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Epimutations of the IG-DMR and the MEG3-DMR at
the 14932.2 imprinted region in two patients with
Silver—Russell Syndrome-compatible phenotype

Masayo Kagami*!, Seiji Mizuno?, Keiko Matsubara!, Kazuhiko Nakabayashi®, Shinichiro Sano!, Tomoko Fuke!,
Maki Fukami' and Tsutomu Ogata*!*

Maternal uniparental disomy 14 (UPD(14)mat) and related (epi)genetic aberrations affecting the 14q32.2 imprinted region
result in a clinically recognizable condition which is recently referred to as Temple Syndrome (TS). Phenotypic features in TS
include pre- and post-natal growth failure, prominent forehead, and feeding difficulties that are also found in Silver-Russell
Syndrome (SRS). Thus, we examined the relevance of UPD(14)mat and related (epi)genetic aberrations to the development of
SRS in 85 Japanese patients who satisfied the SRS diagnostic criteria proposed by Netchine et al/ and had neither epimutation
of the H19-DMR nor maternal uniparental disomy 7. Pyrosequencing identified hypomethylation of the DLKI1-MEG3 intergenic
differentially methylated region (IG-DMR) and the MEG3-DMR in two cases. In both cases, microsatellite analysis showed
biparental transmission of the homologs of chromosome 14, with no evidence for somatic mosaicism with full or segmental
maternal isodisomy involving the imprinted region. FISH and array comparative genomic hybridization revealed neither deletion
of the two DMRs nor discernible copy number alteration in the 14¢32.2 imprinted region. Methylation patterns were apparently
normal in other six disease-associated DMRs. In addition, a thorough literature review revealed a considerable degree of
phenotypic overlap between SRS and TS, although body asymmetry was apparently characteristic of SRS. The results indicate

the occurrence of epimutation affecting the IG-DMR and the MEG3-DMR in the two cases, and imply that UPD(14)mat and
related (epi)genetic aberrations constitute a rare but important underlying factor for SRS.
European Journal of Human Genetics advance online publication, 5 November 2014; doi:10.1038/ejhg.2014.234

INTRODUCTION
Human chromosome 14q32.2 harbors an imprinted region with
several paternally expressed genes such as DLKI and RTLI and
maternally expressed genes such as MEG3 and RTLIas, together with
the germline-derived primary DLKI-MEG3 intergenic differentially
methylated region (IG-DMR) and the post fertilization-derived
secondary MEG3-DMR.""? Consistent with this, maternal uniparental
disomy 14 (UPD(14)mat) results in clinically discernible features such
as pre- and post-natal growth failure, characteristic face with
prominent forehead and micrognathia, small hands, muscular hypo-
tonia, and precocious puberty.® These UPD(14)mat clinical features
are also caused by microdeletions involving paternally derived RTLI
and/or DLKI and by epimutation (hypomethylation) affecting the
normally methylated IG-DMR and MEG3-DMR of paternal
origin.>*7 Recently, such a clinically recognizable condition has been
referred to as “Temple Syndrome’ (TS).2

Clinical features of TS partially overlap with those of other
imprinting disorders. Indeed, pre- and post-natal growth failure, small
hands, and hypotonia during early infancy are also observed in
Prader-Willi Syndrome (OMIM 176270),° and UPD(14)mat and
epimutations involving the IG-DMR and the MEG3-DMR have been

identified in several patients diagnosed as having Prader-Willi
Syndrome.>”!® Furthermore, pre- and post-natal growth failure,
prominent forehead, micrognathia, and muscular hypotonia during
early infancy are often found in Silver-Russell Syndrome (SRS)
(OMIM 180860)."! To our knowledge; however, UPD(14)mat has
been identified only in a single patient diagnosed as having SRS with
no description of detailed phenotype.'?

Here, we report on epimutations of the IG-DMR and the MEG3-
DMR in two patients with SRS-compatible phenotype, and discuss on
phenotypic overlap between SRS and TS.

