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Chapter 4

Schwann Cell-Axon Interactions:
The Molecular and Metabolic Link
Between Schwann Cells and Axons
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Abstract Schwann cells and axons have close and complex interactions that determine
Schwann cell behavior and fate and support or impair axonal integrity. The interac-
tions are mediated by molecules that are responsible for physical junctions between
Schwann cells and axons and also soluble mediators which are generated and bidi-
rectionally transported in the interface. Multiple types of axonal signals are critical
for regulating Schwann cell proliferation. differentiation. myelination. and myelin
maintenance. At the same time. Schwann cells regulate axonal development and
play essential roles for survival of axons. Current evidence suggests that the trophic
support of Schwann cells is associated with modulation of axonal metabolism.
which is involved in functional maintenance of axonal mitochondria. Further
advancement in genetic techniques, transgenic models, and myelinating cultures
will elucidate the molecular and cellular mechanisms of Schwann cell-axon inter-
actions that could lead to new therapies of peripheral nervous system diseases.
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4.1 Introduction

Schwann cells. the glial cells in the peripheral nervous system (PNS). are among the
fargest and most ultrastructurally sophisticated cells in the body. and can undergo
rapid and dynamic transformation during development as well as after injury. The
complex structures and dynamic behavior of Schwann cells determine the way of
interaction with axons. neuronal processes that confer nerve impulses to the target
cells in the PNS (Hoke et al. 20006 Jessen and Mirsky 2005: Mevyer et al. 1992:
Mirsky et al. 2008: Webster Hde 1971). Initially in development, Schwann cells
surround the external margins of the axonal bundles. and support axonal outgrowth
by providing growth factors, such as nerve growth factor (NGF) and brain-derived
neurotrophic factor (BDNF) (Fig. 4.1a). Thereafter. Schwann cells segregate the
axons into successively smaller bundles. Finally. individual axons are covered by
Schwann cell cytoplasm and separated from one another near the Schwann cell
surface. Many PNS axons including small sensory and autonomic axons are Kept in
this state. and these units composed of small-diameter axons and their ensheathing
Schwann cells are called unmyelinated or "Remak™ fibers (Fig. 4.1b). On the other
hand. other Schwann cells spirally wrap single axons. and form multilamellar mem-
branes called myelin. which is an essential structure for rapid salutatory conduction
(Fig. 4.1c. d).

Development of myelin appears later after evolution of primitive members of the
vertebrate line, whereas glial ensheathment around axons itself is an early feature of
nervous syvstem evolution (Hartline and Colman 2007). Indeed. glial cells in the
invertebrate nervous system engulf mulitiple axons without myelinating them and
appear similar to the non-myelin-forming Schwann cells in vertebrates (Klambt et al.
2001). By contrast. the PNS and central nervous system (CNS) of vertebrates have
many myelinated axons with clustering of membrane-associated proteins including

Fig. 4.1 Schematic drawing
of developmental changes in
Schwann cell morphology.
Immature Schwann cells
engulf the bulk of axons ta).
Schwann cells ensheath
small-diameter axons and
differentiate to make
unmyelinated Remak bundles
{b). whereas those
ensheathing the large-
diameter axons produce
myelin (e, d). N Schwann
cell nuclei
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adhesion molecules and ion channels in differential axonal segments divided by
distinct myelin domains (Salzer 2003). A large part of Schwann cell development
and fate determination in the vertebral nervous system including myelin formation is
controlled by interactions between Schwann cells and axons. For example. the initia-
tion of myelin formation by Schwann cells is strictly dependent on axonal si gnals, in
contrast to myelin-forming cells in the CNS. the oligodendrocytes (Birchmeier and
Nave 2008). At the same time, recent studies elucidated the metabolic relationship
between Schwann cells and axons. which regulates the axonal microenvironment
and affects axonal survival (Nave 2010b). Interestingly. certain aspects of glial sup-
port for axonal integrity and survival appear to be common in PNS and CNS, indicat-
ing that ditferent sets of glial cells have similar roles for ensheathed axons. The
principal goal of this chapter is to provide an overview of recent findings regarding
the molecular and metabolic link between Schwann cells and axons. which signifi-
cantly affect Schwann cell behavior as well as axonal integrity.

