Table 1 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |---|---|------------------------|---|---|--|--|----------------| | (iii) Adenosine
deaminase
(ADA)
deficiency | Mutation of ADA absent <i>ADA</i> activity, elevated lymphotoxic metabolites (dATP, <i>S</i> -adenosyl homocysteine) | AR | Absent from birth
(null mutations) or
progressive
decrease | Absent from
birth of
progressive
decrease | Progressive
decrease | Decreased NK cells, often with costochondral junction flaring, neurological features, hearing impairment, lung and liver manifestations; partial ADA deficiency may lead to delayed or milder presentation | 102700 | | Combined imm
3. CD40 ligand | unodeficiencies generally less p
Mutation of CD40LG defects | orofound than se
XL | vere combined immuno
Normal; may | odeficiency
slgM+ and | IgM increased | Neutropenia, | 300386 | | deficiency | in CD40 ligand (CD40L; also
called TNFSF5 or CD154)
cause defective isotype
switching and impaired
dendritic cell signaling | | progressively
decrease | slgD+ B cells
present, other
surface isotype
positive B cells
absent | or normal,
other isotypes
decreased | thrombocytopenia;
hemolytic anemia,
biliary tract and liver
disease, opportunistic
infections | | | 4. CD40
deficiency ^a | Mutation of <i>CD40</i> (also called TNFRSF5) defects in CD40 cause defective isotype switching and impaired dendritic cell signaling | AR | Normal | IgM ⁺ and IgD ⁺
B cells present,
other isotypes
absent | lgM increased
or normal,
other isotypes
decreased | Neutropenia,
gastrointestinal and
liver/biliary tract
disease, opportunistic
infections | 109535 | | 5. Purine
nucleoside
phosphorylase
(PNP)
deficiency | Mutation of <i>PNP</i> , absent PNP,
and T cell and neurologic
defects from elevated toxic
metabolites, especially dGTP | AR | Progressive
decrease | Normal | Normal or
decreased | Autoimmune
hemolytic anemia,
neurological
impairment | 164050 | | 6. CD3γ
deficiencyª | Mutation of <i>CD3G</i> defect in CD3 γ – component of the T cell antigen receptor complex | AR | Normal, but reduced
TCR expression | Normal | Normal | | 186740 | | 7. CD8
deficiency ^a | Mutation of <i>CD8A</i> , defects of CD8 α chain – important for maturation and function of CD8 T cells | AR | Absent CD8, normal
CD4 cells | Normal | Normal | | 186910 | | 8. ZAP70
deficiency | Mutation in ZAP70
intracellular signaling kinase,
acts downstream of TCR | AR | Decreased CD8,
normal CD4 cells | Normal | Normal | Autoimmunity in some cases | 269840 | | 9. MHC class I
deficiency | Mutations in <i>TAP1, TAP2</i> , or <i>TAPBP</i> (tapasin) genes giving MHC class I deficiency | AR | Decreased CD8,
normal CD4 | Normal | Normal | Vasculitis; pyoderma
gangrenosum | 604571 | | 10. MHC class
II deficiency | Mutation in transcription factors for MHC class II proteins (CIITA, RFX5, RFXAP, RFXANK genes) | AR | Normal number,
decreased CD4 cells | Normal | Normal or
decreased | Failure to thrive,
diarrhea, respiratory
tract infections,
liver/biliary tract
disease | 209920 | | 11. ITK
deficiency³ | Mutations in <i>ITK</i> encoding IL-2-inducible T cell kinase required for TCR-mediated activation | AR | Progressive
decrease | Normal | Normal or
decreased | EBV-associated B cell
lymphoproliferation,
lymphoma
Normal or decreased
lgG | 613011 | Table 1 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |--------------------------------------|--|-------------|--|---|--|---|----------------| | 12. SH2D1A
deficiency
(XLP1) | Mutations in <i>SH2D1A</i> encoding an adaptor protein regulating intracellular signals | XL | Normal or increased
activated T cells | Reduced
memory B cells | Partially
defective NK
cell and CTL
cytotoxic
activity | Clinical and immunologic features triggered by EBV infection: HLH, lymphoproliferation, aplastic anemia, lymphoma Hypogamma globulinemia Absent iNKT cells | 308240 | | 13. Cartilage
hair hypoplasia | Mutations in <i>RMRP</i> (RNase MRP RNA) involved in processing of mitochondrial RNA and cell cycle control | AR | Varies from severely
decreased (SCID) to
normal; impaired
lymphocyte
proliferation | Normal | Normal or
reduced.
