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Figure 5. Myofiber membrane fragility in dysferlin/fukutin double mutant mice. (A) Intracellular albumin was determined by
immunofluorescence (red). Myofibers are marked by laminin staining (green). Arrows indicate myofibers with intracellular albumin. Images were
taken from quadriceps muscle sections of 15-week-old mice. Bar, 100 um. (B) Myofibers with intracellular albumin were counted and statistically
compared between (dysferlin®*". fukutin"®*) and (dysferlin®*" fukutin"™ ) mice. Quadriceps and TA muscle sections from 15-week-old mice were
analyzed. Data shown are mean : s.e.m. for each group (n is indicated in the graph; *, p<<0.05). The (dysferlin™": fukutin""®*), (dysferlin™"*: fukutin"®’
), (dysferlin®/9"; fukutin"P’), and (dysferlin®="; fukutin"®~) mice are abbreviated as (sjl/+: Hp/+), (sjl/+: Hp/~), (sji/sjl: Hp/+), and (sjl/sjl: Hp/—),

respectively.
doi:10.1371/journal.pone.0106721.g005

Discussion

Here we have characterized the contribution of dysferlin-
deficiency to the pathology of dystroglycanopathy using double
mutant mice for dysferlin and a-DG glycosylation. To date, several
dystroglycanopathy model mice have been established. Large™*
mice [28] and knock-in mice carrying the FKRP P448L mutation
[32] show no detectable amounts of functionally glycosylated a-DG,
no laminin binding activity, and progressive muscular dystrophy.
On the other hand, other dystroglycanopathy mouse models do not
show a muscular dystrophy phenotype [23]. We previously reported
that a small amount of intact &-DG in fukutin™ ™ mice is sufficient
to maintain muscle cell integrity, thus preventing muscular
dystrophy [23]. These results and others suggest that the presence
of functionally glycosylated o-DG can decrease disease severity
[33,34]. In the present study, however, we showed that although
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(dysfertin®*: fukutin™ ™) mice did not exhibit a muscular
dystrophy phenotype, (dysfertin®/": ﬁdmlin“"/‘) mice developed
a more exacerbated phenotype than did the dysferlin single-mutant
(dysferlin®3"; fukwtin*P’*) mice. It has been widely accepted that o-
DG glycosylation plays an important role in preventing disease-
causing membrane fragility by maintaining a tight association
between the basement membrane and the muscle cell membrane,
and its defects produce muscle membrane that is susceptible to
damage [24,29]. The synergically exacerbated phenotype of the
(dysfertin®™9; fukutin™’ ") mice suggests latent membrane fragility
in fukutin-deficient fukutin™*’~ skeletal muscle. Indeed, the
increased number of intracellular albumin-positive fibers in the
(dysferlin®™S"; fukutin™®’ ™) mice also supports this hypothesis. It is
assumed in the fukutin™"’ ™ myofiber that interaction between the
basement membrane and the cell membrane may be weakened, and
therefore disease-causative membrane damage could occur during
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Figure 6. Hlstopathologlcal analysis of skeletal muscle from dysferlm/Large double mutant mice. (A-H) H&E staining of TA muscle from
Udysferlin”*: Large™), Al [(dysferlin®*"; Large™%*), B, dysferlin"*: Large™Y™9), C and D, [(dysferlin®’™"; Large™¥™), E and F], and [(dysferlin*’
* Large™Y ™9, G and H) mice at 15 weeks. Bar, 50 um. (I) Quantitative analysis of macrophage infiltration, determined by immunofluorescence
analysxs using F4/80 antibody. (J) Quantitative analysis of connective tissue infiltration determined by immunofiuorescence analysis using
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anti-collagen | antibody. (K) Quantitative analysis of the proportion of myofibers containing intracellular albumin. For quantitative analysis (I-K), data
shown are mean - s.e.m. for each group (n is indicated in the graph; *, p<0,05; n.s.,, not significant). (L) Western blot analysis and quantification of
dysferlin expression in the total skeletal muscle lysate from {dysferlin’"; Large™ V™, (dysferlin™"; Large™*™), and (dysferfin®’*: Large™ ™)
mice. A representative two individual 5amptes are shown in the blot. Data shown are the average of three individual mice with standard deviations.

mydhj
s

The (dysferlin®V*; Large (dysferlinV¥.

Large"™ ™), (dysferlin®*: Large™ ™%, (dysferlin™*T; Large™¥ ™%, and (dysferlin™": Large™ ™) mice

are abbreviated as (sjl/+: myd/+), (sjl/sjl: myd/+), (sjl/+: myd/myd), (sjl/sjl: myd/myd), and (+/+ myd/myd), respectively.

doi:10.1371/journal pone.0106721.9006

muscle contractions, However, such presumable membrane fragility
may be protected in part by the dysferlin functions.

It is known that dysferlin plays a role in membrane repair
pathway and several proteins are known to interact with dysferlin,
suggesting that dysferlin forms a protein complex during the
membrane repair process. MGS3 has been shown to interact with
dysferlin and participate in membrane repair, and genetic
disruption of MG53 in mice results in muscular dystrophy [22].

“aveolin-3 is known to interact with dysferlin and MG53 [31,35].

In the present study, however, we did not observe compensatory
upregulation of these proteins in fukutin™" ™ mice, suggesting that
dysferlin  functions other than membrane repair may play
protective roles in the fukutin™ ™ mice. Recently, accumulating
evidence has suggested new dysferlin roles other than membrane
repair, such as T-tubule formation, maintenance, and stabilizing
stress-induced Ca** signaling [36,37]. In addition, it has been
reported that dysferlin deficiency leads to increased expression of
complement factors and that complement-mediated muscle injury
is associated with the pathogenesis of dysferlin-deficient muscular
dystrophy [38]. Therefore, it is possible that such impairments
independently or synergically contribute to the pathology of the
double mutant mice.

Our results showed, rather unexpectedly, that the double-mutant
(dysferlin™ ™, Large™ ™% mice did not exhibit significant
deterioration of muscle Pathology compared with the single-mutant
@ysferlin®*: Large™™% mice. These data suggest that the
protective effects of dysferlin in Large™ ™% mice were slightly or
much reduced compared with those in fukutin™ ™ mice. Since
Large™ ™ mice showed severe and rapid progressive pathology
while fukutin™"~ mice were asymptomatic, our data suggest that
the protective effect of dysferlin may be less when disease pathology
is advanced and/or severe. It has been reported that a double
mutant of dysferlin and dystrophin produced a more exacerbated
phenotype than did either single mutant [39]. In our colony,
Large™ Y™ mice show much more severe and rapid progressive
pathology than do dystrophin-deficient mdx mice, supporting our
hypothesis of a limited protective effect of dysferlin in dystrophic
pathology. Interestingly, the (dysferlin®; Large™%™% mice,
however, showed a significantly worse phenotype that did the
(dysferlin®™*: Large™ ™) mice. In addition, there is a tendency
toward a worse phenotype in the order of dysferlin amount, i.e.
(dysferlin™™: Large™Y™),  (dysferlin®’™: Large™® ™), and
(dysferlin™ Y, Large™® ™). These data support the possibility
that the protective effect of dysferlin is present even in the severe
dystrophic Large™% ™ mice. We conclude that dysferlin has the
potential to protect muscular dystrophy progression; however, its
effect may depend on disease severity and the amount/activity of
dysferlin proteins.

Recently, we showed that the retrotransposal insertion in the 3'-
UTR region of fukulin causes abnormal mRNA splicing, which is
induced by a strong splice acceptor site in SVA and a rare
alternative donor site in the last exon, to produce an aberrantly
spliced fukutin protein [7]. The introduction of antisense
oligonucleotides that target the splice acceptor, the predicted
exonic splicing enhancer, and the intronic splicing enhancer
prevented the pathogenic exon trapping by SVA in the cells of
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FCMD patients as well as model mice {fukutin™™ and

fukwtin™ 7y (7). This therapeutic strategy can potentially be
applied to almost all FGCMD patients in Japan, and can therefore
be the first radical clinical treatment for dystroglycanopathies.
However, there was no animal model to test the effectiveness of
the antisense oligonucleotide therapy. Since fukutin™ " mice do
not exhibit any signs of muscular dystrophy [23], they are not a
great model for examining therapeutic effects of this strategy.
Skeletal muscle-selective fukutin ¢cKO mice, MCK-fukutin-cKO
and Myf5-fukutin-cKO, showed dystrophic pathology [24], but
they do not possess the retrotransposal insertion, and thus they are
not applicable for testing the antisense oligonucleotide therapy.
Our present study demonstrates more severe dystrophic pheno-
type of dysferlin®™ ¥ fukutin™’ ™) mice compared with (dysfer-
lin V3, fukutin"y mice. Since the (dysferlin®. fukutin" ™)
mice possess the retrotransposal insertion and show dystrophic
phenotype, they will be used as the first model for evaluation of the
antisense oligonucleotide therapy for FCMD. There is a possibility
that the absence of dysferlin could add hurdles on how to interpret
the results of the antisense oligonucleotide treatments; however,
our quantitative assessments established in this study could
overcome this issue. For example, macrophage infiltration
(Fig. 4B), connective tssue infiltration (Fig. 4D), and membrane
fragility in quadriceps muscles (Fig. 5B) were significantly
increased only in the (dysferlin® . fulutin™’ ") mice. These
parameters in the (dysferlin?’®, fulautin™""*) mice were not
changed compared with those in the (dysferlin®'*: fuhutin''""™)
and the (dysferlin™: fulutin™ ™) mice, and therefore can be
used for quantitative evaluation for therapeutic effects of the
antisense oligonucleotide treatments. We hope that generation of
this novel FCMD model and establishment of the quantitative
evaluation for discase severity will accelerate the future transla-
tional researches to overcome FCMD.

Supporting Information

Figure S1 Expression of dysferlin and dysferlin-inter-
acting proteins in fukutinﬂp’ ~ mice. (A) Western blot
analysis of dysferlin, caveolin-3, and MG53 in skeletal muscle
extracts from fukutin-deficient fukutin™~ (Hp/~), and control
Sfukutin®™'*’* (Hp/+) mice. A representative two individual samples
for each mouse line are shown in the blots. (B) Quantification of
protein expression (panel A) was shown in graphs. Data shown are
the average with standard deviations (n =4 for dysferlin, n = 3 for
caveolin-3 and MGS53). (C) Immunofluorescence analysis of
dysferlin in fukutin™*~ (Hp/—) and fukutin™* (Hp/+) mice.
Bar, 50 pm.
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foot malformation with or without long bone
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Abstract

Background: Limb malformations are rare disorders with high genetic heterogeneity. Although multiple genes/loci
have been identified in limb malformations, underlying genetic factors still remain to be determined in most
patients.

Methods: This study consisted of 51 Japanese families with split-hand/foot malformation (SHFM), SHFM with long
bone deficiency (SHFLD) usually affecting the tibia, or Gollop-Wolfgang complex (GWC) characterized by SHFM and
femoral bifurcation. Genetic studies included genomewide array comparative genomic hybridization and exome
sequencing, together with standard molecular analyses.

Results: We identified duplications/triplications of a 210,050 bp segment containing BHLHA9 in 29 SHFM patients,
11 SHFLD patients, two GWC patients, and 22 clinically normal relatives from 27 of the 51 families examined, as well
as in 2 of 1,000 Japanese controls. Families with SHFLD- and/or GWC-positive patients were more frequent in
triplications than in duplications. The fusion point was identical in all the duplications/triplications and was
associated with a 4 bp microhomology. There was no sequence homology around the two breakpoints,
whereas rearrangement-associated motifs were abundant around one breakpoint. The 1$3951819-D1757174
haplotype patterns were variable on the duplicated/triplicated segments. No discernible genetic alteration specific to
patients was detected within or around BHLHA9, in the known causative SHFM genes, or in the exome.
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Conclusions: These results indicate that BHLHAY overdosage constitutes the most frequent susceptibility factor, with a
dosage effect, for a range of limb malformations at least in Japan. Notably, this is the first study revealing the
underlying genetic factor for the development of GWC, and demonstrating the presence of triplications involving
BHLHAO. It is inferred that a Japanese founder duplication was generated through a replication-based mechanism and
underwent subseguent triplication and haplotype modification through recombination-based mechanisms, and that
the duplications/triplications with various haplotypes were widely spread in Japan primarily via clinically normal carriers
and identified via manifesting patients. Furthermore, genotype-phenotype analyses of patients reported in this study
and the previous studies imply that clinical variability is ascribed to multiple factors including the size of duplications/

triplications as a critical factor.

Keywords: BHLHAS, Split-hand/foot malformation, Long bone deficiency, Gollop-Wolfgang complex, Expressivity,
Penetrance, Susceptibility, Japanese founder copy number gain

Introduction

Split-hand/foot malformation (SHFM), also known as
ectrodactyly, is a rare limb malformation involving the
central rays of the autopod [1,2]. It presents with median
clefts of the hands and feet, aplasia/hypoplasia of the
phalanges, metacarpals, and metatarsals, and syndactyly.
SHFM results from failure to maintain the central por-
tion of the apical ectodermal ridge (AER) in the develop-
ing autopod [1,2]. SHFM is divided into two forms: a
non-syndromic form with limb-confined manifestations
and a syndromic form with extra-limb manifestations [2].
Furthermore, non-syndromic SHFM can occur as an
isolated abnormality confined to digits (hereafter, SHFM
refers to this type) or in association with other limb abnor-
malities as observed in SHFM with long bone deficiency
(SHFLD) usually affecting the tibia and in Gollop-Wolfgang
complex (GWC) characterized by femoral bifurcation [1,2].
Both syndromic and non-syndromic forms are associated
with wide expressivity and penetrance even among
members of a single family and among limbs of a sin-
gle patient [2].

SHFM and SHFLD are genetically heterogeneous condi-
tions reviewed in ref. [2]. To date, SHFM has been identified
in patients with heterozygous deletions or translocations in-
volving the DLX5-DLX6 locus at 7q21.2-21.3 (SHFM1) (3]
(DLX5 mutations have been detected recently), heterozy-
gous duplications at 10q24 (SHFM3), heterozygous muta-
tions of TP63 at 3q27 (SHFM4), heterozygous deletions
affecting HOXD cluster at 2q31 (SHFMS5), and biallelic
mutations of WNTIOB at 12q31 (SHFM®6); in addition,
SHFM2 has been assigned to Xq26 by linkage analyses in
a large Pakistani kindred [2]. Similarly, a genomewide link-
age analysis in a large consanguineous family has identi-
fied two SHFLD susceptibility loci, one at 1q42.2-q43
(SHFLD1) and the other at 6q14.1 (SHFLD2); furthermore,
after assignment of another SHFLD locus to 17p13.1~13.3
[4], duplications at 17p13.3 (SHFLD3) have been found in
patients with SHFLD reviewed in ref. [2]. However, the
GWC locus (loci) remains unknown at present.

The duplications at 17p13.3 identified to date are
highly variable in size, and harbor BHLHASY as the sole
gene within the smallest region of overlap [5-9]. Bhlha9/
bhlha9 is expressed in the limb bud mesenchyme under-
lying the AER in mouse and zebrafish embryos, and
bhlha9 knockdown has resulted in shortening of the
pectoral fins in zebrafish [6]. Furthermore, BHLHAY-
containing duplications have been identified not only in
patients with SHFLD but also in those with SHFM and
clinically normal family members [4-10]. These findings
argue for a critical role of BHLHA9 duplication in the
development of SHFM and SHFLD, with variable ex-
pressivity and incomplete penetrance.

In this study, we report on BHLHA9-containing
duplications/triplications with an identical fusion point
and various haplotype patterns that were associated with
a range of limb malformations including GWC, and
discuss on characteristic clinical findings, genomic basis
of Japanese founder copy number gains, and underlying
factors for phenotypic variability.

Materials and methods

Patients/subjects

We studied 68 patients with SHFM (n = 55), SHFLD (n=
11), or GWC (n=2), as well as 60 clinically normal rela-
tives, from 51 Japanese families; the pedigrees of 27 of the
51 families and representative clinical findings are shown
in Figure 1. All the probands 1-51 had a normal karyotype.
Southern blot analysis for SHFM3 locus had been per-
formed in 28 probands with SHFM, indicating 10q24 du-
plications in two of them [11]. Clinical features including
photographs and roentgenograms of a proband with GWC
and his brother with SHFLD (family 23 in Figure 1A)
were as described previously [12]. The residencies of
families 1-51 were widely distributed throughout Japan.

Ethical approval and samples
This study was approved by the Institutional Review
Board Committees of Hamamatsu University School of
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Figure 1 Clinical summary. A. Pedigrees of 27 Japanese families with duplications {families 122} and triplications (families 23-27) of a ~200 kb
region involving BHLHAY. The duplications/triplications are associated with GWC, SHFLD, SHFM, or normal phenotype (carriers). N.E: Not examined
molecularly. B. Representative clinical findings. Each patient is indicated by a family-generation-individual style and corresponds to the patient/
subject shown in Figure 1A and Additional file 5. The top panel: GWC with right bifid femur; the second panel: SHFLD with bilateral tibial deficiencies,

Patient 27-1-2
{41 years)

{10.5 years)

Medicine, RIKEN, and National Center for Child Health
and Development, and was performed using peripheral
leukocyte samples after obtaining written informed con-
sent for the molecular analysis and the publication of
genetic and clinical data after removing information for
personal identification (e.g., name, birthday, and facial
photograph) from the adult subjects (* 20 years) or from
the parents of the child subjects (below 20 years). Fur-
thermore, informed assent was also obtained from child
subjects between 6-20 years.

Samples and primers
The primers utilized in this study are summarized in
Additional file 1.

Molecular studies

Sanger sequencing, fluorescence in situ hybridization
(FISH), microsatellite genotyping, Southern blotting, and bi-
sulfite sequencing-based methylation analysis were per-
formed by the standard methods, as reported previously
[13]. Quantitative real-time PCR (qPCR) analysis was carried
out by the SYBR Green methods on StepOnePlus system,
using RNaseP as an internal control (Life Technologies).
Genomewide oligonucleotide-based array comparative
genomic hybridization (CGH) was performed with a cata-
log human array (4 x 180 K format, ID G4449A) according
to the manufacturer’s instructions (Agilent Technologies),

and obtained copy number variants/polymorphisms were
screened with Agilent Genomic Workbench software using
the Database of Genomic Variants (http://dgv.tcag.ca/dgv/
app/home). Sequencing of a long region encompassing
BHLHA9 was performed with the Nextera XT kit on
MiSeq (lllumina), using SAMtools v0.1.17 software (http://
samtools.sourceforge.net/). Exome sequencing was per-
formed as described previously [14].

Assessment of genomic environments around the fusion
points

Repeat elements around the fusion point were searched
for using Repeatmasker (http://www.repeatmasker.org).
Rearrangement-inducing DNA features were investigated
for 300 bp regions at both the proximal and the distal
sides of each breakpoint, using GEECEE (http://emboss.
bioinformatics.nl/cgi-bin/emboss/geecee) for calculation
of the average GC content, PALINDROME (http://mobyle.
pasteur.fr/cgi-bin/portal. py#forms:palindrome) and Non-B
DB (http://nonb.abce.nciferf.gov) for the examination of
the palindromes and non-B (non-canonical) structures,
and Fuzznuc (http://emboss.bioinformatics.nl/cgi-bin/
emboss/fuzznuc) for the assessment of rearrangement-
associated sequence motifs and tri/tetranucleotides [15-20].
For controls, we examined 48 regions of 600 bp long
selected at an interval of 1.5 Mb from the entire
chromosome 17.
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Statistical analysis
The statistical significance of the frequency was analyzed
by the two-sided Fisher’s exact probability test.

Results

Sequence analysis of the known causative/candidate
genes

We performed direct sequencing for the previously known
causative genes (DLXS, TP63, and WNT10B) reviewed in
ref. [2] in the probands 1-51. Although no pathologic mu-
tation was identified in DLXS and TP63, the previously
reported homozygous missense mutation of WNTIOB
(.944C > T, p.R332W) [21] was detected in the proband
48 with SHFM who was born to healthy consanguineous
parents heterozygous for this mutation. In addition,
while no variation was detected in DLXS5 and WNTI0B,
rs34201045 (4 bp insertion polymorphism) in 7P63 [21]
was detected with an allele frequency of 61%.

We also examined BHLHASY, because gain-of-function
mutations of BHLHA9 as well as BHLHA9-harboring
duplications may lead to limb malformations. No se-
quence variation was identified in the 51 probands.

Array CGH analysis

Array CGH analysis was performed for the probands
1-51, showing increased copy numbers at 17p13.3
encompassing BHLHA9 (SHFLD3) in the probands 1-27
from families 1-27 (Figure 1A). Furthermore, heterozy-
gous duplications at 10q24 (SHFM3) were detected in the
probands 49-51, i.e, a hitherto unreported patient with
paternally inherited SHFM (his father also had the dupli-
cation) and the two patients who had been indicated to
have the duplications by Southern blot analysis [11]. No
copy number alteration was observed at other SHFM/
SHFLD loci in the probands 1-27 and 49-51. In the
remaining probands 28-48, there was no copy num-
ber variation that was not registered in the Database of
Genomic Variants.

Identical fusion points in BHLHA9-containing duplications/
triplications

The array CGH indicated that the increased copy num-
ber regions at 17p13.3 were quite similar in the physical
size in the probands 1-27 and present in three copies in
the probands 1-22 and in four copies in the probands
23-27 (Figure 2A). Thus, FISH analysis was performed
using 8,259 bp PCR products amplified from this region,
showing two signals with a different intensity that was
more obvious in the probands 23-27 (Figure 2A).

We next determined the fusion points of the duplica-
tions/triplications (Figure 2B). PCR products of 2,195 bp
long were obtained with P1/P2 primers in the probands
1-27, and the fusion point was determined by direct se-
quencing for 418 bp PCR products obtained with P3/P4
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primers. The fusion point was identical in all the probands
1-27; it resided on intron 1 of ABR and intron 1 of YWHAE,
and was associated with a 4 bp microhomology.

Then, we performed qPCR analysis for a 214 bp region
harboring the fusion point, using P5/P6 primers (Figure 2C
and Additional file 2). The fusion point was present in
a single copy in the probands 1-22 and in two copies
in the probands 23-27. The results showed that the
identical genomic segment harboring BHLHA9 was tan-
demly duplicated in the probands 1-22 and triplicated in
the probands 23-27. According to GRCh37/hgl9 (http://
genome.ucsc.edu/), the genomic segment was 210,050 bp
long.

We also performed array CGH and qPCR for the fu-
sion point in 15 patients other than the probands and 47
clinically normal relatives from the 27 families (Figures 1
and 2C). The duplications/triplications were identified in
all the 15 patients. Thus, in a total of 42 patients, dupli-
cations/triplications were found in 29 SHFM patients, 11
SHFLD patients, and two GWC patients. Furthermore,
the duplications/triplications were also present in 22 of
the 47 clinically normal relatives. In particular, they were
invariably identified in either of the clinically normal
parents when both of them were examined; they were
also present in other clinically normal relatives in fam-
ilies 7, 12, 24, and 25.

Since the above data indicated the presence of duplications/
triplications in clinically normal subjects, we performed
qPCR for the fusion point in 1,000 Japanese controls. The
fusion point was detected in a single copy in two subjects
(Subjects 1 and 2 in Figure 2C). We also performed array
CGH in 200 of the 1,000 controls including the two sub-
jects, confirming the duplications in the two subjects and
lack of other copy number variations, including deletions
involving BHLHAY, which were not registered in the
Database of Genomic Variants in the 200 control subjects.
The frequency of duplications/triplications was signifi-
cantly higher in the probands than in the control subjects
(27/51 vs. 2/1,000, P = 3.5 x 107%).

Various haplotype patterns on the duplicated/triplicated
segments

We carried out genotyping for rs3951819 (A/G SNP on
BHLHA9) and D1751174 (CA repeat microsatellite locus)
on the genomic segment subjected to duplications/
triplications (Figure 2A), and determined rs3951819-
D1751174 haplotype patterns. Representative results
are shown in Figure 2D, and all the data are available
on request. Various haplotype patterns were identified
on the single, the duplicated, and the triplicated seg-
ments, and the [A-14] haplotype was most prevalent on
the duplicated/triplicated segments (Table 1). While the
distribution of CA repeat lengths on the single segments
was discontinuous, similar discontinuous distribution was
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(See figure on previous page.)

and FISH analyses in proband 1

Figure 2 Identification and characterization of the duplications/triplications involving BHLHA9 at chromosome 17p13.3. A. Array CGH
and proband 23 with GWC. In array CGH analysis, the black and the red dots denote the normal and the increased
copy numbers, respectively. Since the log2 signal ratios for a ~200 kb region encompassing 8HLHAS are around -+-0.5 in the proband 1 and around
+1.0 in the proband 23, this indicates the presence of three and four copies of this region in the two probands, respectively. In FISH analysis, two red
signals with an apparently different density are detected by the 8,283 bp PCR probe (the stronger signals are indicated with asterisks). The green
signals derive from an internal control probe (CEP17). The arrows on the genes show transcriptional directions. Rs395181
B. Determination of the fusion point. The fusion has occurred between intron 1 of ABR and intron 1 of YWHAE, and is associated with a 4 bp (GACA)
microhomology. P1-P4 show the position of primers. C. Quantitative real-time PCR analysis. The upper part denotes the fusion point. P5 & P6 show
the position of primers. The lower part shows the copy number of the fusion point in patients/subjects with duplications/triplications (indicated by a
family-generation-individual style corresponding to that in Figure 1 and Additional file 5). Subject-1 and subject-2 denote the two control subjects with
the duplication, and control-1 and control-2 represent normal subjects without the duplication/triplication. D. The rs3951819
(CA repeat number) haplotype patterns in family 24. Assuming no recombination between 153951819 and D1757174, the haplotype patterns of the
family members are determined as shown here. The haplotype patterns of the remaining families have been interpreted similarly.

9 (A/G) resides within BHLHAS.

(A/G SNP)-D1751174

also observed in the Japanese general population (see
Additional file 3).

Genomic environments around the breakpoints

The breakpoint on YWHAE intron 1 resided on a simple
Alu repeat sequence, and that on ABR intron 1 was
present on a non-repetitive sequence. There was no low
copy repeat around the breakpoints. Comparison of the
frequencies of known rearrangement-inducing DNA fea-
tures between 600 bp sequences around the breakpoints
and those of 48 regions selected at an interval of 1.5 Mb
from chromosome 17 revealed that palindromes, several
types of non-B DNA structures, and a rearrangement-
associated sequence motif were abundant around the
breakpoint on YWHAE intron 1 (see Additional file 4).

Clinical findings of families 1-27

Clinical assessment revealed several notable findings.
First, duplications/triplications were associated with
SHFM, SHFLD, GWC, or normal phenotype, with inter-
and intra-familial clinical variability (Figure 1A). Second,
in the 42 patients, split hand (SH) was more prevalent
than split foot (SF) (41/42 vs. 17/42, P=6.2x 107%), and
long bone defect {LBD) was confined to lower extremities
(0/42 vs. 13/42, P=4.1 x107°) (Table 2 and Additional
file 5). Third, there was no significant sex difference
in the ratio between patients with limb malformations and
patients/carriers with duplications/triplications (26/38
in males vs. 16/26 in females, P=0.60) (Table 2 and
Additional file 5). Fourth, the ratio of LBD positive fam-
ilies was significantly higher in triplications than in dupli-
cations (4/5 vs. 16/22, P=0.047) (Figure 1A and Table 2).
Fifth, while the duplications/triplications were transmitted
from patients to patients, from carriers to patients, and
from a carrier to a carrier (from I-1 to II-2 in family 12),
transmission from a patient to a carrier was not identified
(Figure 1A); it should be pointed out, however, that mo-
lecular analysis in a clinically normal child born to an af-
fected parent was possible only in a single adult subject
(II-1 in family 27), and that molecular analysis in clinically

Table 1 The rs3951819 (A/G SNP) - D1751174 (CA repeat
number) haplotype

Patterns of the 210,050 bp segment subjected to copy number gains

Haplotype pattern Family

<Single segment>

[A-14] 1,5,9,15/17,19,23,26

[A-16] 12

[A-18] 3,14,15, 24, 25, 26

[A-19] 2,6,13,19,20, 24, 25,
27

[A-21] 523

[G12] 17

[G-14] 2,3,6,12,13,19,26

[G-18] 3,5,17,18, 24,25

[G-19] 9,12,18, 20, 25

[G-21] 1,919, 24,27

[A-14] or [G-14] 16

[A-18] or [G-18] 4

[A-19] or [G-19] 4

[A-21] or [G-21] 16

<Duplicated segments>
[A-14] +[A-14)
[A-14] +

5,12,13,14,15, 20
[A-18] 1

[A-14] +[G-18] or [G-14] + [A-18] 2,3,4,69 16,17
[A-14] +[G-18] or [A-14] + [G-19] 18

[A-14] + [G-14] or [G-14] + [G-14) 19

<Triplicated segments>

[A-14] + [A-14] + [A-14] 23,24

[A-14] + [A-14] + [G-14] 25

[A-14] + [A-19] + [A-19] 26

[A-14] + [G-18] + [G-18] or [G-14] + [A-18] + [G- 27

18]

The haplotype pattems written in the left column have been detected in at least
one patient/subject in the families described in the right column.

Genotyping could not be performed in several patients/subjects who had been
repeatedly examined previously, because of the extremely small amount of DNA
samples that were virtually used up in the sequencing and array CGH analyses.
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Table 2 Summary of clinical findings in patients/carriers with duplications/triplications involving BHLHA9

SHFM (+) patients LBD (+) patients

Patient ratio* LBD (+) families

SH SF P-value U-LBD  L-LBD  P-value Male Female P-value Trip Dup P-value
This study 41/42 17/42  62x107° /42 13/42 411077 26/38  16/26 060 45 16/22 0047
Previous studies  63/84 23/84  86x107 11/91 491 57x1077 68114 31/79 57x107
Sum 104/126 40126 1.1x107'° 11/133 0 55/133 30x107'7 947152 477105 76%1077

SHFM: split-hand/foot malformation; SH: split hand; SF: split foot; LBD: long bone deficiency; U: upper; L: lower; Trip: triplication; and Dup: duplication,
In the previous studies, patients without detailed phenotypic description and those of unknown sex have been excluded (3-9).
*The ratio between patients with limb malformations and patients/carriers with duplications/triplications, i.e. the number of patients over the number of patients

plus carriers,

normal children <20 years old was possible only in two
subjects (11-2 in family 12 and II-1 in family 15). Lastly,
limb malformation was inherited in an apparently auto-
somal dominant manner (from patients to patients), or
took place as an apparently de novo event or as an appar-
ently autosomal recessive trait (from clinically normal par-
ents to a single or two affected children) (Figure 1A).

Attempts to identify a possible modifier(s)
The variable expressivity and incomplete penetrance in
families 1-27 suggest the presence of a possible modifier
(s) for the development of limb malformations. Thus, we
performed further molecular studies in patients/subjects
in whom DNA samples were still available, and com-
pared the molecular data between patients with SHFM
and those with SHFLD for the assessment of variable ex-
pressivity and between SHFM, SHFLD, or total patients
and carriers for the evaluation of incomplete penetrance.

We first examined the possibility that the modifier(s)
resides within or around BHLHA9 (see Additional file 6).
There was no BHLHA9 mutation in all the 21 examined
probands with SHFM, SHFLD, or GWC, as described in
the section of “Sequence analysis of the known causative/
candidate genes”. The rs3951819 A/G SNP pattern on the
duplicated/triplicated segments was apparently identical
between patients and carriers (e.g. Figure 2D), and the fre-
quency of A/G allele on the normal chromosome 17 was
similar between SHFM and SHFLD patients and be-
tween SHFM, SHFLD, or total patients and carriers
(see Additional file 7). The results of other known SNPs
on BHLHA9 (rs185242872, rs18936498, and rs140504068)
were not informative, because of absence or extreme rarity
of minor alleles. Furthermore, in SHFM families 7,
12, and 18, sequencing of a 7,406 bp region encompassing
BHLHAY and Southern blot analysis using five probes and
Mfel-, Sspl-, and Sacl-digested genomic DNA revealed no
variation specific to the patients, and methylation analysis
for a CpG rich region at the upstream of BHLHA9 delin-
eated massive hypomethylation in all the patients/carriers
examined.

Next, we examined the possibility that a variant(s) of
known causative genes constitutes the modifier(s). Since
rs34201045 in TP63 was identified in the mutation

analysis, we compared rs34201045 genotyping data be-
tween the 27 probands and the 15 carriers. The allele
and genotype frequencies were similar between SHFM
and SHFLD patients and between SHFM, SHFLD, or
total patients and carriers (see Additional file 8).

We finally performed exome sequencing in SHFM fam-
ilies 13 and 17-19. However, there was no variation spe-
cific to the patients. In addition, re-examination of the
genomewide array CGH data showed no discernible copy
number variation specific to the patients,

Discussion

BHLHA9 overdosage and clinical characteristics

We identified duplications/triplications of a~200 kb
genomic segment involving BHLHA9 at 17p13.3 in 27 of
51 families with SHFM, SHFLD, or GWC. To our know-
ledge, this is the first study revealing the underlying genetic
factor for the development of GWC, and demonstrating
the presence of triplications involving BHLHA9 that were
suggested but not confirmed in the previous studies [5,9].
Furthermore, this study indicates that BHLHA9-containing
duplications/triplications are the most frequent underlying
factor for the development of limb malformations at least
in Japan. Notably, SHFLD and GWC with LBD were sig-
nificantly more frequent in patients with triplications than
in those with duplications, and the duplications/triplica-
tions were identified in clinically normal familial members
and in the general population. These findings imply that
increased BHLHA9 copy number constitutes a strong
susceptibility, rather than a causative, factor with a dosage
effect for the development of a range of limb malforma-
tions. Since Bhlha9 is expressed in the developing ecto-
derm adjacent to the AER rather than the AER itself in
mouse embryos [6], BHLHA9 appears to play a critical
role in the limb development by interacting with the AER.
While the duplications/triplications identified in this study
included TUSCS and generated an ABR-YWHAE chimeric
gene (Figure 2C), TUSCS5 duplication and the chimeric
gene formation are not common findings in the previously
reported patients with duplications at 17p13.3 and SHFM
and/or SHFLD [5-9]. In addition, none of TuscS, Abr,
and Ywhae is specifically expressed in the developing
mouse limb buds [22] (A Transcriptome Atlas Database
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for Mouse Embryo of Eurexpress Project, http://www.
eurexpress.org/ee/project/).

Several clinical findings are noteworthy in patients/
subjects with duplications/triplications. First, SH was
more frequent than SF in this study as well as in the previ-
ous studies, and LBD was confined to lower extremities in
this study and was more frequent in lower extremities
than in upper extremities in the previous studies (Table 2)
[4-10]. This implies that BHLHA9 overdosage exerts dif-
ferential effects on the different parts of limbs. Second,
while limb malformations were similarly identified be-
tween males and females in this study, they were more fre-
quently observed in males than in females in the previous
studies (Table 2) [4-10]. In this regard, it has been re-
ported that testosterone influences the digital growth pat-
tern as indicated by the lower second to fourth digit
length ratio in males than in females [23-25], and that
Caucasian males have higher serum testosterone values and
lower second to fourth digit length ratios than Oriental
males [26,27]. Such testosterone effects on the digital
growth pattern with ethnic difference may explain why
male dominant manifestation was observed in the previ-
ous studies primarily from Caucasian countries and was
not found in this study. Lastly, LBD was more prevalent in
patients with triplications than in those with duplications.
This suggests that LBD primarily occurs when the effects
of BHLHASY overdosage are considerably elevated.

Genomic basis of the Japanese founder copy number
gains

The duplications/triplications were associated with the
same fusion point and variable haplotype patterns. Since
there was no sequence homology or low-copy repeats
around the breakpoints, it is unlikely that such duplica-
tions/triplications were recurrently produced in different
individuals by non-allelic homologous recombination
(NAHR) [17,20]. Instead, it is assumed that a Japanese
founder duplication took place in a single ancestor, and
was spread with subsequent triplication and modifica-
tion of the haplotype patterns.

The most likely genomic basis of the Japanese duplications/
triplications is illustrated in Additional file 9. Notably, a
4 bp (GACA) microhomology was identified at the dupli-
cation fusion point (Figure 2B). A microhomology refers
to two to five nucleotides common to the sequences
of the two breakpoints, and is found as an overlapping se-
quence at the join point [16,19,20]. This suggests that the
Japanese founder duplication was generated by replication-
based mechanisms such as fork stalling and template
switching (FoSTeS) and microhomology-mediated break-
induced replication (MMBIR), because the presence of
such a microhomology is characteristic of FoSTeS/MMBIR
[17-20]. Indeed, such a simple tandem duplication with a
microhomology can be produced by one time FoSTeS/
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MMBIR [17-20], although it could also be generated by
non-homologous end-joining (NHE]) [17]. Since the
[A-14] haplotype was most prevalent on the duplicated/
triplicated segments, it is inferred that a genomic re-
arrangement occurred in an ancestor with the [A-14]
haplotype, yielding the founder duplication with the
[A-14] + [A-14] haplotype. Furthermore, the presence of
multiple stimulants for genomic rearrangements around
the breakpoint on YWHAE intron 1 would have facilitated
the generation of the founder duplication. In particular,
non-B structures are known to stimulate the occurrence
of both replication-based FoSTeS/MMBIR and double-
strand breaks and resultant NHEJ [17,28,29], although the
relative importance of each non-B DNA structure is
largely unknown.

Subsequent triplication and haplotype modification can
develop from the Japanese founder duplication through
unequal interchromatid and interchromosomal recom-
binations [17,20]. Indeed, a tandem triplication with the
[A-14] + [A-14] + [A-14] haplotype can be generated by
unequal exchange between sister chromatids with the
[A-14] + [A-14] haplotype, and various haplotype pat-
terns are yielded by unequal interchromosomal exchanges
involving the duplicated or triplicated segments. Further-
more, the haplotype variation would be facilitated by un-
equal exchanges between sister chromatids harboring
duplications/triplications with various haplotype patterns
and by the further unequal interchromosomal exchanges.

Underlying factors for the phenotypic variability

The duplications/triplications were accompanied by limb
malformations with variable expressivity and incomplete
penetrance. Although this may suggest the presence of a
possible modifier(s) for the development of limb malfor-
mations, such a modifier(s) was not detected. In particu-
lar, while patient-to-carrier transmission of duplications/
triplications was not identified in this study, even patient-
to-carrier-to-patient transmission has been reported in
three pedigrees [5,6,10]. Such transmission pattern with
incomplete penetrance characterized by skipping of a gen-
eration is apparently inexplicable by assuming a modifier
(s) interacting with BHLHA9 or independent of BHLHA9
on the duplication/triplication positive chromosome 17,
on the normal chromosome 17, or on other chromosomes
(Figure 3, Models A, B, and C, see also the legends in
Figure 3).

In this regard, it is noteworthy that the development of
limb malformations is obviously dependent on the size of
genomic segment subjected to copy number gains. Actu-
ally, limb malformation has occurred in only one of 21 large
duplications encompassing BHLHA9 (average 1.55 Mb,
mean 1.12 Mb) and in 29 of 80 small duplications encom-
passing BHLHA9 (average 244 kb, mean 263 kb) (P =59 x
107%) [8]. Consistent with this, the patients with large and
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Figure 3 Models for a modifier(s) and effects of the duplication size. In models A-C, the yellow bars show chromosome 17, and the light
green bars indicate other chromosornes. The two red dots represent the duplication at 17p13.3, and the blue dots indicate a putative modifier(s).
Black painted diamonds represent limb malformation positive patients, dot-associated and gray painted diamonds indicate clinically normal carriers
with the duplications and the modifier(s) respectively, and white painted diamonds denote clinically normal subjects without both the duplications
and the modifier(s). A. This model assumes that co-existence of the duplication and a cis-acting modifier(s) causes limb malformation. If co-existence
of the duplication and the cis-acting modifier(s) is associated with incomplete penetrance, this can explain all the transmission patterns observed to
date, including the patient-to-carrier transmission and the presence of = 2 affected children. B. This model postulates that the presence of a cis-acting
modifier(s) on the normal chromosome 17 leads to limb malformation by enhancing the expression of the single BHLHAY, together with duplicated
BHLHAS on the homologous chromosome. C. This model postulates that co-existence of the duplication at 17p13.3 and a modifier(s) on other
chromosome causes limb malformation. In models D-E, the red bars represent BHLHAY, the blue circles indicate a physiological cis-regulatory
element for BHLHAS, and the green circles indicate a non-physiological modifier(s) for BHLHAY. D. The physiological cis-regulatory element may be
duplicated or non-duplicated, depending on its position relative to the size of the duplications. BHLHAS expression can be higher in small duplications
than large duplications. E. The non-physiological modifier(s) can be transferred to various positions of the duplication positive chromosome 17,

irrespective of the position of the modifier(s).

depending on the recombination places (see Model A). BHLHA9 expression can be higher in small duplications than large duplications

small duplications were ascertained primarily due to devel-
opmental retardation and limb malformation, respectively
[8]. 1t is likely that a physiological cis-regulatory element
for BHLHA9 (e.g., an enhancer) can frequently but not in-
variably work on both of the duplicated BHLHA9 when
the duplication size is small but is usually incapable of
working on duplicated BHLHA9 when the duplication size
is large, probably because of the difference in the chroma-
tin structure (see Model D in Figure 3). Similar findings
have also been reported in other genes. For example, small

(~150 kb) and relatively small (600800 kb) duplications
involving a putative testis-specific enhancer(s) for SOX9
have caused 46,XX testicular and ovotesticular disorders
of sex development respectively, whereas large duplica-
tions (~2 Mb) involving the enhancer(s) have permitted
normal ovarian development in 46,XX individuals [30].
Thus, a plausible explanation may be that a range of
limb malformations emerge when the effects of BHLHA9
overdosage exceed the threshold for the development of
SHFM, SHFLD, or GWC, depending on the conditions of
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other genetic and environmental factors including the size
of duplications/triplications as an important but not
definitive factor. One may argue that this notion is
inconsistent with the apparent anticipation phenomenon
that is suggested by the rare patient-to-carrier transmis-
sion and the frequent carrier-to-patient transmission of
the duplications/triplications, because no specific factor(s)
exaggerating the development of limb malformations is
postulated in the next generation. However, the skewed
transmission pattern would primarily be ascribed to ascer-
tainment bias rather than anticipation [31]. Indeed, while
clinically normal parents of disease positive children
would frequently be examined for the underlying genetic
factor(s) of the children, clinically normal children born to
disease positive parents would not usually be studied for
such factor(s), as exemplified in this study. Similarly, the
frequent patient-to-patient transmission of the duplica-
tions/triplications would also be ascribed to ascertainment
bias, because molecular studies would preferentially be
performed in such families. Nevertheless, the apparently
autosomal dominant inheritance pattern of limb malfor-
mations in several families may still suggest the relevance
of a non-physiological cis-acting modifier(s) (see Models
A and E in Figure 3). It is possible that such a modifier(s),
once transferred onto the duplication/triplication positive
chromosome 17, is usually co-transmitted with the dupli-
cations/triplications, leading to a specific condition in
which the effects of BHLHA9 overdosage frequently but
not invariably exceed the threshold for the development
of limb malformations in offsprings with the duplications/
triplications.

Remarks

Several matters should be pointed out in the present
study. First, in contrast to diverse duplication sizes in
non-Japanese populations [5-9], the size of the genomic
segment subjected to duplications/triplications was iden-
tical in this study. Since families 1-27 were derived from
various places of Japan, there is no selection bias in
terms of a geographic distribution. Rather, since the
small duplications/triplications identified in this study
were not associated with developmental retardation, it is
likely that they spread throughout Japan primarily via
carriers with normal fitness and were found via patients
with limb malformations. Obviously, this notion does
not exclude the possible presence of other types of du-
plications/triplications at 17p13.3 in Japan. Second, ex-
cept for the duplications/triplications at 17p13.3, we
could reveal a homozygous WNTI0B mutation (SHFM6)
only in a single SHFM family and chromosome 10q24
duplications (SHFM3) only in three SHFM families.
Thus, underlying factors are still unknown in the
remaining 20 families, although tiny deletions and/or
duplications affecting the known SHFM loci might have
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been overlooked because of the low resolution of the
array. In addition, although all the probands had a nor-
mal karyotype, there might be cryptic translocations
and/or inversions involving the known SHFM loci
Third, no deletion of BHLHA9 was identified in the 51
probands and in the 200 control subjects. This argues
against the relevance of BHLHAY haploinsufficiency to
limb malformations, and coincides with the Japanese
founder duplication being produced by a replication-
mediated mechanism rather than an interchromatid/
interchromosomal (but not an intrachromatid) NAHR
that can lead to both deletions and duplications as a mir-
ror image [17]. Furthermore, it remains to be determined
(i) whether gain-of-function mutations (and possibly loss-
of-function mutations as well) of BHLHAY are identified
in patients with limb malformations, (ii) whether duplica-
tions/triplications involving BHLHA9 underlie limb mal-
formations other than SHFM, SHFLD, and GWC, and (iii)
whether BHLHA9-containing duplications/triplications are
also the most frequent underlying factors for limb malfor-
mations in non-Japanese populations.

Conclusions

The results imply that (i) duplications/triplications in-
volving BHLHAY at chromosome 17p13.3 constitute a
strong susceptibility factor for the development of a
range of limb malformations including SHFM, SHFLD,
and GWC; (ii) the Japanese founder duplication was
generated by a replication-based mechanism and spread
with subsequent triplication and haplotype modification
through recombination-based mechanisms; and (iii) clin-
ical varijability appears to be due to multiple factors in-
cluding the size of duplications/triplications. Thus, the
present study provides useful information on the devel-
opment of limb malformations.
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Introduction

Parkinson’s disease (PD) is a multifactorial disease char-
acterized by selective cell death of dopaminergic neurons.
Oxidative stress is well known to be one of the major
causes of PD development.! On the other hand, uric acid
(UA), which has an antioxidant effect on the central ner-
vous system (CNS), may play a protective role in onset
and development of PD.>* Gout, a consequence of hyper-
uricemia, is also associated with a lower risk of PD.*

Uric acid (urate) has been suggested to play a protective role in Parkinson’s
disease onset through its antioxidant activity. Dysfunction of ABCG2, a high-
capacity urate exporter, js a major cause for early-onset gout based on hyper-
uricemia. In this study, the effects of a dysfunctional ABCG2 variant (Q141K,
1$52231142) were analyzed on the ages at onset of gout patients (N = 507) and
Parkinson’s disease patients (N = 1015). The Q141K variant hastened the gout
onset (P = 0.0027), but significantly associated with later Parkinson’s disease
onset (P = 0.025). Our findings will be helpful for development of more effec-
tive prevention of Parkinson’s disease.

Previously, common dysfunctional variants of ATP-bind-
ing cassette transporter, sub-family G, member 2 (ABCG2,
also known as BCRP), a urate transporter gene,”® have
been revealed to be a major cause of early-onset gout.”
The common variant (Q141K, 1rs2231142) of ABCG2 is
proven to be a dysfunctional variant by in vitro func-
tional studies.>®

This study aimed to evaluate whether the Q141K vari-
ant of ABCG2 could delay the age at onset (AAO) of PD
in a relatively large population of Japanese patients.

302 © 2015 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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Patients and Methods

Study participants

This study was approved by the institutional ethical commit-
tees, and all procedures involved in this study were per-
formed in accordance with the Declaration of Helsinki.
Informed consent in writing was obtained from each subject
participating in this study. A total of 1015 PD patients (464
male and 548 female) and 507 gout male patients was col-
lected and then genetically analyzed. PD patients were
collected in Juntendo University (Tokyo, Japan) and Kobe
University (Kobe, Japan). Diagnosis of PD was made by
board-certified neurologists of the Japanese Society of Neu-
rology, based on the presence of at least two cardinal features
of PD with no secondary cause, no levodopa unresponsive-
ness, or no early signs of more extensive nervous system
involvement® Clinically defined gout cases were collected in
the Kyoto Industrial Health Association (Kyoto, Japan).