4.2 Structural Interactions Between Schwann
Cells and Axons

Myelination of Schwann cells is extreme cellular specialization of the vertebrate
nervous system. Myelination requires the generation of large amounts of extended
cell membranes to ensheath around axons many times. The compacted and insulat-
ing sheath of myelin leaves gaps for the highly specialized nodes of Ranvier
(Fig. 4.2a). At the nodes, voltage-dependent Na* channels are clustered on the axo-
lemma. and focal depolarization of these Na* channels is responsible for saltatory
conduction. During development. heminodes are first formed at the longitudinally
expanding edges of single Schwann cells. Na* channels and nodal proteins are
localized in the adjacent regions of the outermost edges of Schwann cells. Thereatter.
the nodal components are moved ahead together with the edges of Schwann cells, and
finally form mature nodes with nodal components of adjacent Schwann cells.
Nodal regions are formed and maintained by scaffolding and adhesion molecules. For
example, interaction between a membrane-bound extracellular matrix. gliomedin,
produced from Schwann cells and axolemmal cell adhesion molecules. including
neurofascin 186 (NF186) and NrCAM. is an early event in nodal formation (Salzer
et al. 2008). When these molecules are genetically disrupted. the formation of the
nodes such as Na*-channel clustering is significantly impaired or delayed (Eshed
et al. 2007 Feinberg et al. 2010: Sherman et al. 2005).

In the PNS. axonal regions between two adjacent nodes are covered with myelin
sheath and composed of different types of segments with specialized functions. The
nodes of Ranvier are flanked by paranodes that have axo-glial junctions which limit
the diffusion of small molecules (Fig. 4.2b) (Perkins et al. 2008: Rosenbluth 2009).
In paranodes. Schwann cell membranes are closely juxtaposed to axolemma and
form a ““paranodal loop™. Paranodal loops and axolemma are separated by a distance
of 2.5-3.0 nm and connected by high electron densities that represent septate-like
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Fig. 4.2 Schematic drawing shows junctional complexes between Schwann cells and axons in
different segments of myelinated axons. Nodal axolemma with voltage-gated Nat channels (Nav)
has NrCAM and NF 186, which interact with gliomedin (a). Paranodal axolemma contains Caspr
and contactin, which interact with NF135 on paranodal loops of Schwann cells and are tethered to
axonal actin eytoskeletons via protein 4.1B (by. Juxtaparanodal axolemma with enriched K* chan-
nels is associated with Schwann cell membranes via Tag-1 and Caspr2. which are connected to
axonal actin eytoskeletons via protein 41B (¢)

junctions (Peters et al. 1991). The septate-like junctions are the adhesive apparatus
between myelin and axons. composed of contactin and contactin-associated protein
(Caspr). the axonal membrane proteins enriched in paranodal regions (Einheber
et al. 1997: Menegoz et al. 1997: Rios et al. 2000). These contactin—Caspr com-
plexes are tethered to membrane-associated actin Ly toskeletons via protein 4.1B
(Buttermore et al. 2011 Denisenko-Nehrbass et al. 2003 ). Paranodal membranes of
Schwann cells contain neurofascin 155 (NF155). which interacts with contactin and
Caspr (Charles et al. 20021 Tait et al. 2000). The critical roles of paranodal septate-
like junctions have been well documented through analyses of mice lacking compo-
nents of the septate-like junctions (Bhat et al. 2001: Boyle et al. 2001: Sherman
et al. 2005). Paranodal septate-like junctions are absent or abnormal in mice lacking
Caspr and contactin. Nerve conduction in those mice is significantly slowed with
accumulation of intracellular organelles in nodal/paranodal axoplasm. Although
clustering of nodal Na* channels appears to be unchanged in contactin-null mice,
voltage-gated K* channels normally excluded from paranodal axolemma in wild-
type mice are diffused into paranodal axolemma in Caspr- or contactin-knockout
mice (Bhat et al. 2001: Boyle et al. 2001). The paranodal axo-glial junction there-
fore functions as a “diffusion barrier”™ and spatially separates Na* and K* channel
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distribution in myelinated axons. Extracellularly, the spiral loops of paranodal
segments provide a diffusion pathway to small soluble molecules. and their diffu-
sion does not appear to be affected by lack of the paranodal ulmnonx (Mackenzie
et al. 1984: Mierzwa et al. 2011: Shroff et al. 2011).

