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' "’Abstract

In the course of screening for the anti- Parklnsonlan drugs from a llbrary of radmonal herbal edicines, we found that the o
- extracts of choi-joki-to and dalo~kanzo-to protected cells from MPP*-induced cell death. Because choi-joki-to and daio-kanzo-
_to commonly contain. the ‘genus Glycyrrhiza, we isolated hcopyranocoumarm (LPC)' and. glycyrurol . (GCR) as_potent
neuroprotective principals from Glycyrrhiza. LPC and GCR markedly blocked MPP” *-induced neuronal PC12D cell death and
; dlsappearance of mitochondrial membrane: potential, which-were mediated by JNK. LPC and GCR inhibited ‘MPP*-induced
- JNK activation through the suppression of reactive oxygen species (ROS) generation, thereby' inhibiting MPP —mduced g
_neuronal PC12D cell'death. These results indicated that LPC and GCR denved from choi~ jokl-to and da/o kanzo -to would be -
. promlsmg drug Ieads for PD treatment in the future.
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Introduction tion widely used at present, has the capacity to protect dopamine
) ) o neurons by inhibiting MAO-B oxidation for conversion of MPTP

Parkinson’s disease (PD)) is a common neurodegenerative disease into MPP* and blocking the formation of free radicals derived
characterized by progressive dopaminergic neuronal cell death in from the oxidative metabolism of dopamine [16,17]. Also, MPP*
the substantia nigra par compacta of the midbrain. The main  podels offer unexploited therapeutic potential for some atypical
symptoms of PD are movement disorders such as tremors, antipsychotics (olanzapine, aripiprazole, and ziprasidone) and the
br: ddykmebxa/ akinesia, rigidity, postural instability, and gait anticonvulsant zonisamide in PD, and new mechanisms of
abnormalities. Although deep-brain stimulation and oral admin- neuroprotective effects of FLZ (which activates HSP27/HSP70)

istration of L-dopa, dopamine agonists and amantadine hydro- and paconiflorin (which modulates autophagy) have led to
chloride have beent well established as symptomatic treatments, treatments for PD [18,19,20,21]. "

there are no therapies to completely cure patients with the disorder

: Herbal medicines are employed to treat PD in ancient medical
[1]. Mitochondrial dysfunction, especially dysfunction of the

systems in Asian countries such as India, China, Japan, and Korea

mitochondrial electron transport chain mainly relying on complex based on anecdotal and experience-based theories [22]. The
.. . iye . s . N . v .. . .

I activity, has been implicated in the disease’s pathogenesis. In traditional herbal medicines yi-gan san and modified yeoldahanso-tang

addition to defects of complex I in postmortem brains, skeletal ‘have neuroprotective effects and can rescue dopaminergic neurons

muscle and platelets of ?aticnts with PD [2,3,4,5,6], Cyl?fi('l cells from MPP*/MPTP toxicity using both i vitro and in zivo methods
containing mtDNA derived from PD platelets have indicated [23,24]. Several compounds derived from herbal medicines also

complex I defects [7,8,9]. Because various rodents treated with exerl anti-Parkinsonian activities. For instance, ginsenoside Rbl
mitochondrial toxins such as rotenone, 1-methyl-4-phenyl-1,2,3,6- isolated from Panax ginseng C. A. Meyer, 3-O-demethylswertipunico-
tetrahydropyridine (MPTP), and its toxic metabolite 1-methyl-4- side isolated from S. punicea, and salidroside isolated from Rhodiola
phenylpyridinium (MPP*) show motor deficits associated with rosea L., have been reported to attenuate MPP*-induced neuro-
selective loss of dopaminergic neurons, they have been widely used  (oxicity in PG12 cells i vitro [25,26,27]. However, clinical evidence

as acquired PD models [10,11,12,13,14,15]. Selegiline, a medica- for the efficacy and safety of these herbal medicines for PD is

PLOS ONE | www.plosone.oré 1 June 2014 | Volume 9 | Issue 6 | €100395
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Figure 1. Two herbal medicines, dajo-kanzo-to and choi-joki-to, identified as neuroprotective agents in the course of screening. (A)
NGF-differentiated PC12D cells were treated with 0.3 M rotenone and herbal medicine extract for 48 h. Cell viability was evaluated by trypan blue
dye exclusion assay. (B) NGF-differentiated PC12D cells were treated with various concentrations of choi-joki-to or daio-kanzo-to in the presence of
0.3 mM MPP* for 48 h. Cell viability was evaluated by trypan blue dye exclusion assay. Values are the means of triplicate samples; bars, s.d. “p<0.01

compared with MPP* group cells.
doi:10.1371/journal.pone.0100395.g001

insufficient [28]. Therefore; in this study, we screened a library
containing 128 traditional herbal medicines, which have been used
clinically for at least 10 years in Japan, focusing on their
neuroprotective effects using PD-like cellular models of cell death
by mitochondrial toxins, and found the anti-Parkinsonian herbal
medicines choi-joki-to and daio-kanzo-to. Morcover, we identified
licopyranocoumarin and glycyrurol derived from the genus
Glycyrrhiza as common components contained in these two herbal
medicines, and found they exerted neuroprotective effects against
MPP*-induced toxicity.

Results

Identification of choi-joki-to and daio-kanzo-to as potent
neuroprotective herbal medicines using in vitro PD-like
model screening

Rotenone, a direct mhibitor of mitochondria complex 1, is
usually employed to mimic Parkinsonism i vitro and in vivo [29].

