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Figure 1 Photographs of patient #23 with UPD(14)pat and patient #27 with epimutation.

appeared to be specific to UPD(14)pat and related conditions, and
were recognizable from infancy through childhood.

Thoracic abnormality
The 34 patients invariably showed small bell-shaped small thorax with
coat-hanger appearance of the ribs in infancy (Figure 2). Long-term
(=10 years) follow-up in patient #12 of UPD-group and patient #31 of
Del-S1 who had ~5 times of RTLI expression, and in patient #34 of
Del-S3 who had ~2.5 times of RTLI expression, showed that the
CHAs remained above the normal range of age-matched control
children, while the M/W ratios, though they were below the normal
range in infancy, became within the normal range after infancy
(Figure 2). Laryngomalacia was also often detected in each group.
Mechanical ventilation was performed in all patients except for
patients #14 and #20 of UPD-group, and tracheostomy was also
carried out in about one-third of patients. Mechanical ventilation
could be discontinued during infancy in 22 patients (Supplementary
Figure S3). Ventilation duration was variable with a median period of
1 month among the 22 patients, and was apparently unrelated to the
underlying genetic cause or gestational age.

Abdominal wall defects
Omphalocele was identified in about one-third of patients, and
diastasis recti was found in the remaining patients.

Developmental status

Developmental delay (DD) and/or intellectual disability (ID) was
invariably present in 26 patients examined (age, 10 months to 15
years), with the median developmental/intellectual quotient (DQ/IQ)
of 55 (range, 29-70) (Figure 3). Gross motor development was also
almost invariably delayed, with grossly similar patterns among
different groups. In patients who passed gross motor developmental
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milestones, head control was achieved at ~7 months, sitting without
support at ~ 12 months, and walking without support at ~ 2.1 years
of age.

Other features

Several prevalent features were also identified. In particular, except for
patient #22, feeding difficulty with poor sucking and swallowing was
exhibited by all patients who were affected with polyhydramnios, and
gastric tube feeding was performed in all patients who survived more
than 1 week (Supplementary Figure S4). Tube-feeding duration
was variable with a median period of ~7.5 months in 16 patients
for whom tube feeding was discontinued, and tended to be longer in
Del-group. In addition, there were several features manifested by
single patients (Supplementary Table S2).

Notably, hepatoblastoma was identified at 46 days of age in patient
#17, at 218 days in patient #18, and at 13 months of age in patient #8
of UPD-group (Figure 4). It was surgically removed in patients #8 and
#18, although chemotherapy was not performed because of poor body
condition. In patient #17, neither an operation nor chemotherapy
could be carried out because of the patient’s severely poor body
condition. Histological examination of the removed tumors revealed a
poorly differentiated embryonal hepatoblastoma with focal macro-
trabecular lesions in patient #8 (Figure 4) and a well-differentiated
hepatoblastoma in patient #18.0

Mortality

Eight patients were deceased before 4 years of age. The survival rate
was 78% in UPD-group, 100% in Epi-group, and 50% in Del-group; it
was 25% in patients born <29 weeks of gestation, 83% in those born
30-36 weeks of gestation, and 86% in those born >37 weeks of
gestation (Figure 5). The cause of death was variable; however,
respiratory problems were a major factor, because patient #1 died
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Figure 2 Chest roentgenograms of patient #12 of UPD-group, patient #31 of Del-S1, and patient #34 of Del-S3. RTL1 expression level is predicted to be
~5 times higher in patients #12 and #31, and ~ 2.5 times higher in patient #34. The CHA to the ribs remains above the normal range throughout the study
period, whereas the M/W ratio (the ratio of the mid to widest thorax diameter) normalizes with age.

of neonatal respiratory distress syndrome, and patients #8, #30 and
#33 died during a respiratory infection. Of the three patients with
hepatoblastoma, patient #17 died of hepatoblastoma, whereas patient
#8 died during influenza infection and patient #18 died of hemopha-
gocytic syndrome.

