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Chernousov et al. 2008: Feltri and Wrabetz 2005: Rasi et al. 2010). Such synthesis
of extracellular matrix components by Schwann cells organizes basal lamina as a
sleeve around the Schwann cells. Interaction with axons and production of the basal
lamina is interdependent. because axons are important to facilitate secretion of basal
lamina components by Schwann cells. and the basal lamina is required for efficient
differentiation of Schwann cells and myelination (Bunge et al. 1986: Carey et al.
1983: Eldridge et al. 1987: Fernandez-Valle et al. 1993: Podratz et al. 2001).
Integrins functionally mediate interaction of Schwann cells with extracellular
matrix. and impaired integrin function or ligand production perturbs their axonal
radial sorting and myelination (Chernousov et al. 2008 Rasi et al. 2010). The basal
lamina of Schwann cells is also an important factor affecting nerve regeneration in
the PNS after injury. as its components such as laminin are substrates supporting
axonal outgrowth and guidance (Bunge et al. 1989).

4.3 Axonal Signaling for Modulation of Schwann
Cell Behavior

In the PNS. signals from axons control the development of Schwann cells. including
proliferation of precursors derived from neural crest and differentiation for myelin
formation (Jessen and Mirsky 2005). Axonal neuregulins (NRG) are a family of cell
signaling molecules that regulate proliferation, differentiation. and survival of
Schwann cells and interact with receptor tyrosine Kinase receptor ErbB (Dong et al.
1995 Grinspan et al. 1996: Morrissey et al. 1995: Nave and Trapp 2008: Newbern
and Birchmeier 2010 Trachtenberg and Thompson 1996). Deficiency of NRG iso-
forms in PNS or ErbB receptor complexes in Schwann cells decreases the number
of Schwann cells (Morris et al. 1999: Riethmacher et al. 1997 Woldeyesus et al.
1999). NRGI has at least 15 isoforms. and membrane-bound type II isoforms of
NRG I appear to be Key regulaters of axon—Schwann cell signaling for myelination.
NRGI type HI binds to ErbB2-ErbB3 receptor complexes in Schwann cells and
determines the threshold triggering myelination and myelin thickness matching to
axon caliber (Birchmeier and Nave 2008: Carroll et al. 1997: Cohen et al. 1992:
Grinspan et al. 1996: Jin et al. 1993: Michailov et al. 2004: Taveggia et al. 2005:
Vartanian et al. 1997). Levels of NRGI type Il correlate with the presence and
thickness of myelin as well as the formation of Remak bundles (Michailov et al.
2004: Taveggia et al. 2005). The heterodimers of ErbB2 and ErbB3 mediate signal-
ing through several pathways involving PI3K/Akt. Erk1/2. Ca™. FAK. and Rac/
Cdc42 (Newbern and Birchmeier 2010).

Proteases have been implicated in NRGI-ErbB interactions of axons and
Schwann cells. Recent studies have shown that p-amyloid-converting enzyme
(BACEI ). a -secretase present in axons. is associated with myelination (Hu et al. 2006:
Willem et al, 2006). BACEI-null mice have reduced PNS myelin and remyelination
capacity. and consequently exhibit thinner PNS and CNS myelin with reduced lev-
els of myelin proteins. The impaired myelination and remyelination of BACEI-null
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mice were attributable to reduced rates of NRG1 cleavage. and it is suggested that
BACEI cleaves NRGI to facilitate its binding to ErbB receptors (Hu et al. 2006).
By contrast. downregulation of the axonal a-secretase. tumor necrosis factor-o-
converting enzyme (TACE. ADAMI7). causes hypermyelination and ectopic
myelination that is similar to NRG1 type HI overexpression (La Marca et al. 2011).
These results indicate that the neuronal a-secretase cleaves NRG1 type I into an
inactive form. Another a-secretase, ADAMIO. has little effect on myelination.
although it can also cleave NRG1 (Freese et al. 2009: Luo et al. 2011), Collectively.
behavior of Schwann cells is regulated by NRGI. but this signaling can be modu-
lated by activating and inactivating proteases expressed in neurons.

NRG could also mediate Schwann cell differentiation through axonal neuro-
trophin signaling in response to neurotrophin release from Schwann cells. It has
been suggested that neurotrophins can induce Schwann cell myelination along with
increase of axonal diameters (Voyvodic 1989). However, the effect of neurotroph-
ins, such as NGF. is generally restricted to neurons expressing TrkA., and thus it
suggests that myelination is facilitated by indirect mechanisms mediated by signals
from axons rather than direct glial stimulation by neurotrophin (Rosenberg et al.
2006). The effect of neurotrophins may be mediated by increased NRG1 isoforms.
which in turn stimulate the myelination of these DRG axons by Schwann cells
(Chan et al. 2004 Esper and Loeb 2004).

Axonal signaling involving proteolytic enzymes may also be required for main-
tenance of myelin. Expression of prion protein PrPc in axons. but not in Schwann
cells. is required for maintenance of the myelin sheath during adulthood (Bremer
et al. 2010). Interestingly. a proteolytic cleavage product of PrPc is sufficient to
prevent chronic demyelinating polyneuropathy caused by PrPc deficiency (Bremer
et al. 2010). the molecular mechanisms of myelin maintenance by axons are still
elusive but may have some important implication in the pathophysiology of adult-
onset demyelinating diseases.

4.4 Metabolic Link Between Schwann Cells and Axons

Axon-ensheathing cells in the vertebrate nervous system, including Schwann cells,
have specific roles for myelination and rapid saltatory conduction. but previous
studies have also revealed further roles of these glia in axonal support. in particular,
such as survival of the axons that they ensheath (Nave 2010a). This concept is
supported by observations that axons are predisposed to degeneration in primary
diseases of myelin. For example. recent studies have revealed frequent axonal
transections and progressive axon loss in the inflammatory demyelinating disease of
CNS. multiple sclerosis (Ferguson et al. 1997: Trapp and Nave 2008: Trapp et al.
1998). Progressive axonal degeneration is also found in human neurological dis-
eases that affect oligodendrocytes. such as leukodystrophies (Nave and Trapp 2008).
Inherited peripheral neuropathies, Charcot-Marie-Tooth disease (CMT) type 1.
which are caused by Schwann cell dysfunction. also exhibit axon degeneration
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and loss. which are common among all CMT diseases (Nave et al. 2007). CMT] is
caused by mutations in molecules expressed in Schwann cells, including peripheral
myelin protein 22 (PMP22) and myelin protein zero (MPZ: P,), which are charac-
terized by demyelination (Nave et al. 2007: Scherer and Wrabetz 2008). Although
these diseases exhibit demyelination along with axonal degeneration, it was sug-
gested that myelinating glia support axonal functions independently of myelin. In
the CNS. mouse mutants with specific oligodendrocyte defects. such as absence of
PLP or CNP. show normal myelin formation but display pathology of progressive
axonal loss in the CNS (Griffiths et al. 1998; Lappe-Siefke et al. 2003). In the PNS.
some mutations in MPZ can cause an axonal form of CMT disease. CMT type 2.
where conduction velocity and myelination are not affected but sensory defects and
hearing loss are caused by loss of axons (Laura et al. 2007). Typically, the genes
causing CMT type 2 are expressed in neurons, but P, abundant in PNS myelin is
also related to CMT type 2. which is characterized by axonal loss with relatively
spared myelin. In mice lacking myelin-associated glycoprotein (MAG). which is
expressed by myelinating glia. myelination is normal. but some axons degenerate
and axonal diameters are reduced in PNS as well as CNS (Nguven et al. 2009:
Yin et al. 1998).

Axonal degeneration contributes to permanent neurological disability in primary
diseases of myelin (Nave et al. 2007: Nave and Trapp 2008 Trapp and Nave 2008).
Although the mechanisms of axonal pathology and degeneration after demyelin-
ation or dysmyelination are not yet fully understood. they may be associated with
the influence of myelin. which alters the structure and metabolism of the axon (de
Waegh et al. 1992: Sanchez et al. 1996). One of the influences of myelinating glia is
the increase of axonal caliber mediated by posttranslational modifications of axonal
cytoskeletons (Colello et al. 1994 Kirkpatrick et al. 2001: Windebank et al. 1985).
Signal transduction pathways between axons and myelinating glia would affect
posttranslational modification of axonal cytoskeletal proteins including neurofila-
ments, microtubules. and their associated proteins. which controls axonal caliber
and transport (Sousa and Bhat 2007). In shiverer mice, where oligodendrocytes
form only a few layers of noncompacted myelin around axons without any signs of
oligodendrocyte degeneration. the axonal cytoskeletons fail to fully mature and
axon diameters remain small (Brady et al. 1999: Griffiths et al. 1998 Inoue et al.
1981: Rosenbluth 1980: Shine et al. 1992). The small axonal diameter in the s/iv-
erer mutants is caused by narrowly spaced nonphosphorylated neurofilaments and
microtubules, which are reminiscent axons in MAG-deficient mice (Nguyen et al.
2009: Yin et al. 1998). However. these axons in shiverer mutants do not degenerate.
Axons without normal myelin in shiverer mice more easily degenerate when oligo-
dendrocytes are further compromised by the absence of PLPI. These results indi-
cate that perturbed maturation of axonal structures itself does not cause axonal
degeneration or loss.

The progressive and distally pronounced axonal degeneration in myelin deficit
may be related to adaptation and impairment of metabolic homeostasis in axons.
given that cell bodies and distal segments of long axons could be distinct bio-
chemical compartments. with respect to metabolic reactions (Nave 2010a).
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Fig. 4.3 Schematic drawing of metabolic flow upon nerve conduction in myelinated peripheral
nerves. Nerve conduction causes Nat influx through voltage-gated Na* channels at the nodal
axolemnma. Nat is required to be excluded through internodal Nat/K*-ATPase in an energy-dependent
manner. Axonal mitochondria are enriched in internodal axoplasm. and energy substrates for
these mitochondria are likely to be provided through myelinating Schwann cells. Current evidence
indicates that lactate generated by Schwann cells is transferred to axons through unidentitied
tragsporters

Neuronal Na*/K*-ATPases. which use most axonal ATP to exchange axoplasmic
Nat+ with extracellular K*, are present along the entire internodal axolemma (McGrail
et al. 1991: Young et al. 2008), suggesting that axonal energy demands on nerve
conduction are not restricted around the nodes of Ranvier (Fig. 4.3). This concept is
supported by previous observation that the bulk of mitochondrial volume resides in
internodes, and the mitochondrial distribution also suggests that most ATP within
axons is generated there (Fig. 4.3) (Ohno et al. 2011: Perge et al. 2009). Because
mitochondria are the major source of ATP, the internodal enrichment of mitochon-
dria also helps facilitate axonal transport. which is also energy dependent.
Impaired mitochondrial distribution and function have been implicated in the
pathogenesis of myelin diseases (Coleman 2005: Trapp and Stys 2009). Axonal
conduction/depolarization depends on activation of volitage-gated Na* channels.
For repetitive conduction, the axolemma must exchange axonal Na* for extracellular
K* in an energy-dependent manner by Na*/K* ATPases. By concentrating voltage-
gated Na* channels in the nodal axolemma. myelin not only increases the speed of
nerve conduction but also conserves energy. Disruption of normal myelin would
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Fig. 4.4 Alterations of energy demand and mitochondrial distibution in myelinated and
demyelinated axons. In myelinated axons (a). voltage-gated Na* channels are concentrated in
nodal axolemma. Upon nerve conduction. a limited amount of Na* enters the axons. which is
excluded from internodal/juxtaparanodal Na*/K*-ATPases consuming ATP. These ATP are likely
to be originated from axonal mitochondria enriched in intermodal/juxtaparanodal (Inter/Juxta)
regions. In demyelinated axons (b). Na* channels redistribute diffusely along the entire axolemma
to restore conduction. Upon nerve conduction. more Nat gets into the axons. and more ATP is
required for Nat exclusion. The demyelinated axons have increased volume of axonal mitochon-
dria. presumably to produce ATP sufficient for the Na* exelusion

therefore require an adaptive response of energy metabolism from axons. Upon
demyelination, mitochondrial volume is increased in the demyelinated axons of
human brain and animal models (Mahad et al. 2009: Mutsaers and Carroll 1998
Sathornsumetee et al. 2000 Witte et al. 2009). After demyelination, Na* channels
diffusely redistribute along the demyelinated axolemma to restore nerve conduction
at the expense of increased ATP consumption to drive the Na*/K* ATPases (Craner
et al. 2004: Waxman 2008). It is reasonable, therefore. that increases in axonal
mitochondrial sizes parallel the increased energy demands of nerve conduction
after demyelination in PNS and CNS axons (Fig. 4.4) (Kiryu-Seo et al. 2010:
Zambonin et al. 201 1). It was also demonstrated that perturbed paranodal junctions
in the PNS result in the accumulation of axonal mitochondria around the nodal
regions (Einheber et al. 2006: Sun et al. 2009). Dysmyelination increased densities
of axonal mitochondria in CNS. as shown in shiverer mice and PLP1 mutants
(Andrews et al. 2006: Hogan et al. 2009). Collectively. these results support the
concept that metabolic relationship between axons and Schwann cells is critically
dependent on axo—glial interactions and associated with adaptive alterations in
mitochondrial functions.

Molecular mechanisms regulating metabolic adaptation of axonal mitochondria
against demyelination or dysmyelination still remain to be elucidated but are likely to
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be involved in regulation of two populations of axonal mitochondria. The majority
of axonal mitochondria are present at stationary sites. which can be composed of
single or multiple stationary mitochondria and enriched in axonal areas with hi ¢h
ATP consumption such as growth cones (Kiryu-Seo et al. 2010: Misgeld et al. 2007:
Saxton and Hollenbeck 2012: Sheng and Cai 2012). Motile mitochondria are gener-
ally smaller and are transported throughout the axon in anterograde and retrograde
directions. Demyelination increases the size of the stationary site as well as the
transport velocity of axonal mitochondria (Kiryu-Seo et al. 2010). After remyelin-
ation, stationary site size and transport velocity were similar to those in the myelin-
ated axons. It was indicated that these mitochondrial alterations were mediated by
adaptive responses, at least partly, involving a stress-induced transcription factor,
activating transcription factor 3 (ATF3) (Kiryu-Seo et al. 2010). It is also possible
that key aspects of this regulation would include increased axoplasmic Ca* and
posttranslational modifications of axoplasmic proteins to halt motile mitochondira.
because local inhibition of mitochondrial movement can increase the sizes of sta-
tionary mitochondria in axons (Chada and Hollenbeck 2004 Macaskill et al. 2009
Morris and Hollenbeck 1993: Wang and Schwarz 2009). As already described.
demyelination increases axoplasmic Na* as a result of insufficient ATP production,
and increased axoplasmic Na* in turn increases axoplasmic Ca** through reverse
operation of Na*/Ca™* exchangers (Trapp and Stys 2009). Axonal survival would be
impaired by the generation of nitric oxide by inflammatory cells. which diffuses
into demyelinated axons and contributes to perturbation of mitochondrial ATP gen-
eration (Smith and Lassmann 2002: Trapp and Stys 2009). Apart from the acute
axonal transection and loss mediated by toxic substances from inflammatory cells,
axonal degeneration following demyelination or as a result of dysmyvelination is
also a chronic process taking months or years to develop (Trapp and Nave 2008).
The initial axonal response to demyelination, therefore. reestablishes axonal function
and is likely to include changes in mitochondrial distribution. behavior. and life cycles.

Axonal mitochondria have limited lifespans that are dependent on their dynam-
ics and presumably modulated by their overall activity. and thus abnormal mito-
chondrial dynamics results in impaired axonal integrity (Saxton and Hollenbeck
20121 Sheng and Cai 2012). In neuropathies of PNS. this concept is supported by
evidence that molecules regulating mitochondrial fusion/fission and transport. such
as mitofusin 2 (Mfn2) and ganglioside-induced ditferentiation associated protein |
(GDAPI). are responsible for some forms of CMT (Baxter et al. 2002: Cuesta et al.
2002: Niemann et al. 2005: Zuchner et al. 2004). Newly synthesized mitochondria
are largely generated in the neuronal cell body. transported down along the axon.
and delivered to stationary sites. where they become fused with stationary mito-
chondria. Dysfunctional mitochondrial segments are removed from stationary mito-
chondria through a process called fission. and then transported to the neuronal
perikarya. where they are degraded (Saxton and Hollenbeck 2012: Twig et al. 2008).
This entire life cycle of axonal mitochondria relying on transcription and translation
in cell bodies may render distal axonal segments vulnerable to disruption of energetic
homeostasis. The degeneration of axons associated with relevant symptoms such as
distally pronounced motor and sensory deficits is progressive and length dependent
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in primary myelin diseases (Marrosu et al. 1998; Zhou and Griffin 2003): this may
explain why a progressive length-dependent loss of axons is commonly observed in
peripheral neuropathies and leukodystrophies. first affecting fibers innervating dis-
tal regions of extremities in the PNS or the longest spinal tracts in the CNS (Griftin
and Watson 1988 Suter and Scherer 2003).

Recent studies suggested that myelin-forming glia provide energy substances
such as lactate for the axonal energy production (Nave 2010b). This concept is sup-
ported by observations that disruption of monocarboxyvlic acid transporter |
(MCT1 ). which mediates lactate transport from oligodendrocytes to axons for the
local energy supply to axons. leads to axonal degeneration in CNS (Funfschilling
et al. 20121 Lee et al. 2012). Aberrant axonal degeneration under disruption of
MCTT is likely to be caused by reduced lactate export out of the oligodendroglia.
The notion that energy substrates of axonal mitochondria are provided by myelina-
ting ghia is consistent with the internodal enrichment of axonal mitochondria,
which means that mitochondria are more abundant in axonal regions covered by
myelin (Ohno et al. 2011). These observations are also supported by previous find-
ings that trophic support provided by myelin and myelin-forming cells is regulated
at the level of individual internodes (Griffiths et al. 19981 Yin et al. 2006). Recent
studies suggested that glycogen of Schwann cells in myelinated peripheral nerve
fibers provides energy substrates for ensheathed axons during impaired supply of
glucose (Brown etal. 2012). It was indicated that lactate is a primary substrate that
is generated from glycogen and then shuttled from Schwann cells to axons to main-
tain axonal ATP stores and excitability. Although the beneficial support of Schwann
cell glycogen for unmyelinated axons of Remak bundles was not observed under
hypoglycemia (Brown et al. 2012). it is possible that glucose is uptaken largely by
Schwann cells in Remak fibers. and the Schwann cells in turn provide lactate as
energy substrates to the unmyelinated axons under normal conditions (Vega et al.
1998, 2003). Although it remains to be established if MCT]1 is expressed and
serves as a shuttling molecule in Schwann cells. these studies provided molecular
evidences that energy substrates such as lactate are exported to the extracellular
space and taken up by ensheathed axons for energy production by axonal mito-
chondria (Fig. 4.3).

Glycolysis is assumed to occur throughout the axoplasm. However. if the move-
ment of glycolytic enzymes synthesized in the soma is driven by slow axonal
transport, the efficiency of axonal glycolysis could be limited in a length-depen-
dent fashion (Spencer et al. 1979). This possibility suggests that long distal axons
may require more metabolic support for mitochondrial energy production than
short proximal axons. and this metabolic support could be a trophic function of
glia (pyruvate. lactate. or its derivates) for axonal mitochondria in long fiber tracts
(Nave 2010b). However. it was recently reported that glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) localizes on fast-moving vesicles within axons, and that
the glycolytic enzymes located on these vesicles are critical to maintain the high
velocities characteristic of fast axonal transport (Zala et al. 2013). It remains to be
elucidated if the attachment of glycolytic enzymes to vesicles. mediated by huntingtin.
Rab2. and posttranslational modifications of the enzymes themselves. is affected
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in neurological diseases (Tisdale et al. 2004 Yang et al. 2005; Zala et al. 2013).
These studies raised a possibility that modulation of glycolytic energy production
in long distal axons is involved in axonal degeneration caused by impaired axonal
energy metabolism.

Previous studies support the notion that, apart from lactate. exchange of small
metabolites between axons and myelinating glia is extensive and bidirectional,
In mice with disrupted mitochondrial metabolism. exclusively seen in Schwann
cells by selective depletion of mitochondrial transcription factor A (Tfam-SCKO).
pathological features similar to peripheral neuropathies were observed. indicating
that peripheral neuropathy occurs secondary to mitochondrial dysfunction of
Schwann cells (Viader et al. 2011). Disruption of mitochondria in Schwann cells
activates an abnormal integrated stress response, and the actions of heme-regulated
inhibitor Kinase alter lipid metabolism from fatty acid synthesis toward oxidation
(Viader et al. 2013). These changes in the lipid metabolism of Schwann cells
deplete myelin lipid components and accumulate acylcarnitines, an intermediate of
fatty acid p-oxidation. which is released from Schwann cells and induces axonal
degeneration.

Schmidt—Lanterman incisures are a series of funnel-shaped clefts among the
compact myelin in the PNS and appear as a series of cytoplasmic openings (Hall
and Williams 19701 Peters et al. 1991). Incisures contain connexin 32 (Cx32) to
form gap junctions and may have important roles in trafficking of ions and small
molecules between inner and outer Schwann cell compartments (Balice-Gordon
et al. 1998). This concept is supported by the observation that mutations which
impair Cx32 functions cause an X-linked form of CMT. and genetic ablation of
Cx32 in mice induces similar pathological phenotypes (Anzini et al. 1997: Bergoften
et al. 1993: Scherer et al. 1998). However, axonal loss or degeneration is mild in
these knockout mice (Anzini et al. 1997). indicating that Cx32-dependent gap junc-
tions are redundant for the transport of metabolites to axons.

The same metabolites can play distinct roles in differentiation of myelinating
glia in PNS and CNS. In the CNS, blocking of Na*-dependent action potentials
inhibits proliferation of oligodendrocytes and myelination (Barres and Ratf 1993:
Demerens et al. 1996). It was proposed that axonal electrical activity stimulates
ATP release from axons and facilitates oligodendrocyte myelination through cyto-
kines released from astrocytes (Ishibashi et al. 2006). By contrast. in the PNS, the
axonal release of ATP perturbs Schwann cell differentiation and myelination
through the purinergic P2 receptor (Stevens and Fields 2000).

4.5 Conclusions and Perspectives

Recent advances in genetic techniques. transgenic models. and myelinating cultures
during the past decades have already begun to elucidate the molecular and cellular
mechanisms by which Schwann cells and axons modulate the behaviors and fates of
each other. The list of molecules that are associated with defects of Schwann cells
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and axons in human PNS diseases is rapidly increasing, and improved biological
techniques for tailoring rodent models for in vivo and in vitro manipulation or bioim-
aging have provided various approaches to further studies of the underlying mecha-
nisms. Future studies are necessary to clarify common features and distinct pathways
where ensheathing glia support axonal functions and integrity. Further understanding
of the cellular mechanisms for Schwann cell support for axons and axonal signals
determining Schwann cell behavior continues to be critical to reveal the physiology
of the PNS and also to develop new therapies in peripheral nerve diseases.
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