PLOS ONE | www.plosone.org

Treatment of NGF-differentiated PG12D cells [30] with 0.3 pM of
rotenonc for 48 h caused marked cell death as evaluated by the
trypan blue dye exclusion assay. Using this PD-like model, we
screened a library containing 128 traditional herbal medicines,
which have been used clinically in Japan, focusing on preventive
cllects against rotenone-induced cell death of NGEF-diflerentiated
PC12D cells.

As a result, several ethyl acetate (EtOAC) extracts of herbal
medicines showed suppressive eflects against rotenone-induced cell
death generally, but two traditional herbal medicines, choi-joki-fo
and daio-kanzo-to exerted significant neuroprotective effects against
rotenone-induced neurotoxicity (Figure 1A). Furthermore, the
EtOAc extracts of choi-joki-to or daio-kanzo-to also conferred dose-
dependent protection from neuronal cell death induced by MPP,
another well-known PD-like cellular model (Figure 1B).

June 2014 | Volume 9 | Issue 6 | 100395
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Figure 2. Glycyrrhiza prevented MPP*-induced cell death more potently than rhubarb. NGF-differentiated PC12D cells were treated with
various concentrations of rhubarb and Glycyrrhiza (rhubarb:Glycyrrhiza ratio=1:0, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8, 0:1) in the presence of 0.3 mM MPP“ for
48 h. Cell viability was evaluated by trypan blue exclusion assay. Values are the means of three independent experiments; bars, s.d. “p<0.01

compared with MPP* group cells.
doi:10.1371/journal.pone.0100395.g002

Licopyranocoumarin and glycyrurol isolated from
Glycyrrhiza as potent neuroprotective compounds

Next, we attempted to identify the major components respon-
sible for neuroprotective effects contained in choijoki-to and daio-
kanzo-to. First, we noted that both choijoki-to and daio-kanzo-to
commonly contain thubarb and Glyeprrhiza species, at the ratio of
2:1 (Table 1). Therefore, we examined whether this 2:1 ratio of
rhubarb to Glyeyrrhiza is important for neuroprotective effects
against MPP*-induced toxicity. As shown in Figure 2, rhubarb and
Glycyrrhiza contained in choi-joki-to and daio-kanzo-to at 2:1 is not a
special ratio necessary for necuroprotective effects, but rather
increased Glyeyrrhiza content potentiated the neuroprotective
activity against MPP*-induced cell death. Thus, we attempted to
isolate the active principle responsible for neuroprotective cffects
from EtOAc extract of Glycyrhuiza by monitoring the inhibitory
activity of MPP*-induced NGF-differentiated PC12D cell death
using a trypan blue dye exclusion assay. As a result, we isolated
10.8 mg of licopyranocoumarin (LPC) and 4.0 mg of glycyrurol
(GCR) from 50 g of Glyeyrrhiza powder as potent neuroprotective
compounds (Figure 3A, B). Both LPC and GCR markedly blocked
MPP*-induced cell death in a dose-dependent manner with 1Csq
values of 0.9 uM and 1.2 pM, respectively (Figure 3C). Further-
more, both LPG and GCR did not show cytoprotective effects
against other toxins, such as taxol and cisplatin (CDDP) even at
3 uM concentration, which significantly suppressed MPP*-
induced cell death in PC12D cells. Therefore, cytoprotective
ability of LPC and GCR may specific for mitochondrial toxins
(Figure 3D). To further verify the inhibitory effect of LPC and
GCR on MPP*induced cell death, PG12D cells were labeled with
PI and histogram analysis-related nuclear DNA contents were
ascertained by flow cytometry. By the treatment of PCI12D cells
with 0.3 mM of MPP* NGF-differentiated PC12D cclls with
DNA content below G1 phase levels (defined as hypodiploid sub-
G1 peak) were distingnishable in the population as compared with
control levels (49.63%6.41% versus 7.23%1.04% of cells in sub-
G1, respectively) (Figure 4A,B). LPC or GCR alone did not show
any effects on the overall population of cells. However, they
decreased the percentage of MPP*-induced cell death by 11.2—

PLOS ONE | www.plosone.org

29.0% and 11.4-28.0% (values are the mean of average of three
data), respectively (Figure 4A,B), confirming that LPC and GCR
inhibited MPP*-induced cell death.

Licopyranocoumarin and glycyrurol attenuate the MPP*- .
induced decrease in mitochondrial membrane potential

MPP* is a well-known inhibitor of mitochondria complex I and
induces mitochondrial dysfunction. Because LPC or GCR
suppressed MPP™-induced cell death, we next surveyed the effect
of LPC and GCR on MPP*-mediated loss of mitochondrial
membrane potential (AW,;) using JC-1 dyes. As shown in
Tigure 5, by the treatment of PC12D cells with 0.3 mM of
MPP* for 48 h, AW, was decreased to 45-50% as estimated
from decrease of JC-1 aggregate fluorescence. LPC or GCR alone
did not affect AW ;.. Compared with the group treated with MPP*
alone, fluorescent -intensities increased in' a dose-dependent
manner following addition of LPC and GCR individually,
indicating that LPC and GCR each inhibited MPP*-induced
decrease of AW ;.

Licopyranocoumarin and glycyrurol counteract MPP*-
induced ROS production

MPP" has been extensively reported to evoke generation of
reactive oxygen species (ROS). Figure 6 showed cytofluorometric
histograms of NGF-differentiated PC12D cells after 12 h of
treatment with 0.3 mM MPP" upon staining with GMH,DCFDA.
ROS levels were significantly increased from 100+7.8% (control
level) to 247%14.9% (p<<0.001). However, the generation of
intracellular ROS was reduced to 164%15.7% (p<<0.01) and
153x=13.0% (p<<0.01) by the addition of 3 uM LPC and 3 uM
GCR, respectively.

Antioxidant activities of licopyranocoumarin and
glycyrurol in vitro

Because treatment of PG12D cells with LPG and GCR each
effectively reduced MPP*-induced ROS generation, the frec
radical scavenging activities of these two compounds were

3 June 2014 | Volume 9 | Issye 6 | 100395
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Figure 3. Licopyranocoumarin and glycyrurol prevented MPP*-induced cell death. Structures of (A) licopyranocoumarin (LPC) and (B)
glycyrurol (GCRY). (C) NGF-differentiated PC12D cells were treated with various concentrations of LPC or GCR in the presence of 0.3 mM MPP™ for 48 h.
Cell viability was evaluated by trypan blue dye exclusion assay. (D) PC12D cells were treated with various concentration of LPC or GCR in the presence
of 10 ng/ml taxol or 10 pg/mi.cisplatin (CDDP) for 48 h. Values are the means of three independent experiments; bars, s.d. "p<0.01 compared with

MPP* group cells.
doi:10.1371/journal.pone.0100395.g003

examined. When the antioxidant activity of LPC and GCR were
evaluated by B-carotene bleaching assay, LPC and GCR inhibited
less than 10% of the carotene bleaching even at the final
concentration of 30 uM (Figure 7A). The DPPH free racical
scavenging potentials of LPC and GCR at 30 uM each showed
little to no scavenging activity (Figure 7B). These results indicated
that LPC and GCR did not possess antioxidant activity i vitro.

Licopyranocoumarin and glycyrurol attenuate JNK
activity induced by MPP*

It is well-established that JNK plays a central role in the
mediation of MPP*-induced neurotoxicity [31,32,33,34]. Particu-
larly, MPP*-induced ROS generation is reported to be closely
associated with JNK activation {35]. Thus, we mvestigated
-whether the ability of LPC: or GCR to reduce MPP*-induced
cell death involves the alteration of JNK signaling in MPP™-
induced neurotoxicity. As shown in Figure 8A, phosphorylated
JNK levels were increased after exposure to MPP™ for 36 h, and

PLOS ONE | www.plosone.org

treatment with LPC! or GCR significantly recluced the expression
levels of the phosphorylated protein. In addition, a JNK inhibitor,
SP600125, led to attenuation of the MPP*-induced neuronal cell
death and decreased AW . (Figure 8B, C). These results suggest
that MPP*-induced lowering of AWy, which leads to neuronal
cell death, were mediated by JNK, and neuroprotective activity of
LPC and GCR against MPP*-induced neuronal cell death might
be duc to downregulation of ROS generation, resulting in the
inhibition of JNK activation.

Discussion

Both choi-joki-to and daio-kanzo-to are traditional herbal medicines
available in Japan (called kanpo in Japan in particular) that are
usually used for laxative products. In the laboratory, choi-joki-lo
exhibited oxygen radical scavenging capacity [36] and inhibited
the progression of atheroma in a KHC rabbit model [37], On the
other hand, daio-kanzo-to has provided inhibition of amylase

June 2014 | Volume 9 | Issue 6 | 100395

28



Identification of Neuroprotective Compounds for PD

A control MPP* 0.3 mM control MPP* 0.3 mM

s S N e

licopyranocoumarin (uM)
glycyrurol (uM)

B 60 60 1
50 1 I w/o MPP* 50 - Bl v/o MPP*
. [ ImMPP+0.3 mM . [ IMPP+0.3 mM
X 40 X 40 - z
§ o < o
Q 30 ] *k 8 30 T
5 5]
2 20 1 & 20 A
=3 =3 : .
@ Rk @ *%
10 A 10
0 _j 1 1 1 Loed O _j 1 1 Ll 1
0 0.3 1 3 0 0.3 1 3
licopyranocoumarin (uM) glycyrurol (uM)
PLOS ONE | www.;;losone.org 5 June 2014 | Volume 9 | Issue 6 | 100395

29



Identification of Neuroprotective Compounds for PD

Figure 4. Licopyrahocoumarin and glycyrurol attenuated MPP'-induced apoptosis. (A) NGF-differentiated PC12D cells were treated with
various concentrations of licopyranocoumarin or glycyrurol in the presence of 0.3 mM MPP" for 48 h. Collected cells were stained wit,h“ Pl and
analyzed by flow cytometry. (B) The sub G1 ratio was analyzed. Values are the means of three independent experiments; bars, s.d. p<0.01

compared with MPP" group cells.
doi:10,1371/journal.pone.0100395.g004

activity in mouse plasma and gastrointestinal tube [38], inhibition
of cholera toxin [39], and inhibitory effects on drug oxidations
[40]. In this study, we have demonstrated that choi-joki-to and daio-
kanzo-to had neuroprotective effects against MPP*- and rotenone-
induced toxicity in NGF-differentiated neuronal PCGI2D) cells.
Furthermore, we identified that Glheprhiza, commonly contained
in these two herbal medicines, possessed potent newroprotective
activity against MPP*-induced toxicity. Gheprrhiza is contained in a
number of traditional herbal medicines nclading yi-gan san
previously identified as neuroprotective agents against mitochon-
drial toxins, therefore, we investigated relationships between the
neuroprotective effects of traditional herbal medicines and their
contents of Glygyrrhiza. The correlation  coefficient  between
newoprotective effects of traditional herbal medicines and
contents of Glyeprrhiza in each herbal medicine was calculated at
0.20 (Figure S1), indicating a very weak relationship. This weak
relationship might be explained by owr finding that higher
concentration of Ghowrkiza (300 pg/ml) showed cytotoxic cllect
in PC12D cells (Figure 52), Another possible explanation is that
other constituent of waditional herbal medicines, such as rhubarb,
also exerted neuroprotective effects in PC12D cells (Figure 2).
Major components of Glyeyrhiza are triterpenoid saponins, and
glycyrrhizin and its metabolite. These compounds show several
potential health effects including anti-inflammatory, anti-vival,
hepatoprotective, anti-cancer and immunomodulatory eflects [41].
Therefore, at first we predicted that glycyrrhizin might be an
active principle contained in Glyeyrihiza that suppressed MPP'-
and rotenone-induced toxicity, but glycyrrhizin did not show such
activities, Instead, we isolated the coumarin derivatives, licopyr-
anocoumarin (LPC) and glycyrurol (GCR), as the most potent
neuroprotective compounds in Gleyrhiza. LPC isolated from
Glyeyrrhiza sp. has been reported to show several bioactivitics,
including anti-HIV effects and inhibition of CYP3A4 and the aryl
hycrocarbon receptor antagonist [42,43,44]. On the other hand,
GCR, which was very recently isolated from Glycyrhiza uralensis,
shows antithrombotic effects [45]. However, so far the neuropro-
tective effects of these two compounds have not yet been reported.
This study has indeed revealed, for the first time, the potent
neuroprotective aclivity of LPC and GCR in a PD-like ccllular
model system. LPC: and GCR also inhibited rotenone-induced cell
death in HeLa cells; however, the effects in HeLa cells were quite
weak when compared to that seen in PC12D cells (Figure S3).
Therefore, LPC and GCR seem to prefer to exert cytoprotection
in neuronal cells. Oxidative stress associated with a general
dysfunction of mitochondrial homeostasis is a leading hypothesis

as a potential mechanism for dopaminergic neuronal degencration
in PD [46]. Postmortem analyses of the substantia nigra from PD
patients  confirm  several oxidative stress-related  alterations
[47.48,49]), and several toxins (rotenone, paraquat, and MPPY
used to produce PD-animal models directly and/or indirectly
inhibit mitochondrial function, induce the production of ROS,
and promete oxidative damage. Thereflore, antioxidant ingredi-
ents are considered o be promising approach to prevent the
discase progression. For cxample, o-tocopherol, coenzyme Qg
and catechols have been reported to exert neuroprotective cflects
by attenuating rotenone-induced oxidative stress on rotenone
maodels in vitro and in vive [50,51,52]. Likewise, we found that LPC:
and GCR attenuated the MPP*-induced increase in intracellular
ROS generation (Figure 6A), indicating that inhibition of MPP*-
mediated ROS generation is closcly related to the neuroprotective
cffects of LPC and GCR. Several lines of evidence have suggested
that ROS generation induces the activation of JNK. signaling, and
JNK represents one of the major signaling pathways implicated in
PD pathogenesis. JNK activity is increased in MPTP animal
models [53,54,55,56], MPP"-treated cell culture models [35,54],
and rotenone newrotoxicity [57,58], Moreover, ROS-mediated
activation of JNK almost inevitably leads to cell death. Indeed, we
also confirmed that a JNK inhibitor, SP600125, suppressed MPP*-
incduced cell death (Figure 8B), and MPP™-induced activation of
JNK and cell death were found to be inhibited by LPC and GCR
under conditions where LPC or GCUR  inhibited the MPP*-
mediated ROS generation (Figure 8A). Although the potential
mechanisms by which JNK participates in MPP*-induced cell
death remains to be fully determined, activation of JNK has been
reported to mediate cell death by participating in the induction of
mitochondrial permeability transition (mPT) and decrease of
AW, in subsets of cell types [59,60]. Because in our assay system
SP600125 inhibited both cell death and the decrease in AW,
induced by MPP* (Figurc. 8B and C), we consider the inhibition of
the decrease in MPP*-induced AW, caused by LPC and GCR
(Figure 5) to be due to the inhibition of ROS-mediated JNIK
activation.

Scveral neuroprotective compounds have significant antioxidant
and [ree radical-scavenging activities. LPC and GCR arec members
of the coumarin compound family. There have been several
reports on the antioxidant activities of coumarins [61,62,63], and
LPC and GCR each inhibited MPP*-induced ROS generation.
Nevertheless, neither LPC' nor GCR possessed ROS scavenging
aclivily # sitro. Increased amount of ROS can be generated by an
imbalance of antioxidant enzymes and activation of the oxidase

Table 1. Crude drugs constituents of “choi-joki-to” and “daio-kanzo-to".

choi-joki-to

daio-kanzo-to

Scientific names - Contents (g)

Scientific names Contents (g)

rhubarb 2

rhubarb . 4
glycyrhiza FE B glycyrrhiza - f RN D X
Salt cake 0.5 ) '
doi:10.1371/journal.pone.0100395.t001
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Figure 5. Licopyranocoumarin and glycyrurol protected cells against MPP -induced disappearance of mitochondrial membrane
potential. (A) NGF-differentiated PC12D cells were treated with various concentrations of licopyranocoumarin or glyeyrurol in the presence of
0.3 mM MPP* for 48 h. Collected cells were stained with JC-1 and analyzed by flow cytometry. (B) The ratio of cells exhibiting disappearance of

mitochondrial membrane potential was analyzed. Values are the means of three independent experiments; bars, s.d. p<0.05, "p<0.01 compared

with MPP™ group cells,
doi:10.1371/journal pone.0100395.g005

system.  Membrane-bound nicotinamide adenine  dinucleotide
phosphate (NADPH) oxidase {Nox) is known to be a neurotoxin-
related oxidase enzyme system [64,65], and enzymatic antioxi-
dants include superoxide dismutase (SOD), glutathione peroxidase
(GPx), thioredoxin reductase (TPx) and catalase [66]. Therclore, it
is likely that LPC and GCR might induce the imbalance by
inhibiting oxidase activity diveetly o neurotoxin-induced activa-
tion of oxidase system, Furthermore, we can’t exclude the
possibility that LPC and GCR could induce the expression or
activation of antioxicdant enzymes.

identified as newroprotective substances from Gheprhiza contained
in - choi-joki-to and  dato-kanzo-to. LPC or GCR  exert their
neuroprotective effects by inhibiting MPP™-induced ROS produc-
tion and thus hmiting JNK activation, and causing a subsequent
decrease in AW, Owr proposed mechanism is illustrated in
Figure 9. Further studies are required to clucidate the molecular
mechanisms for the suppression of ROS generation by LPC and
GCR in PCI2D cells. Our findings enliven the prospect of using
LPC. GCR, choi-joki-to and daio-kanzo-to as clfective and safe
natural therapeutic agents in PD; & vivo trials in MPTP animal

In summary, we identified choiqoki-to and dav-kanzo-to as modcls are needed.

neuroprotective herbal medicines, and both LPC and GCR were
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Figure 6. Licopyranocoumarin and glycyrurol decreased MPP*-induced intracellular ROS generation. (A) NGF-differentiated PC12D cells
were pre-incubated for 1 h with 3 uM licopyranocoumarin (LPC) or 3 uM glycyrurol (GCR), then treated with 0.3 mM MPP* for 12 h. Then, the
samples were loaded with 2.5 uM CM-H,DCFDA and the fluorescence intensities were measured by flow cytometry. (B) The ratio of cells exhibiting
ROS production was analyzed. Values are the means of four independent experiments; bars, s.d. *#p<0.01 compared with control cells. “p<0.01,
compared with MPP* group cells. ) ‘

doi:10.1371/journal.pone.0100395.9006

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | €100395

32



100 1
90 1
80 1
70 A
60 1
50 A
40 A
30 1
20 1
10 A

antioxidant activity (%)

st #H
— . W

LPC30uM  GCR 30pM

kaempferol
30uM

100 1
90 1
80 1
70 A
60 1
50 1
40 A
30 A
20 1
10 1

o Ht

i I i 5

LPC 30uM GCR 30uM

DPPH free radical scavenging activity (%)

kaempferol
30uM

Figure 7. Licopyranocoumarin and glycyrurol lacked potency
for scavenging free radicals. Antioxidant activities of licopyrano-
coumarin (LPC) and glycyrurol (GCR) were measured by (A) a -
carotene bleaching assay system and (B) a DPPH radical scavenging
assay. Kaempferol served as the positive control. Values are the means
of three independent experiments; bars, s.d. ##p<0.01 compared with
antioxidant activity of kaempferol.

doi:1 0.1371/journal.pone.0100395.g007

Materials and Methods

Reagents

MPP*, Rotenone, linoleic acid, 2,2-Diphenyl-1-pocrylhydrazyl
(DPPH), SP600125 and mouse monoclonal anti-B-actin antibodies
were purchased from Sigma Chemical Co. (St. Louis, MO). Taxol,
cisplatin, JC-1 and pyridinium iodide were purchased from Wako
Pure Chemical Industries, Ltd. (Osaka, Japan). Nerve growth
factors, CM-H,DCFDA, and B-carotene standard were purchased
from Alomone Labs (Jerusalem, Israel), Life Technologies
(Carlsbad, CA) and Kanto Chemical Co. (Tokyo, Japan),
respectively. Rabbit polyclonal anti-JNK antibody and rabbit
monoclonal anti-phospho-JNK antibody ‘were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA) and Cell Signaling
(Beverly, MA), respectively. Horseradish peroxidase-conjugated
anti-mouse and anti-rabbit IgG used as a secondary antibodies
were from GE Healthcare (Little Chalfont, UK).

Cell cultures

PC12D was identified a new subline of PC12 pheochromocy-
toma cells (PC12D cells) in which neurites are extended within

PLOS ONE | www.plosone.org
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24 h in response to cAMP-enhancing reagents as well as in
response to nerve growth factor (NGF) [30]. PC12D cells were
cultured in Dulbecco’s modified Eagle medium supplemented with
5% (v/v) inactivated fetal bovine serum, 10% (v/v) inactivated
horsc serum, 100 U/mL penicillin G, 0.6 mg/mL L-glutamine,
and 0.1 mg/mL kanamycin at 37°C with 5% CO,. PC12D cells
were differentiated by 100 ng/mL NGF treatment for 48 h.