Comparison among/between different groups/subtypes

Clinical findings were grossly similar among/between different groups/
subtypes with different expression dosages of RTLI and DLKI.
However, significant differences were found for short gestational age
and long duration of tube feeding in Del-group (among three groups
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2 UPD(14)pat (S-1)
UPD(14)pat (S-1)
4 UPD(14)pat (S-1)
5  UPD(14)pat (S-1)
6 UPD(14)pat (S-1)
7 UPD(14)pat (S-1)
8 UPD(14)pat (S-1)
g UPD(14)pat (S-1)
10 UPD(14)pat (S-1)
11 UPD(14)pat (S-1)
12 UPD(14)pat (S-1)
13 UPD(14)pat (S-1)
14 UPD(14)pat (S-2)
18  UPD(14)pat (S-3)
19 UPD(14)pat (S-3)
20 UPD(14)pat (S-3)
21 UPD(14)pat (S-3)
22 UPD(14)pat (S-3)
23 UPD(14)pat (S-3)
25 Epimutation
26  Epimutation
27  Epimutation
28  Epimutation
29 Microdeletion (S-1)

5 8 7T (yeas) DQAQ Age(ym) GA(W)
NE: 1:00 33
58 1:01 34
N.E: 2:04 35
55 2:11 35
N.E. 3:00 36
70 3:00 37
N.E 3:02 24
64 4:04 34
59 5:07 37
50 7:02 32
29 1111 33
65 16:00 35
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N.E. 1:05 37
47 1:07 28
N.E. 1:08 38
42 2:03 36
60 7:00 37
32 9:08 32
N.E. 0:10 35
N.E. 2:00 37
48 4:.07 35
56 5:08 35

31 Microdeletion (S-1) NE 811 30
34 Microdeletion (S-3) [0 NE 501 30

Figure 3 Developmental status. The orange, green, yellow, and blue bars represent the period before head control, the period after head control and before
sitting without support, the period after sitting without support and before walking without support, and the period after walking without support, respectively.
The gray bars denote the period with no information. DQ, developmental quotient; 1Q, intellectual quotient; N.E., not examined; Age, age at the last

examination or at death; and GA, gestational age.

0.0 2

Figure 4 Hepatoblastoma in patient #8 of UPD-group. (a) Macroscopic appearance of the hepatoblastoma with a diameter of ~8cm. (b) Microscopic
appearance of the hepatoblastoma exhibiting a trabecular pattern. The hepatoblastoma cells are associated with eosinophilic cytoplasm and large nuclei, and

resemble fetal hepatocytes.

and against Epi-group and UPD-group) and infrequent hairy forehead
in Epi-group (among three groups and against UPD-group) (actual
P-values are available on request).

DISCUSSION
We examined detailed clinical findings in patients with UPD(14)pat
and related conditions. The results indicate that the facial features with
full cheeks and protruding philtrum and the thoracic roentgeno-
graphic findings with increased CHAs to the ribs represent the
pathognomonic features of UPD(14)pat and related conditions from
infancy through the childhood. In addition, the decreased M/W ratios
also denote the diagnostic hallmark in infancy, but not after infancy.
Although other features such as polyhydramnios, placentomegaly, and
abdominal wall defects are characteristic of UPD(14)pat and related
conditions, they would be regarded as rather nonspecific features that
are also observed in other conditions such as Beckwith-Wiedemann
syndrome (BWS) (Supplementary Table $4).1%13

Such body and placental features were similarly exhibited by
patients of each group/subtype, including those of Del-S1, Del-S2,
and Del-S3 with different expression dosage of DLKI (1 X or 2 X ) and
RTLI (~2.5x%o0r ~5x), except for patient #32 of Del-S2 who showed
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typical body features but apparently lacked placental features.
Indeed, the difference in the DLKI expression dosage had no
discernible clinical effects, although mouse DIkI is expressed in several
fetal tissues, including the ribs. 1415 Similarly, in contrast to our
previous report which suggested a possible dosage effect of RTLI
expression level on the phenotypic severity,? the difference in the RTLI
expression dosage turned out to have no recognizable clinical effects
after analyzing long-term clinical courses in the affected patients.
This suggests that ~ 2.5 RTLI expression is the primary factor for the
phenotypic development in the body and placenta. Consistent with the
critical role of excessive RTLI expression in the phenotypic develop-
ment, mouse RflI is clearly expressed in the fetal ribs and skeletal
muscles (Supplementary Figure S5) as well as in the placenta,'®!” and
human RTLI mRNA and RTLI protein are strongly expressed in
placentas with UPD(14)pat.® Thus, lack of placental abnormalities in
patient #32 can be explained by assuming a positive RTLIas expression
and resultant normal (1x) RTLI expression in the placenta
(Supplementary Figure S1). In addition, since mouse G2 (Meg3) is
expressed in multiple fetal tissues including the primordial cartilage,'*
this may argue for the positive role of absent MEGs expression in
phenotypic development.
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Patient (Epi)genetic cause GA Cause of death Age of death
1 UPD(14)pat (S-1) 34 Respiratory failure 2 hours
8 UPD(14)pat (S-1) 24 Influenza infection 32/12yrs
15 UPD(14)pat (S-3) 34 Necrotizing enterocolitis 6 mos
17 UPD(14)pat (S-3) 32 Hepatoblastoma 8 mos
18 UPD(14)pat(S-3) 37 Hemophagocytic syndrome 1 5/12 yrs
30 Microdeletion (S-1) 27 Sudden death at URI 9 mos
32 Microdeletion (S-2) 28 Intracranial hemorrhage 4 days
33 Microdeletion (S-3) 35 RS virus infection 310/12 yrs

Figure 5 Kaplan-Meier survival curves according to the (epi)genetic cause and the gestational age (week), and summary of the causes of death. GA,

gestational age; URI, upper respiratory infection; and RS, respiratory syncytial.

The present study revealed several notable findings. First, polyhy-
dramnios was identified during the pregnancies of nearly all patients,
except for patient #32 of Del-S2. Amniotic fluid originates primarily
from fetal urine and is absorpted primarily by fetal swallowing into the
digestive system.'®!? Since fetal hydration and the resultant urine flow
mainly depend on the water flow from maternal circulation across the
placenta,' placentomegaly would have facilitated the production of
amniotic fluid. Furthermore, since feeding difficulty with impaired
swallowing was observed in most patients, defective swallowing would
have compromised absorption of amniotic fluid. Thus, both body and
placental factors are assumed for the development of polyhydramnios.
This would explain why polyhydramnios was observed in patients #1,
#6, and #8 who were free from placentomegaly, and in patient #22
who showed no feeding difficulty, although the presence of feeding
difficulty was unknown for patient #1 as was placentomegaly for
patient #22. In addition, since amniotic fluid begins to increase from
8-11 weeks of gestation and reaches its maximum volume around
32 weeks of gestation,'®!? this would explain why amnioreduction was
usually required from 30 weeks of gestation.

Second, birth size was relatively well preserved, whereas postnatal
growth was rather compromised. The well preserved prenatal growth
in apparently compromised intrauterine environments would be
consistent with the conflict theory that overexpression of PEGs
promotes fetal and placental growth.’ Notably, birth weight was
disproportionately greater than birth length in the apparent absence of
generalized edema. In this regard, mouse DIk, Ril1, and Gt2 (Meg3)
on the distal part of chromosome 12 are expressed in skeletal muscles
(Supplementary Figure S5),'#17 and paternal disomy for chromosome
12 causes muscular hypertrophy.?! Thus, patients with UPD(14)pat
and related conditions may have muscular hypertrophy especially in
the fetal life. The compromised postnatal growth would primarily be
because of poor nutrition caused by feeding difficulties, whereas
relative overweight suggestive of possible muscular hypertrophy
remains to be recognized.

Patients #8, #17, and #18 had hepatoblastoma.

Third, DD/ID was invariably present in all 26 patients examined for
their developmental/intellectual status, with the median DQ/IQ of 55.
In this regard, mouse DIkI, Rtll, and Gtl2 (Meg3) are expressed in the
brain during embryogenesis (Supplementary Figure S5),%% and DIk is
involved in the differentiation of midbrain dopaminergic neurons.*?
Thus, DD/ID would primarily be ascribed to the altered expression
dosage of PEGs/MEGs in the brain.

Fourth, hepatoblastoma was identified in three patients of
UPD-group during infancy. In this context, it has been reported that
(1) mouse DIkI, Rtll, and Meg3 (Gtl2) are expressed in the fetal liver,
but not in the adult liver; 7232 (2) overexpression of R#lI in the
adult mouse liver has induced hepatic tumors with high penetrance;>*
(3) Meg3 functions as a tumor suppressor gene in mice;*> (4) human
DLKI1 is expressed in the hepatocytes of 5-6 weeks old embryos;?® and
(5) human DLK1 protein is upregulated in hepatoblastoma.”” These
findings imply the relevance of excessive RTLI expression and loss of
MEGS3 expression to the occurrence of hepatoblastoma in UPD(14)pat
and related conditions, while it remains to be determined whether the
DLK1 upregulation is the cause or the result of hepatoblastoma
development. Thus, periodical screening for hepatoblastoma, such as
serum a-fetoprotein measurement and abdominal ultrasonography, is
recommended. In this context, it remains to be studied whether other
embryonal tumors may also be prone to occur in UPD(14)pat and
related conditions.

Fifth, mortality was high in Del-group and null in Epi-group.
The high mortality in Del-group would primarily be ascribed to the
high prevalence of premature delivery, although it is unknown
whether the high prevalence of premature delivery is an incidental
finding or characteristic of Del-group. The null mortality in Epi-group
may be due to possible mosaicism with cells accompanied by a normal
expression pattern because of escape from epimutation, as reported
previously.?®? It is unknown, however, whether possible presence of
trisomic cells in TR-mediated UPD(14)pat and that of normal cells in
PE-mediated UPD(14) may have exerted clinical effects. Notably, since
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death was observed only in patients <4 years of age, the vital
prognosis is expected to be good from childhood. In addition, since
three patients died during respiratory infections, careful management
is recommended during such infections.

Furthermore, the present study also provides several useful clinical
implications: (1) two patients had Robertsonian translocations as a
risk factor for the development of UPD.*® Thus, karyotyping is
suggested for patients with an UPD(14)pat-like phenotype;
(2) prenatal detection of polyhydramnios and thoracic and abdominal
features is possible from ~25 weeks of gestation; (3) mechanical
ventilation and gastric tube feeding are usually required, with variable
durations; (4) there was no patient in UPD-group who exhibited
clinical features that are attributable to the unmasking of a recessive
mutation(s) of paternal origin; (5) since UPD(14)pat and related
conditions share several clinical features including embryonal tumors
with BWS (Supplementary Table S4), UPD(14)pat and related
conditions may be worth considering in atypical or underlying
factor-unknown BWS; and (6) since clinical findings are comparable
between patients examined in this study and 17 similarly affected non-
Japanese patients (Supplementary Table S5), our data will be applic-
able to non-Japanese patients as well.

A critical matter for UPD(14)pat and related conditions is the lack
of a syndrome name. Although the term ‘UPD(14)pat syndrome’ has
been utilized previously,* the term is confusing because ‘UPD(14)pat
syndrome’ can be caused by (epi)genetic mechanisms other than UPD
(14)pat. In this regard, the name ‘Temple syndrome’ has been
proposed for UPD(14)mat and related conditions or ‘UPD(14)mat
syndrome’,>1%? a mirror image of UPD(14)pat and related conditions.
On the basis of our previous and present studies that have made a
significant contribution to the clarification of underlying (epi)genetic
factors and the definition of clinical findings, we would propose the
name ‘Kagami-Ogata syndrome’, or ‘Wang—Kagami-Ogata syndrome’
with the name of Wang who first described UPD(14)pat,®® for UPD
(14)pat and related conditions.

In summary, although the number of patients still remains small,
especially in each subtype of Del-group, the present study reveals
pathognomic and characteristic clinical findings in UPD(14)pat and
related conditions. Furthermore, this study shows the invariable
occurrence of DD/ID and the occasional (8.8%) development of
hepatoblastoma, thereby showing the necessity of adequate support for
DD/ID and screening of hepatoblastoma in affected patients. Finally,
we propose the name ‘Kagami—~Ogata syndrome’ for UPD(14)pat and
related conditions.
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The role of maternal-specific H3K9me3
modification in establishing imprinted
X-chromosome inactivation and embryogenesis
in mice
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Maintaining a single active X-chromosome by repressing Xist is crucial for embryonic
development in mice. Although the Xist activator RNF12/RLIM is present as a maternal factor,
maternal Xist (Xm-Xist) is repressed during preimplantation phases to establish imprinted
X-chromosome inactivation (XCI). Here we show, using a highly reproducible chromatin
immunoprecipitation method that facilitates chromatin analysis of preimplantation embryos,
that H3K9me3 is enriched at the Xist promoter region, preventing Xm-Xist activation by
RNF12. The high levels of H3K9me3 at the Xist promoter region are lost in embryonic stem
(ES) cells, and ES-cloned embryos show RNF12-dependent Xist expression. Moreover, lack of
Xm-XCl in the trophectoderm, rather than loss of paternally expressed imprinted genes, is the
primary cause of embryonic lethality in 70-80% of parthenogenotes immediately after
implantation. This study reveals that H3K9me3 is involved in the imprinting that silences
Xm-Xist. Our findings highlight the role of maternal-specific H3K9me3 modification in
embryo development.
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of the two X chromosomes in the female is inactivated"2,

In establishment of X-chromosome inactivation (XCI), a
large non-coding RNA, Xist, is expressed and this non-coding
RNA then covers the entire X chromosome in cis'~. In mice, two
types of XCI occur during female embryonic development. One
type involves random XCI, which is observed in cells derived
from epiblasts, and one of the two X chromosomes (paternal or
maternal) is randomly inactivated. The other involves imprinted
XCI (iXCI), which is observed in extra-emb?'onic tissues and
causes XCI of the paternal X chromosome (Xp)®. The initiation of
iXCI begins at early preimplantation in embryos and Xp-Xist is
expressed around the four-cell stage'. A recent study showed that
a maternal factor, the E3 ubiquitin ligase RNF12, is the primary
factor responsible for Xp-Xist activation®. Interestingly, although
RNF12 is abundant as a maternal factor in oocytes, Xm-Xist is
not expressed. Moreover, maternal Xist (Xm-Xist)-specific
imprints, which are refractory to the Xm-Xist activation
induced by RNF12, are imposed during oogenesis®. Xist
expression analysis using de novo DNA methyltransferase
(Dnmt3a/b) maternal knockout mice demonstrated that Xist
expression during preimplantation is independent of DNA
methylation’, implying that other epigenetic factors are
associated with Xm-Xist silencing. However, the nature of these
Xm-specific epigenetic modifications is unknown.

A gene-knockout study demonstrated that loss of Xp-Xist
expression critically affects postimplantation female development
due to lack of iXCI, which causes overexpression of X-linked
genes in extra-embryonic tissues®. Similar to the phenotype
observed in Xp-Xist-knockout mice, parthenogenetic embryos
(PEs) composed of two X chromosomes show increased
expression of X-linked genes, as compared with fertilized
females, because of the low expression of Xist’. One of
the interesting phenomena observed in PEs is the dramatic
developmental failure that occurs immediately after implantation.
Around 70-80% of embryos die before embrlyonic day (E) 9.5,
which is the limit of development for PEs'®. However, it is
unknown whether the primary cause of rapid developmental
failure in postimplantation PEs is the loss of iXCI or the loss of
expression of autosomal paternally imprinted genes'!"12,

The global epigenetic asymmetry of parental genomes in
zygotes is retained during early preimplantation phases in mice
and changes in gene expression occur in discrete stages to confer
totipotency!>!4, Interestingly, transcriptionally repressive marks,
such as histone H3 lysine 9 di-/trimethylation (H3K9me2/3), are
specifically imposed on maternal genomes at the zygote stage!>.
Although the regulation of imprinted genes mostly depends on
DNA methylation, some imprinted genes are regulated by these
histone modifications!>!, Thus, Xm-Xist silencing machinery
may be associated with histone modifications.