PATIENTS AND METHODS

Patients

We studied 85 Japanese SRS patients in whom underlying genetic factors
remained unknown from our previous study for 138 SRS patients'> who
satisfied the mandatory criteria and at least three of the five scoring system
criteria proposed by Netchine et al'* (for details of the criteria, see footnote of
Table 1). In the previous study,'® we identified HI9-DMR hypomethylation
(epimutation) in 43 patients (31.2%) and UPD(7)mat in nine patients (6.5%),
and revealed a microdeletion at chromosome 17¢24 in a single patient by
analyzing copy number alterations for chromosome 11pl5.5, 7pl12.2, 12ql4,
and 17q24 that have been identified in rare SRS patients.!>-18
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Table 1 Assessment of Silver-Russell Syndrome (SRS) clinical findings

Case | Case 2
46,XY 46,XX No. 445 | (male) TS patients SRS patients®
Karyotype genetic cause Epimutation Epimutation UPD{14)mat UPD(14)mat (n= 44} Unknown (n= 85}
SRS diagnosis criteria®
Mandatory criteria for SRS
BL and/or BW £ -2 SDS + + + 28/35 85/85
Scoring system criteria for SRS
Relative macrocephaly at birth® + + 11721 16/454
PH <2 SDS at 2 years + (2.2 3D) + (3.6 SD) + 21/37 521619
Prominent forehead + + 17/21 417534
Body asymmetry + + - 1/1¢ 19/594
Feeding difficulties - - + 20/25 25/519
Other findings
Gestational age (weeks) 41 37 38 (26~42) (n=34) 38 (27 ~41) (n=65)
BLcm (SDS) 46.5 (-2.1) 36.5 (-6.0) NDf (-2.94+1.4) (n=60)
BW kg (SDS) 2.2(-2.7) 1.2 (-4.6) . (~2.6) ND! (~2.7+1.1) (n=64)
BOFC cm (5D8) 32.5 (-0.7) 30.0 (-2.0) NDf (1.9+1.1) (n=48)
Present age (years:months) 9:6 9:2 17:9 7:10 (0:3 ~30:0) (n=43) 4:3 (0:1 ~ 18:6) (n=60)
PH cm (SDS) 120.4 (-2.3) 125.5 (~1.01¥ ... {0.4 centile} NDf (-3.2+1.5) (n=61)
PW kg (5D5) 26.5(-0.7) 22.3 (-1.2) ... (0.4 centile) NDf (~2.841.3) (n=59)
BMI (kg/m?) (SDS) 18.3 (+1.0) 8D) 14.2 (-1.1)
POFC cm (SDS) 51.5 (~0.9) 50.3 (-1.,5) ND? (-1.8+1.6) (n=35)
Relative macrocephaly at present” - - 10/20 29/43
Triangular face + + 212 65/65
Ear anomalies - - 2/5 15/55
lrregular teeth + - + 2/3 12/45
Clinodactyly + + + 6/6 50/58
Brachydactyly + - - 6/6 34/56
Single palmar crease + - 717 6/49
Muscular hypotonia + - - 29/40 12/50
Speech delay + - - 5/11 18/43
Remark IVF-ET
Reference This study This study Poole et al*? See Supplementary Table S4 Fuke et al*3

Abbreviations: BL, birth length; BMI, body mass index; BOFC, birth occipitofrontal circumference; BW, birth weight; IVF-ET, in vitro fertilization-embryo transfer; ND, not determined; PH, present
height; POFC, present occipitofrontal circumference; PW, present weight; SDS, standard deviation score; SRS, Silver-Russell Syndrome; TS, Temple Syndrome; UPD(14)mat, maternal uniparental

disomy 14.
2Japanese SRS patients who have neither epimutation at the #19-DMR nor UPD(7)mat.

YThe diagnosis of SRS is made when a patient is positive for the mandatory criteria and at least three of the five scoring system criteria (Netchine et af'?)

“BL or BW (SDS)-BOFC (SDS)<-1.5.

90f the 85 patients, none have all the five scoring system criteria, 19 exhibit four of the five scoring system criteria, and 66 manifest three of the scoring system criteria.
®The presence of body asymmetry has been documented only in a single patient; while the presence or the absence of body asymmetry is not described, it is inferred that body asymmetry is absent

in most, if not all, patients who have been examined for UPD(14)mat.

Not determined because of lack of precise data in several studies, different growth assessment (SDS or centile) among studies, and different ethnicity.

8The height increase was obviously due to central precocious puberty.
hBL or BW (SDS)-BOFC (SDS)<~1.5.

For UPD(14)mat and SRS patients, the denominators indicate the number of patients examined for the presence or absence of each feature, and the numerators represent the number of patients
assessed to be positive for that feature.In cases 1 and 2 and the 85 SRS patients, birth and present length/height, weight, and occipitofrontal circumference were assessed by the gestational/
postnatal age- and sex-matched Japanese reference data from the Ministry of Health, Labor, and Welfare and from the Ministry of Education, Science, Sports and Culture. BMi was evaluated by

Japanese reference data.??

The 85 patients had a less-typical SRS phenotype (for details, sce Fuke et al'?).
Indeed, of the 85 patients, none showed all of the five Netchine scoring
system features, and 19 and 66 patients manifested four and three scoring
system features, respectively. By contrast, of the 43 patients with HI9-DMR
epimutations, 10 patients were positive for all the five Netchine scoring system
features, and 16 and 17 patients exhibited four and three scoring system
features, respectively. This phenotypic difference was primarily due to the
difference in the frequencies of relative macrocephaly at birth (35.6% vs 100%)
and body asymmetry (32.2% vs 81.1%) between the two groups; the frequencies
of the remaining three scoring system features were similar between the two
groups. As our previous study included a large number of such patients with
less-typical SRS phenotype, this would explain why the prevalence of HI9-DMR
epimutations was lower in our previous study than in Western European
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studies reported in the literature.!"'#1? The phenotypes of the nine UPD(7)mat
patients fell between those of the 85 idiopathic SRS patients and those of the 43
epimutation-positive patients, with the frequencies of relative macrocephaly at
birth and body asymmetry being 77.8% and 33.3%, respectively. This appeared
to be consistent with the prevalence of UPD(7)mat being similar between our

previous study and Western European studies.!1%19-2!

Ethical approval and samples

This study was approved by the Institute Review Board Committees of National
Center for Child Health and Development and Hamamatsu University School
of medicine, and performed using peripheral leukocyte samples after obtaining
written informed consent.



Molecular studies

We first performed pyrosequencing analysis for four CpG dinucleotides (CG1—
CG4) within the IG-DMR and five CpG dinucleotides (CG5-CG9) within the
MEG3-DMR, using bisulfite-treated leukocyte genomic DNA samples
(Figure 1). The procedure was as described in the manufacturer’s instructions
(Qiagen, Valencia, CA, USA). Subsequently, methylation indices (MIs, the ratio
of methylated clones) were obtained using PyroMark Q24 (Qiagen). We also
studied six UPD(14)mat patients for comparison and 50 control subjects to
define the reference ranges of Mls.

UPD(14)mat-related condition in SRS
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When hypomethylation was identified, we performed microsatellite
analysis for nine loci on chromosome 14, FISH analysis for the IG-DMR
and the MEG3-DMR, and array comparative genomic hybridization
for the 14¢32.2 imprinted region using a custom-build oligo-microarray
containing 12 600 probes (Agilent Technologies, Palo Alto, CA, USA).??
We also performed pyrosequencing for the HI9-DMR (ICR1) and the
PEGI/MEST-DMR to re-confirm the absence of the known causes
for SRS, and for the KvDMR (ICR2), the SNRPN-DMR, the PLAGLI-
DMR, and the GNAS exon A/B-DMR to examine the occurrence of