Cell viability assays

For the trypan blue dye exclusion assay, differentiated PC12D
cells were cultured in 48-well dishes. Drug-treated or untreated
cells were stained with trypan blue (Sigma Chemical Co.), and the
ratio of viable cells was determined using a hemocytometer. Cell
viability (%) means the ratio of the number of trypan blue-
impermeable cells to total cell count. IC5q values were calculated
by lincar regression analysis from the inhibition of MPP*-induced
cell death at different concentrations of the drug.

Cell cycle analysis

To examine apoptosis, differentiated PCI2D cells were
harvested after drug treatment. The cells were washed with PBS
and fixed with 70% ethanol at 4°C for more than 1 h. The cells
were then stained with propidium iodide (PI) solution according to
a previously reported protocol [67]. The labeled nuclei were
subjected to flow cytometry (FCM, Beckman-Coulter, Miami, FL).

Measurements of mitochondrial membrane potential

Changes in mitochondrial membrane potentials were assessed
JC-1 (5,5,6,6"-tetrachloro-1,1",3,3'-tetrachylbenzimidazolylcar-
hocyanineiodide) (Wako) was used according to the manufactur-
er’s protocol. Briefly, treated cells were collected by pipetting and
removing medium. Next, the cells were incubated in medium
containing 2.5 ug/ml JC-1 for 20 min at 37°C. Cells were then
washed with PBS. JC-1 fluorescence was measured by a flow
cytometer.

Measurement of intracellular ROS

Intracellular ROS production was measured using CM-
H,DCFDA. The cells were plated at a density of 12x10" cells
per 12-well dish. The cells were treated with MPP* and test
compounds for 12 h, and then trypsinized and collected. After the
cells were washed with PBS, incubated with 2.5 uM CM-
HyDCFDA in HBSS at 37°C for 30 min, and then washed again
with PBS three times. The relative levels of fluorescence were
quantified by using a flow cytometer.

B-carotene bleaching assay

This assay was carried out according to. the B-carotene
bleaching method [68]. A mixture of -carotene and linoleic acid
was prepared by adding a mixture of 0.3 mg of B-carotene in
3 mL chloroform, 40 mg linoleic acid and 400 mg Tween 20.
Chloroform was removed and 100 mL of distilled water was
added to form an emulsion with continuous shaking. Aliquots
(0.1 mL) of the B-carotene/linoleic acid emulsion were mixed with
1 uL. of sample solution and incubated in a water bath at 50°C.
The oxidation of the emulsion was monitored spectrophotomet-
rically by measuring absorbance at 470 nm over a 60-min period.
Control samples contained 1 pL of methanol. Antioxidant-activity
is expressed as percent inhibition relative to control after 60 min
incubation using the following equation:

AA(%) = 100(DR,, ~ DR,)/DR,,
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Figure 8. Licopyranocoumarin and glycyrurol attenuated MPP™-induced JNK activation. (A) NGF-differentiated PC12D cells were treated
with various concentrations of licopyranocoumarin (LPC) or glycyrurol (GCR) and 0.3 mM MPP* for 36 h, and JNK and phosphor-JNK level were
detected by Western blot. NGF-differentiated PC12D cells were treated with SP600125 and 0.3 mM MPP™ for 48 h. Thereafter (B) cell viability was
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three independent experiments; “p<0.01 compared with MPP* group cells.

doi:10.1371/journal.pone.0100395.g008
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Figure 9. Suggested model for neuroprotection of licopyrano-
coumarin and glycyrurol against MPP*-induced toxicity in
PC12D cells. Both licopyranocoumarin and glycyrurol exert neuro-
protective effects against MPP*-induced toxicity via suppression of ROS
generation and of JNK activation.
doi:10.1371/journal.pone.0100395.g009
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where AA = antioxidant activity; DR = degradation vate of the
control = [In(a/4)/60]; DR, = degradation rate in presence of the

sample = [In(a/5)/60]; a = absorbance at time 0; = absorbance at
60 min.

DPPH radical scavenging assay

The DPPH radical scavenging effect of test compounds was
determined according to the previously described method [68].
The reaction mixtures contained 100 pL ethanol, 125 uM DPPH,
and test compounds. After 2 min of incubation at room
temperature, the absorbance was recorded at 517 nm.

Extraction and isolation of licopyranocoumarin and
glycyrurol from Glycyrrhiza

Clompounds were extracted from dried and pulverized Glyeyr-
rhiza (50 g) with 90% EtOH, then filtrated and concentrated in
vacwo. This suspension was adjusted to pH 7.0, followed by
extraction with EtOAc (5 L) twice; the organic layer was
concentrated to yield residue (3.76 g). The EtOAc extract was
fractionated by centrifugal partition chromatography (CPC) with
CHCl;:MeOH:H,O (5:6:4). The obtdined crude active extract
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was applied on Sephadex LH20 column chromatography
(Sephadex LH-20, 70 uM; GE Healthcare, NJ, USA), and eluted
with MeOH. The active fraction (250.6 mg) was further purified
by preparative octadecyl silyl (ODS) HPLG (YMG-Pack ODS-
AQ, YMC Co. Ltd., Japan) with 40% aqueous CH3CN to give
pure licopyranocoumarin (10.8 mg) and glycyrurol (4 mg),
respectively.

Western blotting

Cells were lysed in RIPA buffer (25 mM HEPES (pH 7.2),
1.5% Triton X-100 (Wako), 1% sodium deoxycholatc (Wako),
0.1% SDS, 0.5 M NaCl (Wako), 5 mM EDTA, 50 mM NaF
(Sigma), 0.1 mM sodium vanadate (Sigma) and | mM phenyl-
mecthylsulfonyl fluoride (PMSF) with sonication. The lysates were
centrifuged at 13,000 rpm for 15 min to yield the soluble cell
lysates. For immunoblotting, cell lysates were subjected to SDS-
- polyacrylamide gel electrophoresis. Proteins were transferred onto
a polyvinylidene fluoride membrane (Millipore) by electroblotting
and then “incubated with appropriate antibodies. Immune
complexes were detected with an Immobilon Western kit
(Millipore), and luminescence was detected with a LAS-1000 mini
(Fujifilm Co., Tokyo, Japan).

Statistical analysis
All statistical analyses in bar plots were performed with a two-
tailed paired Student’s &test.
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was cvaluated by trypan blue dye exclusion assay.
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Abstract G . :
Human induced plurlpotent stem (IPS) cel!s obtalned b
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only in terms of appllcatlons in regenerat:ve medncme such as
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diseases and new: drug developmen,

The advent of an aging society is accompanied not only by
increases in cancer and heart disease but also by increases in
chronic and age-related diseases. Analyses of the patholog-

"ical mechanisms of various chronic diseases and the

development of new therapies for their management are

currently underway, based in large part on the impressive

research advances of recent years. However, numerous
disorders remain with no established means of treating the
underlying cause. The fact that complete human disease
models are unavailable for these conditions is cited as a
major problem in terms of developing new drugs for their
control. While animal disease models and human disease-
mimetic cell lines have been developed, construction of
models that can accurately and thoroughly reproduce human
pathology remains difficult. Furthermore, there is ample
room for debate as to whether animal and cell line disease

models can correctly reflect the phenomena that actually

occur in human patients, because of species-specific differ-
ences and differences in cell line specificity. Moreover, no
disease models exist for many of the rarer conditions.

In recent years, however, Professor Yamanaka of Kyoto
University (Kyoto, Japan) launched a method for the

cha'msms;' 1
unknown

preparation of induced pluripotent stem (iPS) cells that have
almost the same pluripotency as embryonic stem (ES) cells.
This was done by introducing four reprogramming genes,
Oct4, Sox2, KIf4, and c-Myc, into differentiated somatic cells
(Takahashi and Yamanaka 2006; Takahashi et al. 2007).
Yamanaka’s method made it possible (with some exceptions)
to establish iPS cells from the somatic cells of any individual,
regardless of race, genetic background, or state of health (i.e.,
whether afflicted with a disease). Moreover, the development
of in vitro differentiation protocols for ES cells toward each
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embryonic germ layer paved the way for researchers 1o apply
these techniques to iPS cells, allowing the production of a
variety of iPS-derived cells, including hepatocytes, neurons,
and cardiomyocytes (Takahashi er al. 2007). For example,
the use of iPS cells derived from patients with certain
neurological diseases permits the preparation of brain cells
that contain the actual genetic information of the patients
themselves. This is a notable feat, given that such cells have
been technologically and ethically difficult to obtain in the
past. Moreover, as long as the in vitro differentiation system
is in place, it may be feasible to produce human disease
models for diseases whose causative gene is unknown.

The pathological investigation of disease progression.
including disease onset and the time course of disease
advance, requires human materials. These materials are
difficult to obtain in practice and until recently, researchers
had to utilize the tissues of patients in both the early phase
and the asymptomatic stage of a particular disease. However,
thanks to the present revolution in iPS cell technology, cells
differentiated in vitro from iPS cells can be used instead of
human tissues for these purposes. Furthermore, iPS cell
technology can be applied to chemical library screening for
drug discovery, as well as to subsequent testing for drug
toxicity and efficacy (Fig. 1). As a result, it is expected that
the enormous cost and time involved in drug discovery
research will be streamlined, and that the ability to discover
new drugs will be improved.

In this review article, we outline the cwrent status of
neurological disease-specific iPS cell research. In particular,
we describe recently obtained knowledge in the form of
actual examples from the literature.

Driving iPS cell neural differentiation

Modeling a neurological disease requires developing meth-
ods to mimic development to make defined cultures of
newrons and/or glia. So far, many studies involving the
induction of various types of neurons from ES cells have
allowed following the developmental process in vifro.
Although co-culture with stromal cells, such as PAG6, and/
or spontaneous aggregation called embryoid bodies were
directed to form neural cells in early studies (Kawasaki er al.
2000; Okada er al. 2004), recent protocols provided us more
efficient and specific neural differentiation with a combina-
tion of small-molecules in a feeder-free culture system. Dual
SMAD signal inhibition by supplementing Noggin and
SB431542, inhibiting bone morphogenetic protein (BMP)
and transforming growth factor beta, respectively, contrib-
uted to rapid and high efficacy of neuroepithelial cells
(Chambers e al. 2009). These neuroepithelial cells have
potential to differentiate into different region-specific central
nervous system neurons using appropriate cues, such as
Sonic Hedgehog (Shh) and Wnt8 (for midbrain dopaminergic
neurons) (Fasano ef al. 2010; Kriks e al. 2011), retinoic

Modeling human neurological disorders | e

acid (RA) and Shh (for spinal cord motor neurons) (Li e al.
2005), Shh (for forebrain y-aminobutyric acid (GABA)
interneurons) (Liu er al. 2013a). These recent studies provide
a promising strategy for controlled production of specific
neurons for neurological disorders.

Modeling neurological diseases in vitro with
disease-specific iPS cells

The iPS cell technology has rapidly expanded worldwide in
less than 5 years. Disease-specific iPS cells are now available
from patients with a variety of conditions, including nervous
system, hematopoietic system, and metabolic system dis-
eases, and investigations of their pathology are progressing at
a brisk pace (Dimos er al. 2008; Park er al. 2008; Bellin
er al. 2012; Robinton and Daley 2012).

Previous explorations of human neurological and psychi-
atric disorders were hampered by the difficulty in obtaining
patient-derived neural cells or tissues because of the limited
accessibility to the brain, except for autopsy samples. On the
other hand, researchers have long used patient-derived
fibroblasts or immortalized lymphoblasts for study, but these
cells do not always recapitulate the pathogenic events of
neurological and psychiatric disorders. To overcome these
limitations, researchers now take advantage of olfactory
tissue, with its enormous capacity for neurogenesis (Makay-
Sim, 2013; Sawa and Cascella, 2009; Kano er al., 2013), as
well as neural cells induced from disease-specific iPS cells to
examine the pathophysiology of these conditions. In fact, a
variety of iPS cells derived from patients with the following
neurological and psychiatric conditions are currently in wide
use: Alzheimer’s disease (AD) (Yagi er al. 2011; Israel et al.
2012; Kondo et al. 2013), Parkinson’s disease (PD) (Devine
et al. 2011; Nguyen et al. 2011; Seibler er al. 2011;
Cooper ef al. 2012; Imaizumi er al. 2012; Jiang er al.
2012; Liu er al. 2012a; Rakovic ef al. 2012; Sanchez-Danes
et al. 2012; Reinhardt er al. 2013), amyotrophic lateral
sclerosis (Dimos et al. 2008; Mitne-Neto er al. 2011;
Bilican er al. 2012; Egawa et «l. 2012), Huntington’s disease
(Park ef al. 2008; Zhang et al. 2010; An et al 2012;
Camnasio ef al. 2012; HD iPSC Consortium 2012; Jeon
et al. 2012; Juopperi e al. 2012), spinal muscular atrophy
(Ebert er al. 2009; Chang et al. 2011), spinal and bulbar
muscular atrophy (Nihei ef al. 2013), Rett’s syndrome
(Marchetto et al. 2010; Muotri et al. 2010; Ananiev et al.
2011; Cheung et al. 2011; Ricciardi er al. 2012), schizo-
phrenia (Brennand et al. 2011; Chiang et al. 2011; Pedrosa
et al. 2011; Paulsen Bda et al. 2012), Down syndrome (Park
et al. 2008; Li et al. 2012; Weick et al. 2013), Dravet
syndrome (Higurashi er al. 2013; Jiao et al. 2013; Liu er al.
2013b), familial dysautonomia (FD) (Lee et al. 2009, 2012),
adrenoleukodystrophy (Jang et al. 2011), Cockayne’s syn-
drome (Andrade er al. 2012), fragile X-associated tremor/
ataxia syndrome (Liu et al. 2012b; Crompton er al. 2013),
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Fig. 1 Application of induced pluripotent stem (iPS) cell technology in
disease research. {a, ¢) iPS cells are established by introducing
Yamanaka's four factors (Octd, Sox2, Kif4, and c-Myc) into healthy
human and patient-derived somatic cells. Later, the iPS cells are
induced to differentiate into target cells. The differentiated target cells
can then be applied to the analysis of disease pathology, the screening
of chemical libraries to identify drug candidates, and toxicity and
efficacy testing of the newly identified compounds. Thus, iPS cells are

and Machado-Joseph disease (Koch er al. 2011) (Table 1).
We will introduce some examples of the use of these disease-
specific iPS cells for the characterization of human neuro-
logical disorders in the following sections.

Modeling Familial PDs with disease-specific iPS
cells

A number of disease-specific iPS cells were originally
obtained from patients with genetic diseases, in which the
causative gene was identified mainly because of recent
- advances in sequencing technology. The incidence rate of
these diseases is low, and accordingly, the development of
treatment modalities has in general been delayed. These
diseases may also be described as conditions in which the
cause—effect relationship can readily be identified between
the abnormality exhibited by neurons differentiated from the

crucially linked to new drug development. (b) Monogenic mutations are
induced in iPS cells derived from healthy subjects via genome editing
technologies by using helper-dependent adenoviral vectors, the zinc-
finger nucleases (ZFNs), the TALENS, and the crisper-Cas9 system,
which have all been developed in recent years. The use of isogenic
iPS cells makes it possible to precisely analyze pathogenetic mech-
anisms that are attributable to the effects of a single gene.

disease-specific iPS cells and the mutation or deletion of the
causative gene. The advantages of disease-specific iPS cells
have been greatly exploited for rare genetic diseases.
Disease-specific iPS cell research directed toward familial
PD is especially active. Parkinson’s disease is the second
most common neurodegenerative disease after AD. More
than 4 million patients are afflicted with PD worldwide, and
the prevalence in Japan is about 100-150 cases per
population of 0.5 million individuals. There is currently no
method of treatment for the underlying cause, and because
many patients become symptomatic from the latter half of the
6th decade until the 7th decade of life, the management of
PD is a major issue in countries facing an aging population.
Although the exact cause—effect relationship of the disorder
remains undetermined, PD is thought to stem from a loss of
dopaminergic neurons in the substantia nigra of the midbrain.-
As aresult, dopamine content falls below 20% of its normal
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