The juxtaparanode is adjacent to the paranodal region and contains enriched
voltage-gated fast K* channels. Although the adaxonal membranes of Schwann
cells in internodes are usually smooth. juxtaparanodal membranes can form invagi-
nations into the axons. In a variety of neuropathies. the invaginations of Schwann
cell processes into the axoplasm become extensive (Griffin and Price 1981: Spencer
and Thomas 1974). Tag-1 (transient axonal glycoprotein-1/contactin-2) on the jux-
taparanodal membranes of Schwann cells and axons is considered to mediate
Schwann cell-axon connection in the juxtaparanode and also to form complexes
with Caspr2 (Fig. 4.2¢) (Poliak et al. 1999: Traka et al. 2003). The Caspr2-Tag-1
complex is tethered to membrane-associated actin cytoskeletons via protein 4.1B
(Denisenko-Nehrbass et al. 2003). These interactions in addition to paranodal
septate-like junctions limit the diffusion of K* channels to the nodal region (Bhat
et al. 2001: Traka et al. 2003).

Membrane-associated proteins are also localized at the interface between
Schwann cells and axons and influence Schwann cell differentiation. Necl-4 (nectin-
like protein-4) on Schwann cells binds to Necl-1 on axons and is considered to
facilitate myelination, although mice lacking Necl-1 have little deficit in PNS
myelination (Maurel et al. 2007: Park et al. 2008: Spiegel et al. 2007). Localization
of Par3 and its interaction with p7SNTR (neurotrophin receptor) at the axon—
Schwann cell junction are crucial to start myelination during development. suggest-
ing that neurotrophins play some modulatory roles in myelination of Schwann cells
(Chan et al. 2006: Xiao et al. 2009). A cell adhesion molecule of Schwann cells,
N-cadherin. colocalizes with Par3 at the axon—Schwann cell interface upon myelin-
ation and may mediate the recruitment of Par3 fo the interface, as seen in epithelial
cells (Lewallen et al. 2011). Because myelination is delayed in mice with Schwann
cell-specific depletion of N-cadherin and its associated molecule. p-catenin,
N-cadherin along with p-catenin may be involved in establishment of Schwann cell
polarity and the timing of myelination. However, there are some redundant factors
tor both proteins in the formation and maturation of myelin (Lewallen et al. 2011).

Nonmyelinating Schwann cells forming Remak bundles lack myelin and myelin
components but express cell adhesion molecules and cell-surface receptors that are
less abundant in myelinating cells (Mirsky et al. 2008). The cell adhesion mole-
cules. L1 and N-CAM. are abundant in Remak Schwann cells but are downregu-
lated upon myelination. L1 expression by Schwann cells is essential for Schwann
cell contact and survival of sensory axons (Haney et al. 1999). N-CAM is a 120- to
180-kDa glycoprotein that is related to axonal outgrowth (Martini 1994). The inter-
action between nonmyelinating Schwann cells and axons may also have specific
functions to maintain and modulate the periaxonal ionic microenvironment. such as
K* regulation (Robert and Jirounek 1994).

Schwann cells produce extracellular matrix molecules. such as collagens. lami-
nins, fibronectin, and heparan-sulfated proteoglycans (Carey and Todd 1987:



