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Screening for human imprinted DMRs

BeadChip arrays to identify imprinted loci (Nakabayashi et al.
2011). All new regions of ubiquitous imprinted methylation
identified in the current screen are associated predominantly with
type Il Infinium probes and were not present on previous array
platforms. Of the placental-specific DMRs, only those associated
with DNMT1, AIM1, and MCCC1 have been previously described
(Yuen etal. 2011; Das et al. 2013). Intriguingly, the somatic promoter
of Dnmtl is differentially methylated between sperm and oocytes
but is lost during preimplantation development (Smallwood et al.
2011; Kobayashi et al. 2012). Two of these placental-specific DMRs
are associated with type I Infinium probes and were previously
discovered using the Infinium HumanMethylation27 BeadChip
arrays with DNA derived from diandric and digynic triploid pla-
cental samples (Yuen et al. 2011).

Our data provide the first direct evidence in humans that the
differential methylation associated with imprinted genes is dy-
namically regulated upon fusion of the gametes at fertilization.
Most maternally methylated DMRs are surrounded by regions of
complete methylation in both gametes, and as in mice, the DMRs
are clearly observed as unmethylated islands in the sperm genome.
These unmethylated intervals are often more extensive in sperm
compared to somatic tissues, suggesting that resizing occurs during
embryonic transition. It was recently reported that nucleosomes
are retained at specific functional regions in sperm chromatin and
are refractory to protamine exchange (Hammoud et al. 2009).
These sperm-derived histones are enriched for H3K4me3, a per-
missive modification that is mutually exclusive with DNA meth-
ylation, implicating these H3K4me3 regions in the maintenance
of the unmethylated state in the male germline.

Imprints are distinguishable from other forms of gametic
methylation as they survive the reprogramming that initiates im-
mediately upon fertilization (Smallwood et al. 2011; Kobayashi
et al. 2013; Proudhon et al. 2012). By comparing the profiles of
sperm, phES, and conventional hES cells along with somatic tis-
sues, we present evidence that most maternally methylated DMRs
are not completely refractory to reprogramming, as highlighted by
the substantial resizing of the paternally derived unmethylated
alleles. These data are consistent with the notion that the cores of
imprinted DMRs are protected from Tet-associated demethylation
by recruiting heterochromatic factors such as ZFP57 and DPPA3
(also known as STELLA or PGC7) (Nakamura et al. 2007; Li et al.
2008). Similar mechanisms could also act to protect the core of the
unmethylated paternal alleles from methylation.

A search for the mouse ZFPS7 recognition sequence
(TGCC™'GC) identified numerous binding sites within the ubiq-
uitous imprinted DMRs that may be involved in protecting meth-
ylation during preimplantation reprogramming (Quenneville et al.
2011). Itis currently unknown if this hexonucleotide motif is bound
by ZFP57 in human cells, but patients with mutated ZFP57 lack DNA
binding capacity in in vitro EMSA studies (Baglivo et al. 2013).

There are significantly fewer ZFP57 sequence motifs in the
placental-specific DMRs compared to the ubiquitous DMRs that
inherit methylation from the germline (P < 0.05, Student’s t-test),
with 14/17 placental-specific DMRs being unmethylated and not
associated with H3K9me3 in hES cells (Supplemental Fig. $10).
These data further support our hypothesis that a novel imprinting
mechanism occurs in the placenta, which is one of the first ex-
amples of methylation-independent epigenetic inheritance in
mammals. In support of our observations, Park and colleagues
(Park et al. 2004) generated a H19 ICR knock-in at the Afp locus
which was de novo methylated around gastrulation, implying that
H19 ICR is differentially marked in the gametes by a mechanism
other than methylation. However, it is unknown if this mecha-
nism also occurs at the endogenous H19 locus. In our examples of
placental-specific DMRs, the epigenetic mark inherited from the
oocyte is currently unknown, but must be recognized by the de
novo methylation machinery during early trophoblast differenti-
ation, since we observe maternal methylation in term placenta.
Certain histone methylation states are reported to recruit DNMTs
(Dhayalan et al. 2010; Zhang et al. 2010). Since various post-
translational modifications of histone tails have been shown to be
present at imprinted loci, specifically in the placenta independent
of DNA methylation (Umlauf et al. 2004; Monk et al. 2006), we are
led to suggest one inviting hypothesis: A histone modification
confers the “imprint” at these novel placental-specific imprinted
loci. Alternatively, the DNMTs may be recruited to these loci by
aspecific, yet to be identified, transcription factor expressed during
early trophoblast differentiation.