a
IG-DMR [ MEG3-DMR ‘
Pat
Mat PyF1—>SP1 <—PyR1 PyF2—>SP2 <—PyR2
CG1-CG4 CG5-CG9
Methylation Index (%) Methylation Index (%)
CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8 CG9
22% 18%40% 13% 3% 3% 4% \ 6% 2%
| 1
Gase®y & .0 Wi & amil o ,M,tul“.;w«,,fi,l.;t_,.l.i ul
34% 33%57%  25% | 4 25% 25% 26% 1 28% 22%
1 | % - | 3 ! :
Case 2 | G B !“ ‘ 8 Lo l!.ll '\‘..Hll,llllf '.\‘[.lu!.l“
4 24%21%39%  22% | 1 3% 4% 4% | 6% 2%
UPD(14)mat —_— l
1 i Lt (\.l»‘l el 1o .ml e \!,x}a,u,d}
1 58% 53%67%  51% } 1 45% 53% 35% ! 60% 36%
Control é ] 150
ente b lx Lii H-Ilvl,'1 ‘1 'l,l’ ] _‘l‘HJI hll’ 11;\1\.}.9.}..{‘
Methylation Index (%), Median (Range)
Case 1 Case 2 UPD(14)mat (n=6) Controls (n=50)
CG1 22 34 255 (22 ~29) 58 (49 ~ 68)
CcG2 18 33 21 (19~ 33) 54 (40 ~ 62)
CG3 40 57 47 (39 ~ 55) 68 (54 ~78)
cG4 13 25 22 (19 ~ 34) 53.5 (43 ~ 64)
CG5 3 25 42 ~15) 52 (43 ~ 56)
cG6 3 25 5 (3~ 16) 55 (52 ~ 65)
CG7 4 26 55(3~16) 37 (32~ 55)
cGs 6 28 7 (5~18) 60 (44 ~ 74)
CG9 2 22 3.5 (1~13) 36 (26 ~ 47)
b
140 160 100 120 140 160 100 120
e T — — I N S S— —
Case 1] | | L case2 | | L ,xl d
Mother L Mother J: i A
Father L L Ll Father Il | Al
D14S617 D148292 D14S617 D14S292

Figure 1 Representative molecular findings. (a) Methylation analysis by pyrosequencing analysis. Top panel: schematic representation indicating of four CpG
dinucleotides (CG1-CG4) within the IG-DMR and five CpG dinucleotides (CG5-CG9) within the MEG3-DMR. The cytosine residues at the CpG dinucleotides
are usually methylated after paternal transmission (filled circles) and unmethylated after maternal transmission (open circles). A 164 bp segment
encompassing CG1-CG4 and a 167 bp segment harboring CG5-CG9 were PCR amplified with primer sets (PyF1-PyR1 and PyF2-PyR2) hybridizing to both
methylated and unmethylated clones, and sequence primers (SP1 and SP2) were hybridized to single-stranded PCR products. Middle panel: pyrosequencing
data in cases 1 and 2, a UPD(14)mat patient, and a control subject. Bottom panel: summary of Mls. (b) Microsatellite analysis. The data are consistent with

biparental origin of the chromosome 14 pairs. Unequal amplification of the

heterozygous peaks in each individual is consistent with short products being

more easily amplified than long products, and the patterns of heterozygous peak heights for D14S292 are comparable between case 1 and the father and
between case 2 and the mother, with no disproportionally increased heights of maternally derived peaks.
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multiple methylation defects.”® Primers utilized in this study are shown in
Supplementary Table 1.

RESULTS

Molecular studies

Pyrosequencing identified hypomethylation of the IG-DMR and the
MEG3-DMR in two of the 85 SRS patients (cases 1 and 2) (Figure 1).
The MIs in case 1 were around the lower limit of the MIs in the six
UPD(14)mat patients and much lower than the reference range in the
50 control subjects, whereas the MIs in case 2 were above the
maximum MIs in the six UPD(14)mat patients, except for the MI of
CG4, and below the reference range in the 50 controls, except for the
MI of CG3. The MIs were obviously lower at the MEG3-DMR than at
the IG-DMR in case 1 and the six UPD(14)mat patients, whereas the
MIs were not so different between the IG-DMR and the MEG3-DMR
in case 2 and the 50 control subjects.

In cases 1 and 2, microsatellite analysis showed biparental transmis-
sion of the homologs of chromosome 14, with similar patterns of peak
heights for heterozygous alleles between cases and the parents (eg,
comparable patterns of peak heights for the 108 bp and the 112 bp
alleles of D145292 between case 1 and the father and between case 2
and the mother) (Figure 1 and Supplementary Table 2). FISH analysis
delineated two copies of the IG-DMR and the MEG3-DMR, and array
comparative genomic hybridization revealed no discernible copy
number alteration in the 14q32.2 imprinted region (Supplementary
Figure 1). Furthermore, the MIs for the six DMRs other than the IG-
DMR and the MEG3-DMR were invariably within the normal range in
cases 1 and 2 (Supplementary Table 3).