To maintain proper dosage compensation in mammals, one

Here we reveal that silencing of Xm-Xist in preimplantation
embryos involves modification of H3K9me3. By using a new
chromatin immunoprecipitation (ChIP) method that facilitates
chromatin analysis in preimplantation embryos, we show that the
Xist promoter on the Xm is highly enriched for H3K9me3 at the
four-cell stage. This enrichment is lost in the morula and in male
embryonic stem (ES) cells. Furthermore, we demonstrate that
early loss of H3K9me3 at the Xist promoter leads to precocious
Xm-Xist activation in a Rnfl2-dependent manner. Moreover, we
demonstrate that establishment of Xm-XCI in the trophectoderm
allows PEs to develop at the postimplantation stage without the
expression of paternally imprinted genes on autosomes. There-
fore, these data indicate that the primary cause of embryonic
lethality immediately after implantation in most PEs is loss of
XCI rather than loss of the expression of paternally imprinted
genes located on autosomes. Our study revealed that silencing of
Xm-Xist by imprinting to establish iXCI involves H3K9me3, and
this finding is expected to resolve the longstanding issues that
have limited our general understanding of XCI in mice.

Results

Changes in histone modifications cause Xm-Xist derepression.
Histone repressive marks, such as H3K9me2/3 and H3K27me3,
are specifically imposed on maternal genomes'®. To investigate
the role of maternal-specific modifications in imprinted Xist
expression, we focused on Kdm3a and Kdm4b, which encode
histone demethylases specific for H3K9mel/2 and H3K9me3
(refs 17,18), respectively. Reverse transcription-PCR analysis
showed that oocytes express low levels of Kdm3a and Kdm4b
(Supplementary Fig. 1). Immunofluorescence (IF) analyses
revealed that zygotes injected with polyadenylated Kdm3a and
Kdm4b messenger RNAs expressed significantly lower levels of
maternal H3K9me2 and H3K9me3, respectively (Fig. la-d).
Ectopic expression of Kdm3a and Kdm4b did not affect
H3K9me3 or H3K9me2 marks, respectively (Supplementary
Fig. 2). We reasoned that if Xm-specific modifications that
prevent Xist activation were erased by these epigenetic modifiers,
Xm-Xist would be expressed at the four-cell stage, which is when
Xp-Xist expression commences.

To facilitate analysis of Xm-Xist expression, we used PEs
(Fig. le). PEs possess two copies of Xm, and Xm-Xist is never
expressed at the four-cell stage!®. Xm-Xist expression in four-cell
PEs, cultured for 48h, was determined using quantitative real-
time PCR (qPCR). Consistent with a previous report'?, Xm-Xist
was not detectably expressed in most intact (not injected) PEs and
PEs injected with Egfp mRNA (Egfp-PEs; Fig. 1f). Approximately
75% of PEs injected with Kdm3a mRNA (Kdm3a-PEs) did not
detectably express Xist. However, Xm-Xist expression was
detected in all PEs injected with Kdm4b mRNA (Kdm4b-PEs;

Figure 1 | Alterations in histone modifications derepress Xm-Xist expression. (a-d) Oocytes injected with Kdm3a (a,b), Kdm4b (c,d) or Egfp mRNAs
were subjected to ICSI. After 7-8 h, embryos were fixed and analysed for H3K9me2 (a) and H3K9me3 (¢) using IF. Nuclei stained with 4’,6-diamidino-2-
phenylindole (DAPI) are shown in blue. Representative images are presented on the left. The box-and-whisker plot shows the ratio of maternal to
paternal signal intensities. The horizontal line indicates the median. The P-values were calculated using the Mann-Whitney U-test (U-test). Pb, polar body;
n, number of embryos analysed (b,d). (e) Schema of the generation of PEs with altered histone modifications. To examine the effects of histone
demethylation on Xm-Xist expression, either H3K9me2 demethylase (Kdm3a) or H3K9me3 demethylase (Kdm4b) mRNAs were injected into MII
oocytes that were then activated. To assess the effects of inhibition of histone deacetylation on Xm-Xist expression, oocytes were activated and incubated
in the presence of TSA for 24 h. After 48 h, ten four-cell PEs were pooled and analysed as one biological replicate using gPCR. (f) Analysis of