Genetic analysis

Genomic DNA was extracted from whole peripheral
blood cells.” For PD patients, genotyping of Q141K
(rs2231142) in ABCGZ2 gene was performed by direct
sequencing using the following primers: forward, 5-AT-
GGAGTTAACTGTCATTTGC-3/, and reverse, 5-CAC-
GTTCATATTATGTAACAAGCC-3'. DNA  sequencing
analysis was performed with a 3130x] Genetic Analyzer'’
(Life Technologies Corporation, Carlsbad, CA). The geno-
typing data of PD patients collected in Kobe University
were obtained from the result of previous GWAS' using
the Illumina Infinium HumanHap550 array (Illumina,
Inc., San Diego, CA). For gout patients, genotyping of
Q141K in ABCG2 gene was performed by TagMan assay
(Life Technologies Corporation) with a LightCycler 480
(Roche Diagnostics, Mannheim, Germany).]z‘13

Statistical analysis

In the statistical analysis, SPSS v.17.0] (IBM Japan Inc.,
Tokyo, Japan) was used for all calculations. Regression
analysis was used for the association analysis.

Later PD Onset by a Common Variant of ABCG2 Gene

Results

The results of genotyping of gout and PD patients are
shown in Table 1. Figure 1 shows the AAO of gout and
PD participants of each genotype of ABCG2 Q141K. The
AAO (mean = standard error) of gout were 40.4 %+
1.1 years old, 42.0 = 0.7 years old, and 45.0 &= 1.1 years
old for patients with Q141K homozygous (A/A), hetero-
zygous (C/A) mutation, and without Q141K mutation
(C/C), respectively. On the other hand, the AAO of PD
were 58.5 & 1.1 years old, 582 4 0.5 years old, and
56.6 & 0.5 years for patients with Q141K homozygous,
heterozygous mutation, and without mutation, respec-
tively. The AAO of gout with homozygous mutation was
4.6 years younger than those without Q141K mutation,
while the AAO of PD with homozygous mutation was
1.6 years older than those without Q141K mutation.

The Q141K mutation of ABCG2 hastened the onset of
gout significantly (P = 0.0027; see Fig. 1A); on the con-
trary, this variant significantly delayed the PD onset
(P = 0.025; see Fig. 1B).

Discussion

This study revealed for the first time that a common dys-
functional variant of ABCG2 (Q141K, rs2231142) has sur-
prisingly differential effects on two common diseases,
significantly delaying the AAO of PD, while hastening
that of gout. ABCG2 encodes ATP-dependent transporter
for urate excretion both in gut'*'® and kidney.'® Molecu-
lar functional studies revealed that ABCG2 dysfunction
elevates serum UA levels.”® As UA is the strong antioxi-
dant, ABCG2 dysfunction might have a neuroprotective
effect. In fact, our study showed that the dysfunctional
variant of this UA-related gene, ABCG2, could have a
protective effect against PD, which is wholly consistent
with the previous studies suggesting that the higher levels
of serum UA are negatively correlated with the risk of
PDY and its rate of progression.'®

So far, only a few genetic analyses have been performed
about the association between PD onset and UA-related
genes.'®?® However, there is no report demonstrating that

Table 1. Genotype of ABCG2 variant Q141K (rs2231142) for gout and PD patients.

N (%)
Q141K (rs22311427) C/C C/A AA Total MAF
Gout cases 131 (25.8) 257 (50.7) 119 (23.5) 507 (100.0) 0.49
PD cases 509 (50.1) 425 (41.9) 81 (8.0) 1015 (100.0) 0.29
PD, Parkinson’s disease; MAF, minor allele frequency.
"For alleles of rs2231142 (C for cytosine; A for adenine), allele A is the minor allele.
© 2015 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 303
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a single variant of ABCG2 could significantly affect the
AAO of PD.

Together with the antioxidant effect of UA, our results
strongly support the hypothesis that UA should reduce
the risk of PD as an antioxidant, because oxidative stress
is involved in the pathogenesis of PD. In addition to its
expression in gut and kidney, ABCG2 highly expresses in
the blood brain barrier (BBB).”' Therefore, we propose a

H. Matsuo et al.

physiological model that ABCG2 exports urate from the
brain side to the blood side at BBB (see Fig. 2). Since
ABCG2 dysfunction decreases urate excretion via gut'*'"”
and kidney,16 which results in serum UA elevation,>®1%16
it therefore has a pathogenic effect on earlier onset of
gout. Elevated serum UA also should result in elevated
UA levels in CNS. In addition, ABCG2 dysfunction
could decrease urate excretion via BBB that enhances the

B
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@ &
g 40 ﬁé: 56
O 33 O 55

c/C C/A A/A c/C C/A AA

Genotype of ABCG2 Q141K Genotype of ABCG2 Q141K

Figure 1. ABCG2 dysfunctional variant (Q141K) and the age at onset (AAQO) of gout/PD. The AAQO of gout was significantly hastened as the
number of minor alleles of Q141K increased (P = 0.0027); on the contrary, the AAC of PD was significantly delayed as the number of minor
alleles of Q141K increased (P = 0.025). The AAO of gout with homozygous mutation (A/A) was 4.6 years younger than those without Q141K
mutation (C/C). And the AAO of PD with homozygous mutation was 1.6 years older than those without Q141K mutation. Each bar represents
the mean with standard error.
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Figure 2. Contrary effects of ABCG2 dysfunction on PD and gout. ABCG2 is expressed in gut, kidney, and blood brain barrier (BBB) and exports
urate. ABCG2 dysfunction in gut and kidney elevates the serum uric acid (UA) levels and subsequently causes gout. In this proposed model,
ABCG2 dysfunction in BBB plays an important role on increasing UA levels in central nervous system (CNS), together with increased serum UA by
ABCG2 dysfunction in gut and kidney.
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elevation of UA levels in CNS as shown in our proposed
model (see Fig. 2). In this model, ABCG2 dysfunction
coordinately increases UA levels in CNS by the combined
two differential mechanisms shown in Figure 2, although
other UA-related gene variants have not been reported to
have such differential mechanisms to elevate UA levels in
CNS. Thus, the dysfunction of ABCG2 both in gut/kidney
and BBB could cooperatively contribute to the elevated
UA levels in CNS. These proposed differential mecha-
nisms are consistent with our present result, which
showed the differential effects on AAO of two common
diseases, gout and PD. By these two differential mecha-
nisms, therefore, ABCG2 dysfunction could have a signifi-
cant neuroprotective effect for later onset of PD through
increased UA, the strong antioxidant (see Fig. 2). That is
why ABCG2 dysfunction could have significant effects on
PD and be important in PD pathogenesis. Furthermore,
the regulation of UA levels in serum and CNS could be
applicable for prevention and therapy of PD.*
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