In line with other well-characterized imprinted genes in the
placenta, the placental-specific imprinted transcripts may also
exert supply-and-demand forces between the developing fetus and
mother, ultimately influencing fetal adaptation in utero, which if
disrupted may have long-term consequences on health many de-
cades after delivery (Constancia et al. 2004). Our observation of
imprinting of the somatic promoter of DNMTI in placenta may
therefore assist in this process. In addition, numerous studies have
also suggested that children born as a result of assisted re-
productive technologies (ART), including ovarian stimulation, in
vitro fertilization, and intra-cytoplasmic sperm injections, have
a higher risk of diseases with epigenetic etiologies, including im-
printing disorders (Amor and Halliday 2008). In a clinical context,
the placenta-specific imprinted loci may be prone to epigenetic
instability during ART, as the first differentiation step that results
in the trophectoderm occurs when the developing blastocysts are
in culture.

By utilizing genome-wide methylation profiling at base-pair
resolution, we have catalogued regions of parentally inherited
methylation associated with imprinted regions and highlighted all
differences between somatic and placental tissues. Further studies
of these loci will provide insight into the causes of epigenetic ab-

Figure 5. Methylation in gametes, hES cells, and somatic tissues. (A) Heat maps for Infinium probes mapping within all ubiquitous (left) and placental-
specific (right) imprinted DMRs in sperm and phES cells reveal the germline acquisition of methylation. (8) Methylation contour plots from WGBS data sets
for all maternally methylated DMRs reveal that the extent of the intermediately methylated regions associated with imprinted DMRs are extremely
consistent between somatic tissues and significantly larger in sperm. (C) Methylation profiles at the NNAT DMR determined by WGBS, Infinium array, and
meDIP-seq data sets in leukocytes, sperm, phES cells, and hES cells, along with the H3K4me3 ChlIP-seq reads for hES cells and sperm. The gray and black
dots in the second panel represent Infinium probe methylation in hES cell lines derived from six-cell blastomeres (Val10B) and blastocytes (SHEF5),
respectively. The gametic WGBS methylation profile is derived from sperm, with Infinium probe methylation values for sperm and phES cells represented
by blue and red dots. The graphic shows the extent of the differentially methylated regions in somatic tissues and between sperm and phES cells. The error
bars associated with the Infinium array probes represent the standard deviation of the two sperm samples and four independent phES cell lines. The
H3K4me3 ChiP-seq data is from sperm. The methylation profiles were confirmed using standard bisulfite PCR and sequencing.
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errations associated with imprinting disorders and may be relevant
to the epigenetic causes of common diseases.

Methods

Tissue samples and cell lines

Peripheral blood was obtained from healthy volunteers or from the
umbilical cord of newborns for which we obtained matched pla-
cental biopsies. These samples were collected at the Hospital St.
Joan De Deu (Barcelona, Spain) and the National Center for Child
Health and Development (Tokyo, Japan). All placenta-derived
DNA samples were free of maternal DNA contamination based on
microsatellite repeat analysis. The brain samples were obtained
from BrainNet Europe/Barcelona Brain Bank. Ethical approval for
this study was granted by the Institutional Review Boards at the
National Center for Child Health and Development (project 234),
Saga University (21-5), Hamamatsu University School of Medicine
(23-12), Hospital St. Joan De Deu Ethics Committee (35/07), and
Bellvitge Institute for Biomedical Research (PR006/08). Written
informed consent was obtained from all participants.

The hES (SHEF 3, 5, 6 and Vall0B) and parthenogenetically
activated oocyte (LLC6P, LLC7P, LLC8P, and LLC9P) cell lines were
used because they were epigenetically stable at imprinted loci
(with the exception of NNAT LOM and GNAS GOM in LLC7P;
LOM of PEG3 in Val10B; GOM of MCTS2P in SHEF3) and grown as
previously described (Harness et al. 2011). Ethical approval for the
study of these cells was granted by the Bellvitge Institute for Bio-
medical Research Ethics Committee (PR096/10) and Comité Etico
de Investigacion Clinica (CEIC) del Centro de Medicina Regener-
ativa de Barcelona-CMR[B] (28/2012) and complied with the legal
guidelines outlined by the Generalitat de Catalunya El conseller de
Slaut.

Wild-type mouse embryos and placentae were produced by
crossing C57BL/6 (B) with Mus musculus molosinus (JF1) or Mus
musculus castaneous (C) mice. Mouse work was approved by the
Institutional Review Board Committees at the National Center for
Child Health and Development (approval number A2010-002).
Animal husbandry and breeding were conducted according to the
institutional guidelines for the care and the use of laboratory ani-
mals. DNA and RNA extractions and cDNA synthesis were carried
out as previously described (Monk et al. 2006).

Characterization of the genome-wide UPD samples

Genomic DNA was isolated from two previously described
genome-wide paternal UPD cases with BWS features (Romanelli
et al. 2011) and two newly identified individuals, at Saga Uni-
versity, as well as one genome-wide maternal UPD with a SRS
phenotype (Yamazawa et al. 2010). Each of these cases had under-
gone extensive molecular characterization to confirm genome-wide
UPD status and the extent of mosaicism. We used DNA isolated
from lymphocytes, as these samples had minimal contamination
of the biparental cell lines. The genome-wide pUPD samples had
9, 11, 9, and 2% biparental contribution, whereas the genome-
wide SRS sample had 16%. In addition, four hydatidiform moles
were collected by the National Center for Child Health and
Development.

Genome-wide methylation profiling

We analyzed six publicly available methylomes, including those
derived from CD4+ lymphocytes (GSE31263) (Heyn et al. 2012), brain
(GSM913595) (Zeng et al. 2012), the H1 hES cell line (GSM432685,
GSM432686, GSM429321, GSM429322, GSM429323), and sperm

(GSE30340). In addition, we generated three additional tissue
methylomes using WGBS for brain, liver, and placenta. WGBS
libraries were generated as previously described (Heyn et al.
2012).

We also generated methylation data sets using the Illumina
Infinium HumanMethylation450 BeadChip arrays, which simul-
taneously quantifies ~2% of all CpG dinucleotides. Bisulfite con-
version of 600 ng of DNA was performed according to the manu-
facturer’s recommendations for the Illumina Infinium Assay (EZ
DNA methylation kit, Zymo). The bisulfite-converted DNA was
used for hybridization following the Illumina Infinium HD
methylation protocol at genomic facilities of the Cancer Epige-
netics and Biology Program (Barcelona, Spain) or the National
Center for Child Health and Development. Data was generated
for the genome-wide UPDs (4 X pUPD, 1X mUPD), two brain, one
liver, one muscle, one pancreas, two sperm, four hydatidiform
moles, four term placentae, four phES cell lines, and the four
hES lines. In addition, we used three leukocyte data sets from
GSE30870.

Data filtering and analysis

For WGBS, the sequence reads were aligned to either strand of
the hgl9 reference genome using a custom computational
pipeline (autosomal CpGs with at least five reads: brain sample,
190,314,071 aligned unique reads, 83% coverage; liver sample,
778,733,789 aligned unique reads, 96.6% coverage; placenta
sample, 319,362,653 aligned unique reads, 89.6% coverage).
The methylation level of each cytosine within CpG dinucleo-
tides was estimated as the number of reads reporting a C, divided
by the total number of reads reporting a C or T. For the identi-
fication of intermediately methylated regions associated with
imprinted DMRs, we performed a sliding window approach in
which the methylation of 25 CpGs was averaged after filtering
for repetitive sequences. The location of these sequences was
taken from the UCSC sequence browser. An interval was con-
sidered partially methylated if the average methylation was
0.25 <mean = 1.5 SD <0.75.

For the Illumina Infinium HumanMethylation 450 BeadChip
array, before analyzing the data, we excluded possible sources of
technical biases that could influence results. We applied signal
background subtraction, and inter-plate variation was normalized
using default control probes in BeadStudio (version 2011.1_Infinjum
HD). We discarded probes with a detection P-value >0.01. We also
excluded probes that lacked signal values in one or more of the
DNA samples analyzed. In addition, we discarded 16,631 probes as
they contained SNPs present in >1% of the population (dbSNP
137). Lastly, prior to screening for novel imprinted DMRs, we ex-
cluded all X chromosome CpG sites. In total, we analyzed 442,772
probes in all DNA samples. All hierarchical clustering and B-value
evaluation was performed using the Cluster Analysis tool of the
BeadStudio software.

In-house R-package scripts were used to evaluate the average
methylation of three contiguous Infinium probes. To identify re-
gions with potential allelic methylation, we screened the re-
ciprocal genome-wide UPDs for three consecutive probes with an
average B-value difference greater than 0.3 (Limma linear model
P <0.05):

1 2 1 2
= Y, pUPDs, —= ¥ mUPD,| > 0.3.
3 n=0 3 n=0

With the condition that the average of three consecutive probes for
the normal leukocytes is between the values for the reciprocal
genome-wide UPDs:
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The final condition was that the average of three consecutive
probes for normal leukocytes is within the 0.25-0.75 intermediate
methylation range:

1 2
0.25 > 3 Y. Leukocytes, > 0.75.

~ n=0

Genotyping and imprinting analysis

Genotypes of potential SNPs identified in the UCSC Genome
Browser (hg19) were obtained by PCR and direct sequencing. Se-
quence traces were interrogated using Sequencher v4.6 (Gene
Codes Corporation) to distinguish heterozygous and homozygous
samples. Heterozygous sample sets were analyzed for either allelic
expression using RT-PCR or bisulfite PCR, incorporating the
polymorphism within the final PCR amplicon so that parental
alleles could be distinguished (for primer sequence, see Supple-
mental Table S3).

Bisulfite PCR

Approximately 1 ug DNA was subjected to sodium bisulfite treat-
ment and purified using the EZ DNA Methylation-Gold kit (Zymo),
and was used for all bisulfite PCR analysis. Approximately 2 wL of
bisulfite-converted DNA was used in each amplification reaction
using Immolase Taq polymerase (Bioline) at 35-45 cycles, and the
resulting PCR product cloned into pGEM-T easy vector (Promega)
for subsequent subcloning and sequencing (for primer sequence,
see Supplemental Table $3). For the confirmation of an imprinted
DMR, we analyzed a minimum of three heterozygous samples and,
where possible, two different tissues.

Chromatin immunoprecipitation (ChIP)

We analyzed publicly available H3K4me3 ChIP-seq and meDIP-seq
data sets, including those derived from lymphocytes (GSM772948,
GSM772836, GSM772916, GSM543025, GSM613913), brain
(GSMB806943, GSMB06935, GSM806948, GSM669614, GSM669615),
and the H1 hES cell line (GSM409308, GSM469971, GSM605315,
GSM428289, GSM456941, GSM543016). For H3K9me3 in hES cells,
we used GSM450266. In addition, we used the sperm ChIP-seq
data set for H3K4me3 as a direct measure of nucleosome occu-
pancy (GSM392696, GSM392697, GSM392698, GSM392714,
GSM392715, GSM392716) (Hammoud et al. 2009).

The confirmation of allelic H3K4me3 in leukocytes or lym-
phoblastoid cell lines was performed as previously described
(Iglesias-Platas et al. 2013). Briefly, 100 ug of chromatin was used
for an immunoprecipitation reaction with Protein A agarose/
salmon sperm DNA (16-157, Millipore) and a H3K4me3 (07-473,
Millipore). Each ChIP was performed in triplicate alongside
a mock immunoprecipitation with an unrelated IgG antiserum,
and a 1% fraction of the input chromatin was extracted in
parallel. Levels of immunoprecipitated chromatin at each specific
region were determined by qPCR using SYBR Green (Applied Bio-
systems) carried out on the Applied Biosystems 7900 Fast real-time

PCR system (for primer sequence, see Supplemental Table S3). Each
PCR was run in triplicate and protein binding was quantified as
a percentage of total input material.

Data access

The data from this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE52578.
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A novel de novo point mutation of the

OCT-binding site in the

IGF2/HI9-imprinting control region in a
Beckwith—Wiedemann syndrome patient
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The IGF2/H19-imprinting control region (ICR1) functions as an insulator
to methylation-sensitive binding of CTCF protein, and regulates imprinted
expression of /GF2 and HI9 in a parental origin-specific manner. ICR1
methylation defects cause abnormal expression of imprinted genes, leading
to Beckwith—Wiedemann syndrome (BWS) or Silver—Russell syndrome
(SRS). Not only ICR1 microdeletions involving the CTCF-binding site,
but also point mutations and a small deletion of the OCT-binding site have
been shown to trigger methylation defects in BWS. Here, mutational
analysis of ICR1 in 11 BWS and 12 SRS patients with ICR1 methylation
defects revealed a novel de novo point mutation of the OCT-binding site
on the maternal allele in one BWS patient. In BWS, all reported mutations
and the small deletion of the OCT-binding site, including our case, have
occurred within repeat A2. These findings indicate that the OCT-binding
site is important for maintaining an unmethylated status of maternal ICR1
in early embryogenesis.
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Human 11pl5 contains two neighboring imprinted
domains, IGF2/H19 and KCNQ/ . Each domain is con-
trolled by its own imprinting control region: ICR1 or
ICR2, respectively (1). ICRI methylation defects cause
abnormal imprinted expression ol insulin-like growth
factor 2 (/GF2), which encodes a growth factor, and
non-coding RNA H19, which possesses possible tumor-
suppressor functions, leading to Beckwith—Wiedemann
syndrome (BWS: OMIM 130650) and Silver—Russell
syndrome (SRS: OMIM 180860), respectively (1, 2).
BWS is a congenital overgrowth disorder character-
ized by macroglossia, macrosomia, and abdominal wall
defects, whereas SRS is a congenital growth retarda-
tion disorder characterized by a typical facial gestalt,
clinodactyly V, and body asymmetry (1, 2). Among
varied causative genetic and epigenetic abnormalities,
ICR1 methylation defects are etiologies common to

both diseases. Gain of methylation (GOM) and loss of

methylation (LOM) at ICR1 account for ~5% of BWS
and ~44% of SRS cases, respectively (1, 2).

ICRT upstream of H/19 is a differentially methylated
region (DMR) that is methylated exclusively on the
paternal allele, and it regulates the imprinted expression
of paternally expressed /GF2 and maternally expressed
H19. On the maternal allele, unmethylated ICR1 bound
by CTCF forms a chromatin insulator that prevents
IGF2 promoter activation by the enhancer downstream
of HI19, resulting in silencing of /GF2 and activation
of H19. On the paternal allele, methylation-sensitive
CTCF cannot bind to methylated ICR1, resulting in
activation of IGF2 and silencing of H19 (3, 4). CTCF
also maintains the unmethylated status of ICR1 on the
maternal allele (5, 6).

Human ICRI contains two different repetitive
sequences (A and B) and seven CTCF-binding
sites (CTSs) (Fig. la). A maternally inherited ICR1
microdeletion (1.4-2.2kb), which affects ICR1 func-
tion and CTCF binding by changing CTS spacing,
has been reported to result in ICRI-GOM in a few
familial BWS cases (7-9). ICR1 also contains other
protein-binding motifs, such as OCT, SOX, and ZFP57
(10, 11). Recently, point mutations and a small deletion
of the OCT or SOX motif have been reported in a few
BWS patients with ICR1-GOM (10, 12, 13).

Here, mutational analysis in 11 BWS and 12 SRS
patients with ICR1 methylation defects revealed a novel
de novo point mutation in the OCT-binding site on the
maternal allele of one BWS patient.

Materials and methods
Patients

Eleven BWS and twelve SRS patients, who were
clinically diagnosed, were enrolled in this study. All
BWS and SRS patients displayed isolated GOM and
LOM of ICR1, respectively. This study was approved
by the Ethics Committee for Human Genome and Gene
Analyses of the Faculty of Medicine, Saga University.
Written informed consents were obtained from the
parents or guardians of the patients.
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Sequencing analysis of ICR1

A genomic region in and around ICR1, which included
seven CTSs and three OCT-binding sites, was directly
sequenced in all patients as previously described (14).
All polymerase chain reaction (PCR) primer pairs used
are listed in Table S1, Supporting Information.

Microsatellite analysis

For quantitative polymorphism analysis, tetranucleotide
repeat markers, D11S1984 at 11pl5.5 and D11S51997 at
11pl15.4, were amplified and analyzed with GENEMAP-
PER software. The peak height ratios of the paternal
allele to the maternal allele were calculated.

Southern blot analysis

Methylation-sensitive Southern blots with Psti/Miul
and BamHI/Not1 were employed for ICRI and ICR2,
respectively, as described previously (15). Band inten-
sity was measured using a FLA-7000 fluoro-image ana-
lyzer (Fujifilm, Tokyo, Japan). The methylation index
(MI, %) was then calculated.

Bisulfite sequencing

Bisulfite sequencing was performed covering the three
variants within ICR1 that were found in BWS-s043.
Genomic DNA was bisulfite-converted using an EpiTect
Bisulfite Kit (Qiagen, Hilden, Germany). After PCR
amplification, the products were cloned and sequenced.

Electrophoretic mobility shift assay

The pCMX-Flag-human OCT4 and pCMX-Flag-human
SOX2 were simultaneously transfected into HEK293
cells. The nuclear extracts from HEK293 cells express-
ing human OCT4/SOX2 and mouse ES cells were
used. Electrophoretic mobility shift assay (EMSA) was
performed as described previously (10). For super-
shift analysis, 1.5 ug of anti-OCT4 antibody (Abcam,
ab19857, Cambridge, UK) or 1.5 pg of anti-SOX2 anti-
body (R&D systems, AF2018, Minneapolis, MN) was
used. The unlabeled probes were also used as competi-
tors. The reaction mixtures were separated on a 4%
polyacrylamide gel and exposed to a film. Oligonu-
cleotide sequences are presented in Table S1.

Results

Among 11 BWS and 12 SRS patients with ICR1 methy-
lation defects, 7 and 2 variants from 5 BWS and 2 SRS
patients were found, respectively (Table 1). The variants
in BWS-047 and BWS-s061 were polymorphisms. The
remaining variants were not found in the normal pop-
ulation, the UCSC Genome Browser database, or the
1000 Genomes database, suggesting them to be can-
didates for causative mutations for ICR1 methylation
defects. However, the positions of the variants, except
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Fig. 1. The three variants in BWS-s043 and their effects on ICR1 methylation. (a) Map of ICR1 and the position of 2,023,018C>T. Upper panel:
structure of ICR1. ICR1 consists of two repeat blocks. Each block consists of one repeat A and three or four repeat Bs. The black and red
arrowheads indicate CTCF-binding sites (CTS) and OCT-binding sites (OCT), respectively. Middle panel: the position of 2,023,018C>T (arrow)
and previously reported mutations and deletions (asterisks). Three octamer motifs are enclosed by a red line. Lower panel: electrophoretograms
around 2,023,018C>T. BWS-s043 were heterozygous for the variant, whereas the maternal grandmother and both parents did not harbor it. (b)
Haplotype encompassing the three variants in BWS-s043. Polymerase chain reaction (PCR) products encompassing the three variants were cloned
and sequenced. All three variants were revealed to be on the same allele in BWS-s043. (¢) Pedigree and haplotype of the family. Haplotype analysis
showed that 2,023,018C>T (asterisk) occurred on the maternal allele in BWS-s043. (d) Bisulfite sequencing analysis encompassing the 2,022,561
562CT>delCT and the 2,022,565G>C variants in the mother and the maternal grandmother. Open and filled circles indicate unmethylated and
methylated CpG sites, respectively. X indicates G at chrl1: 2,022,565. Numerals on the left reflect the number of clones with the same methylation
pattern. The variant allele was unmethylated in the mother and methylated in the maternal grandmother, respectively. (e) Bisulfite sequencing
analysis encompassing 2,023,018C>T in BWS-s043. The maternal allele contained a de novo variant that was heavily methylated in BWS-s043,
while differential methylation was maintained in other family members and normal controls without the variant (Fig. S2a).

Table 1. Variants found in this study?

Heterozygosity
Ml of Position in normal
Patient ID ICR1 (%) Variant (GRCh37/hg19 chri11)  Location Transmission  population
BWS-047 100 G>Gdel 2,024,428 Centromeric outside of ICR1 Maternal 2/116
(5’ of CTS1) (rs200288360)
CT>CT del 2,022,561-2,022,562 Between A2 and B4 Maternal na
BWS-s043 86 G>C 2,022,565 Between A2 and B4 Maternal 0/115
C>T 2,023,018 A2 (OCT-binding site 1) De novo 0/107
BWS-s061 76 C>T 2,023,497 B5 (5" of CTS3) Paternal 2/105
BWS-s081 67 C>T 2,025 77T Centromeric outside of ICR1 Paternal 0/106
(8 of OCT-binding site 0)
BWS-s100 67 C>A 2,021,145 B1 (3’ of CTS6) Maternal 0/105
SRS-002 4 G>Gdel 2,024,364 B7 (5 of CTSH) Unknown 0/106
SRS-s03 24 C=T 2,021,103 B1 (3 of CTSB) Maternal 0/106
ICR, imprinting control region; MI, methylation index; na, not analyzed.
aParents’ DNA were not available for SRS-002.
3
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Fig. 2. Methylation-sensitive Southern blots and microsatellite analysis of BWS-s043, and electrophoretic mobility shift assay (EMSA) for
2,023,018C>T. (a) Methylation-sensitive Sothern blots of ICR1 and ICR2. Methylation indices [MI, %] are shown below each lane. MI was
calculated using the equation M/(M + U') x 100, where M is the intensity of the methylated band and U is the intensity of the unmethylated band.
m, methylated band; um, unmethylated band. BWS-s043 showed ICR1-GOM, whereas the relatives did not. Methylation statuses of CTS1 and
CTS4 are shown in Fig. S2b,c. Methylation of ICR2 in BWS-s043 was normal. (b) Microsatellite analysis at 11p15.4-p15.5. Ratios of the paternal
allele to the maternal allele in BWS-s043 were approximately 1, indicating no uniparental disomy. Red peaks are molecular markers. (¢) EMSA
using the wild-type (Wt) probe and the mutant (Mut) probe encompassing 2,023,018C>T. The unlabeled Wt probe or Mut probe (x50 or %200
molar excess) was used as a competitor. The arrows and asterisks indicate the protein-DNA complexes (A and B) and supershifted complexes,
respectively. mES NE, nuclear extract from mouse ES cells; OCT4/SOX2 NE, nuclear extract from human HEK293 cells expressing OCT4/SOX2;

Ab, antibody.

for BWS-s043, were not located at any protein-binding
sites that have been reported as involved in methyla-
tion imprinting (CTCF, OCT, and ZFP57) (3, 4, 10,
12, 16). Furthermore, we did not find any protein-
oligonucleotide complexes in EMSA using mouse ES
nuclear extracts and oligonucleotide probes encompass-
ing all variants, except for BWS-s043 (Fig. S1). There-
fore, we analyzed further three variants in BWS-s043,
which were in and around the OCT-binding site 1.
First, we re-confirmed that BWS-s043 showed GOM
near CTS6 within ICR1, but it did not demonstrate
LOM at ICR2, paternal uniparental disomy of chromo-
some 11, or a CDKNIC mutation (Fig. 2a,b, and data
not shown). The 2,023,018C>T variant was located
in the second octamer motif of OCT-binding site 1
within repeat A2 (Fig. la). The other two variants
were located approximately 450bp on the telomeric
side of the 2,023,018C>T variant, between repeats A2
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and B4 (Fig. la, Table 1). The 2,023,018C>T variant
was absent in other family members, indicating a de
novo variant (Fig. la). To clarify if the de novo vari-
ant in the patient occurred on the maternal or paternal
allele, we performed haplotype analysis with PCR cov-
ering all three variants. We found all three variants were
located on the same allele and the 2,023,018C>T vari-
ant occurred de novo on the maternal allele because the
2,022,561-562CT>delCT and 2,022,565G>C variants
were on the maternal allele in the patient (Fig. 1b,c).
Next, we investigated the methylation status of
ICR1. Methylation-sensitive Southern blots and bisul-
fite sequencing showed normal methylation of ICRI
in the parents and the maternal grandmother (Figs 2a
and S2). As for the 2,022,561-562CT>delCT and
the 2,022,565G>C variants, the variant allele was
unmethylated in the mother, but methylated in the
grandmother (Fig. 1d). On the basis of methylation