Clinical findings of cases 1 and 2

Both cases 1 and 2 showed severe prenatal growth failure, the
mandatory criteria (ie, birth length and/or birth weight <-2 SD),
and four of the five scoring system criteria (ie, relative macrocephaly at
birth, postnatal short stature (< -2 SD) at > 2 year of age, prominent
forehead during early childhood, and body asymmetry) for the
diagnosis of SRS, whereas both of them lacked feeding difficulties
(Table 1 and Figure 2). In addition, both cases 1 and 2 exhibited
triangular face and clinodactyly, and case 1 manifested irregular teeth,
brachydactyly, Single palmar crease, muscular hypotonia, and speech
delay. Notably, relative macrocephaly with prominent forehead was no
longer recognizable with age in both cases. Consistent with this,
although the facial appearance was fairly characteristic of SRS in both
cases in infancy to early childhood, it became less characteristic in
both cases with age (Figure 2).

Both cases 1 and 2 also exhibited TS (UPD(14)mat) clinical features
(Supplementary Table 4). In particular, several features characteristic
of TS rather than SRS were observed, such as the body mass index
above the mean at 9 years of age (though not assessed as obese), joint
hypermobility, and small hands in case 1, and small hands and early
onset of puberty in case 2.

Clinical survey also revealed that case 2 was born after in vitro
fertilization-embryo transfer, whereas case 1 was born after natural
conception. Furthermore, case 1 was treated with growth hormone for
short stature from 6 to 8 years of age, and case 2 received growth
hormone therapy for short stature since 5 years of age and
gonadotropin-releasing hormone analog therapy for precocious pub-
erty since 7 years of age.

P
—
—
———-
JES—

Figure 2 Photographs of case 1. (a) At 3 5/12 years of age. He exhibits triangular face with prominent forehead and micrognathia, and clinodactyly of the
5th fingers. (b) At 9 6/12 years of age. He exhibits slight central obesity, with the body mass index above the mean. Although this photo suggests mild
scoliosis, this is primarily due to body asymmetry with asymmetric leg length. No scoliosis has been identified at the sitting position. He also manifests

irregular teeth, joint hypermobility, and clinodactyly of the 5th fingers.
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DISCUSSION

The present study showed that the IG-DMR and the MEG3-DMR
were severely hypomethylated in case 1 with the MIs comparable to
those of UPD(14)mat and moderately hypomethylated in case 2 with
the MIs between those of UPD(14)mat patients and those of control
subjects, in the absence of UPD(14)mat and microdeletion or copy
number alteration involving the DMRs. Furthermore, although such
hypomethylation patterns, especially the moderate hypomethylation in
case 2, could be caused by post zygotic mosaicism with maternal full
or distal 14q segmental isodisomy involving the imprinted region,**
microsatellite analysis indicated no disproportionally increased height
of the maternally inherited alleles, thereby arguing against the possible
mosaicism. Taken together, the results imply the occurrence of
epimutation (hypomethylation) of the IG-DMR and the MEG3-
DMR in cases 1 and 2.

Cases 1 and 2 satisfied SRS diagnostic criteria proposed by Netchine
et al.'* In addition, UPD(14)mat has been identified in a single patient
diagnosed as having SRS, although detailed clinical findings are
unknown (No. 445 in Table 1).!2 Furthermore, phenotypic assessment
of TS patients with UPD(14)mat reported in the literature reveals that
such patients frequently exhibit clinical features utilized as the manda-
tory and the scoring system criteria for SRS (Table 1). Indeed, pre- and
post-natal growth failure, prominent forehead, and feeding difficulties
are shared in common by SRS and TS (Table 1 and Supplementary
Table 4). In this regard, although the presence or the absence of body
asymmetry is not described in most TS patients, it is unlikely that body
asymmetry was not reported despite its presence (body asymmetry has
been described in a single patient with UPD(14)mat and Prader-Willi
Syndrome-like phenotype).?> Thus, it is inferred that a considerable
degree of phenotypic overlap exists between SRS and TS, except for
body asymmetry that is apparently characteristic of SRS, and that
epimutations of the IG-DMR and the MEG3-DMR were identified in
cases 1 and 2 who exceptionally manifested body asymmetry.

Several matters should be pointed out in this study. First, the MIs
were obviously lower at the MEG3-DMR than at the IG-DMR in case
1 and the six UPD(14)mat patients, whereas the Mls were not so
different between the IG-DMR and the MEG3-DMR in case 2 and the
50 control subjects. As the IG-DMR and the MEG3-DMR function as
the imprinting centers in the placenta and the body, respectively,
hypomethylation may be more strictly established in the MEG3-DMR
of leukocytes in patients with UPD(14)mat and definitive epimutation.
Second, multiple methylation defects was not detected in cases 1 and
2. Although the examined DMRs were rather limited, this may argue
that isolated epimutation of the IG-DMR and the MEG3-DMR can
lead to SRS phenotype. Third, relative macrocephaly with prominent
forehead became clinically non-recognizable with age in cases 1 and 2.
Thus, although clinical features of the two cases were compatible with
SRS with no specific finding that serves to distinguish the two cases
from other SRS patients in infancy to early childhood, they became
less characteristic for SRS with age. Indeed, except for body
asymmetry, their recent clinical features were more similar to those
of patients with TS*® or those of patients with short stature born
small-for-date with no catch-up growth.”” Such phenotypic change
with age, in addition to TS-like clinical features such as recent body
mass index gain in case 1 and early onset of puberty in case 2, might
be characteristic of SRS patients with an aberrant chromosome 14
imprinted region. Fourth, case 2 was born after in vitro fertilization. As
in vitro fertilization could be a risk factor for the occurrence of
epimutation (hypomethylation),?® in vitro fertilization may be related
to the moderate degree of epimutation in case 2. Lastly, epimutation
was identified only in two of the 85 SRS patients who were free from

UPD(14)mat-related condition in SRS
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epimutation of the HI19-DMR and UPD(7)mat. Poole et al'* also have
identified UPD(14)mat in one of 127 SRS patients, although clinical
assessment remained fragmentary in 127 patients. Thus, UPD(14)mat
and related genetic aberrations account for only a small fraction of SRS
patients, and underlying factor(s) still remain to be clarified in many
SRS patients. Nevertheless, analysis of the chromosome 14 imprinted
region is worth attempting in SRS patients, especially in those with
neither hypomethylation of the H19-DMR nor UPD(7)mat.

In summary, we identified epimutations affecting the IG-DMR and
the MEG3-DMR in two patients with SRS-compatible phenotype.
Further studies will permit to define the phenotypic spectrum of TS
with aberrations of the chromosome 14 imprinted region.
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Deletions and epimutations affecting the human 14q32.2

imprinted region in individuals with paternal and
maternal upd(14)-like phenotypes

Masayo Kagami'?’, Yoichi Sekita®?°, Gen Nishimura®, Masahito Irie?, Fumiko Kato!, Michiyo Okadal,
Shunji Yamamori4, Hiroshi Kishimoto®, Masahiro Nakayama®, Yukichi Tanaka’, Kentarou Matsuoka®,
Tsutomu Takahashi’, Mika Noguchi!®, Yoko Tanaka'l, Kouji Masumoto!'?, Takeshi Utsunomiya!,
Hiroko Kouzan'4, Yumiko Komatsu'®, Hirofumi Ohashi'®, Kenji Kurosawa!’, Kenjirou Kosaki'8,

Anne C Ferguson-Smith!®, Fumitoshi Ishino? & Tsutomu Ogata!

Human chromosome 14q32.2 carries a cluster of imprinted
genes including paternally expressed genes (PEGs) such as
DLKT and RTL1 and maternally expressed genes (MEGs) such
as MEG3 (also known as GTL2), RTL1as (RTL1 antisense) and
MEGS (refs. 1,2), together with the intergenic differentially
methylated region (IG-DMR) and the MEG3-DMR3-5.
Consistent with this, paternal and maternal uniparental disomy
for chromosome 14 (upd(14)pat and upd(14)mat) cause distinct
phenotypes®’. We studied eight individuals (cases 1-8) with a
upd(14)pat-like phenotype and three individuals (cases 9-11)
with a upd(14)mat-like phenotype in the absence of upd(14)
and identified various deletions and epimutations affecting the
imprinted region. The results, together with recent mouse
data*3-19, imply that the IG-DMR has an important cis-acting
regulatory function on the maternally inherited chromosome
and that excessive RTLT expression and decreased DLKT and
RTL1 expression are relevant to upd(14)pat-like and
upd(14)mat-like phenotypes, respectively.