Xm-Xist expression at the four-cell stage. The expression level of Xm-Xist in female embryos derived from IVF was defined as 1. One or two asterisks
indicate Xm-Xist expression in one or two replicates, respectively. The P-values were determined using Student's t-tests. Error bars indicate the

mean t s.e.m. (g-i) Xist FISH analysis of Kdm4b- and Egfp + TSA-PEs at the four-cell stage. (g) Representative images of FISH results. (h) Ratio of cells
with Xist signal to the total number of cells. n, number of interphase cells analysed. (i) Ratio of cells with biallelic expression to total cells. The detailed

FISH results are shown in Supplementary Table 1. Scale bars, 20 pm.
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Fig. 1f), suggesting that H3K9me3 demethylation caused Xm-Xist
derepression.

We next assessed the effects of a histone deacetylase inhibitor,
trichostatin A (TSA), on Xm-Xist expression. TSA-treated PEs
(Intact+ TSA-PEs and Egfp + TSA-PEs) also activated Xm-Xist
(Fig. 1f). No significant changes were detected in Xm-Xist
expression levels between Kdm4b-PEs and Egfp + TSA-PEs.

However, although co-injection with Kdm4b and Kdm3a mRNAs
did not increase Xm-Xist expression levels as compared with
Kdm4b-PEs, a combination of TSA and Kdm4b-mRNA sig-
nificantly increased Xm-Xist expression as compared with Egfp +
TSA-PEs (2.9-fold, P<0.04, Student’s t-test; Fig. 1f). Moreover,
derepression of Xm-Xist transcription occurred in the absence of
Rnfl2 overexpression (Supplementary Fig. 3), and Jpx and Ftx,
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Figure 2 | Global XCl and Xist expression states of Xm at late preimplantation stages. (a) Analysis of Xist expression using gPCR of individual
embryos in the morula. An asterisk indicates P<0.05 (Student'’s t-test) compared with Egfp-PEs. FEs, fertilized embryos. (b) Large-scale qPCR analysis of
Xist and eight X-linked genes in individual blastocysts after culturing for 96 h. Coloured bars indicate expression levels. (¢, d) IF (H3K27me3, green)
combined with RNA FISH (Xist, red) analysis in 96-h blastocyst stage. 4’,6-diamidino-2-phenylindole (DAPI)-stained nuclei are shown in blue.

(¢) Representative confocal projection. Scale bars, 50 um. (d) The graph shows Xist expression and H3K27me3 modification states in individual
embryos. The horizontal axis indicates the average percentage in the group. *P<3.1x 10 ~28 (Fisher's exact test). n, number of embryos analysed.
(ef) Xm-Xist biallelic expression states in PEs at 96 h. The asterisk indicates cells with biallelic expression. Scale bars, 20 um. (f) Summary of the ratio
of biallelic cells to Xist-positive cells in 96-h blastocyst stage in each group. The number of cells is shown in Supplementary Table 3. (g) gPCR analysis of
Xist and eight X-linked genes in individual blastocysts after culturing for 120 h. (h,i) IF (H3K27me3, green) combined with RNA FISH (Xist, red) analysis in
120 h blastocysts. *P<5.4 x 10~ 23 (Fisher's exact test). Scale bars, 50 um. (j) The ratio of biallelic cells to Xist-positive cells in 120 h blastocysts.

In gPCR analysis, the average expression level of Xm-Xist in Egfp-PEs was set as 1 (also see the Methods section). Gapdh and ff-actin were used as
internal controls. Data are summarized in Supplementary Table 4.
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