. Mutat. 31,
561-568.

" Tobin, J.E., Latourelle, J.C., Lew, M.E, Klein, C., Suchowersky, O., Shill, H.A., Golbe, L.I,,
Mark, M.H., Growdon, J.H., Wooten, G.F,, Racette, B.A,, Perlmutter, J.S., Watts, R,,
Guttman, M., Baker, K.B., Goldwurm, S., Pezzoli, G., Singer, C., Saint-Hilaire, M.H.,
Hendricks, A.E, Williamson, S, Nagle, MW, Wilk, J.B., Massood, T,
Laramie, ].M., DeStefano, A.L, Litvan, 1., Nicholson, G., Corbett, A., Isaacson, S.,
Burn, DJ.,, Chinnery, P.F, Pramstaller, P.P., Sherman, S., Al-hinti, J., Drasby, E.,
Nance, M., Moller, AT, Ostergaard, K., Roxburgh, R., Snow, B., Slevin, JT,
Cambi, F, Gusella, JL.F, Myers, R.H., 2008. Haplotypes and gene expression
implicate the MAPT region for Parkinson disease: the GenePD Study. Neurology
71, 28—34. ’

Trotta, L., Guella, L, Sold3, G, Sironi, F, Tesei, S., Canesi, M., Pezzoli, G., Goldwurn, S.,
Duga, S., Asselta, R,, 2012, SNCA and MAPT genes: independent and joint effects
in Parkinson disease in the Italian population. Parkinsonism Relat. Disord. 18,
257-262.

Wang, C., Cai, Y. Zheng, Z.,, Tang, B.S. Xu, Y., Wang, T. Ma, }, Chen, S.D.,
Langston, JW., Tanner, CM., Chan, P.; Chinese Parkinson Study Group
(CPSG), 2012. Penetrance of LRRK2 G2385R and R1628P is mwodified by
common PD-associated genetic variants. Parkinsonism Relat. Disord. 18,
958--963. .

Weinberg, C.R, 1986. Applicability of the simple independent action model to
epidemiologic studies involving two factors and a dichotomous outcome. A J.
Epidemiol. 123, 162—-173.

Wider, C., Vilarifio-Giiell, C,, Jasinska-Myga, B., Heckman, M.G., Soto-Ortolaza, A.L,
Caobb, S.A., Aasly, ].0., Gibson, J.M., Lynch, T., Uitti, RJ., Wszolek, Z.X., Farrer, M.].,
Ross, 0.A,, 2010. Association of the MAPT locus with Parkinson's disease, Eur. ].
Neurol. 17, 483—-486.

Wider, C, Vilarifio-Giiell, C., Heckman, M.G., Jasinska-Myga, B., Ortolaza-Soto, A.L,
Diehl, NN, Crook, J.E, Cobb, S.A, Bacon, J.A. Aasly, J.O., Gibson, ].M,
Lynch, T, Uitti, RJ]., Wszolek, Z.K., Farrer, M.J, Ross, O.A., 2011. SNCA, MAPT,
and GSK3B in Parkinson disease: a gene-gene interaction study. Eur J.
Neurol. 18, 876881,

Winkler, S., Hagenah, ], Lincoln, S., Heckman, M. Haugarvoll, K, Lohmann-
Hedrich, K., Kostic, V., Farrer, M., Klein, C., 2007. alpha-Synuclein and Parkinson
disease susceptibility. Neurology 69, 1745—1750.

139