Upd(14)pat results in a unique phenotype characterized by facial
abnormality, a small, bell-shaped thorax, abdominal wall defects and
polyhydramnios®, and upd(14)mat leads to clinically discernible
features such as pre- and postnatal growth failure and early onset of

puberty’. We identified five individuals with a typical upd(14)pat
phenotype (cases 1, 2 and 6-8) and three individuals with a relatively
mild upd(14)pat-like phenotype (cases 3-5); we also identified three
individuals with a upd(14)mat-like phenotype (cases 9-11), among
whom case 11 had severely compromised adult height (Table 1 and
Supplementary Tables 1-3 online). Cases 1-8 were identified because
of the presence of a bell-shaped thorax in the neonatal period
(Supplementary Fig. 1 online), and cases 9-11 were ascertained
through familial studies of cases 1-8. Thus, cases 1 and 2 and cases
9 and 10 were identified in the same family (family A), as were
case 3 and case 11 (family B) (Fig. 1). The remaining cases, 4-8, were
sporadic. All karyotypes were normal except for 46,XY,r(14)(p11g32.2)
in case 5, and upd(14) was excluded in all cases by microsatellite
analysis (Supplementary Table 4 online).

We examined the 14g32.2 imprinted region (Fig. 2) using leukocyte
genomic DNA and lymphocyte metaphase spreads of cases 2-11
(case 1 was deceased) and their family members who were willing
to participate in this study. We also analyzed blood samples of
control subjects and previously reported upd(14)pat and upd(14)
mat cases®!,

We first determined the DMRs to be examined in this study
(Supplementary Fig. 2a online). For the IG-DMRY, in silico analysis
followed by bisulfite sequencing revealed two DMRs, which we
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Table 1 Summary of clinical and molecular findings

Cases 12 & 2 Case 3 Case 4 Case 5 Cases 6-8 Cases 9 & 10 Case 11
Upd(14)pat-like phenotype + (typical) + (mild) + (mild) + (mild) + (typical)
Upd(14)mat-like phenotype + + (severe)®
IG-DMR Deleted Deleted Deleted Deleted Epimutated® Deleted Deleted
MEG3-DMR Deleted Deleted Deleted Deleted Epimutated® Deleted Deleted
Deleted PEGs DLK1 DLK1 RTL1 DLK1 None DLK1 DLK1
RTLI1 RTL1 RTLI
DIO3
Deleted MEGs MEG3 MEG3 MEG3 MEG3 None MEG3 MEG3
RTL1as RTL1as RTL1as RTL1as
MEG8 MEG8 MEG8 MEG8
Parental origind Maternal Maternal Maternal Maternal Maternal Paternal Paternal

Detailed clinical features of cases 1-8 and upd(14)pat cases are described in Supplementary Table 1, and those of cases 9-11 and upd(14)mat cases are described in
Supplementary Table 2. Phenotypic assessment is summarized in Supplementary Table 3. Chest roentgenograms of cases 1-8 are shown in Supplementary Fig. 1.

Case 1, though not studied, presumably has the same deletion as case 2. PAdult height is severely compromised in case 11. “Hypermethylation of the normally hypomethylated allele of maternal
origin (Fig. 3). 9Parental origin of chromosomes with deletions or epimutations. In cases 7, 10 and 11, although parental genotyping data are not informative or available, methylation and FISH
analyses indicate hypermethylation of the normally hypomethylated allele of maternal origin in case 7 and loss of the normally hypermethylated allele of paternal origin in cases 10 and 11 (Fig. 3

and Fig. 4).

designated CG4 and CG6. For the MEG3-DMR, we confirmed the
previously reported DMR? (hereafter designated CG7) through bisul-
fite sequencing and PCR amplification with methylated and unmethy-
lated allele-specific primers.

We then carried out methylation analysis, which showed that the
IG-DMR (CG4 and CG6) and the MEG3-DMR (CG7) were severely
hypermethylated in cases 2-8, t6 an extent comparable to that found
in the upd(14)pat case, whereas they were grossly hypomethylated in
cases 9-11, to a degree similar to that identified in the upd(14)mat
case (Fig. 3 and Supplementary Fig. 2b). Notably, we confirmed
hypermethylation of normally hypomethylated CG4 clones of mater-
nal origin by informative SNP typing data in cases 6 and 8. We carried
out FISH analysis with two long and accurate (LA)-PCR products
covering the IG-DMR and the MEG3-DMR, and we found familial
heterozygous microdeletions in cases from families A and B and a
de novo heterozygous microdeletion in case 4 (Fig. 4). This deletion
was also detected in case 5, the individual with the r(14) chromosome,
but it was absent in cases 6-8.

Subsequently, we carried out genotyping analysis for 200 loci,
showing lack of common alleles for multiple loci between cases 2
and 9 and between cases 9 and 10 in family A, between case 3 and case
11 in family B, between case 4 and the mother, and between case 5 and
the mother (Supplementary Table 4). We carried out sequencing
analyses for LA-PCR products obtained with primers flanking the
deleted loci and identified a 108,768-bp deletion involving DLKI and
MEGS3 in cases 2, 9 and 10 of family A (case 1 presumably had the
same deletion), a 411,354-bp deletion involving WDR25, BEGAIN,
DLKI, MEG3, RTLI, RTLlas and MEGS in cases 3 and 11 of family B,
and a 474,550-bp deletion involving MEG3, RTL1, RTLlas and MEG8
in case 4; in case 5, we carried out FISH analyses with nine BAC
probes covering the imprinted region and identified a ~6.5-Mb
deletion involving the whole imprinted region (Fig. 2 and Supple-
mentary Fig. 3 online). In cases 6-8, we identified neither tiny
deletion nor sequence variation around the DLKI-MEG3 region,
including the DMRs and the putative CTCF binding sites'?, by
extensive analyses (Supplementary Fig. 3), and we found normal
methylation patterns for DMRs at the MEST promoter'?, the IGF2-
HI19 domain'* and the SNRPN promoter'®. Thus, we determined that
cases 6-8 have epimutations affecting the 14q32.2 imprinted region.
Although we attempted to examine the expression dosage of the

imprinted genes on 14q32.2, expression was absent or extremely faint
in leukocytes. The above molecular data from leukocytes are summar-
ized in Table 1.

We further examined placental samples, because virtually all the
imprinted genes studied to date are expressed in the placenta!®!7,
Using expression analyses combined with SNP genotypings, we
confirmed monoallelic paternal expression of DLKI and maternal
expression of MEG3 in normal fresh placentas (Supplementary
Fig. 2c). RT-PCR analyses showed positive PEGs expression and
negative MEGs expression in formalin-treated and paraffin-embedded
placental samples of cases 2 and 8 and the upd(14)pat case, with RTLI
expression being obviously elevated in the three placentas compared to
a similarly treated control placenta (Fig. 5a). Histological examina-
tions showed proliferation of dilated and congested chorionic villi in
the three placentas (Fig. 5b). Furthermore, CG4 was hypermethylated
in the placentas of cases 2 and 8 and the upd(14)pat case and was
delineated as the DMR in the control placenta, whereas CG7 was
rather hypomethylated in the four placentas and did not show the
DMR-compatible methylation patterns (Supplementary Fig. 2c).

a Case 10 b

2
1 2
y Casel E ﬂCaSGZ n

Family A

Family B

Figure 1 The pedigrees of two families. (a) Family A. Case 1 (IlI-1) and
case 2 (I11-3) show typical upd(14)pat phenotype (black), whereas case 9
(11-2) and case 10 (I-3) manifest upd(14)mat-like phenotype with mild to
moderate short stature (gray). The remaining five family members have
normal phenotype. (b) Family B. Case 3 (I1l-1) shows relatively mild
upd(14)pat-like phenotype (black), and case 11 has upd(14)mat-like
phenotype with marked short stature (gray). The remaining five family
members, including the maternal grandparents, have normal phenotype
(stature, + O s.d. in the maternal grandfather and -0.8 s.d. in the
maternal grandmother). The maternal grandparents refused to take

part in molecular studies.
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