antibodies
variably
decreased | Can present just as combined immunodeficiency without other features of short-limbed dwarfism Also see Table 2 | 250250 | | 14. MAGT1
deficiency ^a | Mutations in <i>MAGT1</i> , impaired Mg ⁺⁺ flux leading to impaired TCR signaling | XL | Decreased CD4 cells
reduced numbers of
RTE, impaired T cell
proliferation in
response to CD3 | Normal | Normal | EBV infection,
lymphoma; viral
infections, respiratory,
and GI infections | 300715 | | 15. DOCK8
deficiency | Mutations in DOCK8 – regulator of intracellular actin reorganization | AR | Decreased impaired
T lymphocyte
proliferation | Decreased, low
CD27+
memory B cells | Low IgM,
increased IgE | Low NK cells with impaired function, hypereosinophilia, recurrent infections; severe atopy, extensive cutaneous viral and bacterial (staph.) infections, susceptibility to cancer | 243700 | | 16. RhoH
deficiencyª | Mutations in <i>RHOH</i> – an atypical Rho GTPase transducing signals downstream of various membrane receptors | AR | Normal Low naïve T cells and RTE, restricted T cell repertoire and impaired T cells proliferation in response to CD3 stimulation | Normal | Normal | HPV infection,
lymphoma, lung
granulomas,
molluscum
contagiosum | 602037 | | 17. MST1
deficiency | Mutations in <i>STK4</i> – a
serine/threonine kinase | AR | Decreased/increased proportion of terminal differentiated effector memory cells (TEMRA), low naïve T cells, restricted T cell repertoire in the TEMRA population, and impaired T cells proliferation | Decreased | High | Recurrent bacterial, viral, and candidal infections; intermittent neutropenia; EBV-driven lymphoproliferation; lymphoma; congenital heart disease, autoimmune cytopenias; HPV infection | 614868 | Table 1 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |---------------------------------------|---|------------------------|---|---|---|---|----------------| | 18. TCRα
deficiency ^a | Mutations in TRAC – essential component of the T cell receptor | AR | Normal all CD3 T
cells expressed
TCRγδ (or may be
better to say: TCRαβ
T cell deficiency),
impaired T cells
proliferation | Normal | Normal | Recurrent viral,
bacterial, and fungal
infections, immune
dysregulation
autoimmunity, and
diarrhea | 615387 | | 19. LCK
deficiency ^a | Defects in <i>LCK</i> – a proximal tyrosine kinase that interacts with TCR | AR | Normal total
numbers but CD4+
T cell lymphopenia,
low Treg numbers,
restricted T cell
repertoire, and
impaired TCR
signaling | Normal | Normal IgG
and IgA and
increased IgM | Diarrhea, recurrent infections, immune dysregulation autoimmunity | 153390 | | 20. MALT1
deficiency ^a | Mutations in MALT1 – a caspase-like cysteine protease that is essential for nuclear factor kappa B activation | AR | Normal impaired T cells proliferation | Normal | Normal
Impaired
antibody
response | Bacterial, fungal, and viral infections | 604860 | | 21. IL-21R
deficiency ^a | Defects in <i>IL-21R</i> – together
with common gamma chain
binds IL-21 | AR | Abnormal T cell
cytokine production;
abnormal T cell
proliferation to
specific stimuli | Normal | Normal but
impaired
specific
responses | Susceptibility to cryptosporidium and pneumocystis and cholangitis | 605383 | | 22. UNC119
deficiency ^a | Defects in <i>UNC119</i> – an
activator of src tyrosine kinases | AD | Low T cells
CD4+T cell
lymphopenia,
impaired TCR
signaling | Mostly low | Normal | Recurrent bacterial,
fungal, and viral
infections | 604011 | | 23. CARD11
deficiency ^a | Defects in CARD11 – acts as a scaffold for NF _K B activity in the adaptive immune response | AR | Normal predominance of naive T lymphocyte, impaired T cells proliferation | Normal
predominance
of transitional B
lymphocytes | Absent/low | Pneumocystis jiroveci
pneumonia, bacterial
infections | 615206 | | 24. OX40
deficiency ^a | Defects in <i>OX40</i> – a co-stimulatory molecule expressed on activated T cells | AR | Normal T cell
numbers
Low levels of
antigen-specific
memory CD4+ cells | Normal B cell
numbers
Lower
frequency of
memory B cells | Normal | Kaposi's sarcoma;
impaired immunity to
HHV8 | 615593 | | 25. IKBKB
deficiency³ | Defects in <i>IKBKB</i> – encodes IkB kinase 2 a component of the NF-κB pathway | AR | Normal total T cells;
absent regulatory
and gdT cells;
impaired TCR
activation | Normal B cell
numbers;
impaired BCR
activation | Decreased | Recurrent bacterial,
viral, and fungal
infections; clinical
phenotype of SCID | 615592 | | 26. Activated
PI3K-8 | Mutation in <i>PIK3CD</i> , PI3K-8 | AD
gain-of-function | Decreased total
numbers of T cells | Decreased total
peripheral B cell
and switched
memory B
cells; increased
transitional B
cells | Reduced IgG2
and impaired
antibody to
pneumococci
and
hemophilus | Respiratory infections,
bronchiectasis;
autoimmunity; chronic
EBV, and CMV
infection | 602839 | Table 1 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |-------------------------------------|--|-------------|--|--|---|---|----------------| | 27. LRBA
deficiency | Mutations in <i>LRBA</i> (lipopolysaccharide responsive beige-like anchor protein) | AR | Normal or decreased
CD4 numbers;T cell
dysregulation | Low or normal
numbers of B
cells | Reduced I IgG
and IgA in
most | Recurrent infections,
inflammatory bowel
disease,
autoimmunity; EBV
infections | 606453 | | 28. CD27
deficiency ^a | Mutations in CD27, encoding TNF-R member superfamily required for generation and long-term maintenance of T cell immunity | AR | Normal | No memory B cells | Hypogamma
globulinemia
following EBV
infection | Clinical and
immunologic features
triggered by EBV
infection, HLH
Aplastic anemia,
lymphoma
Hypogammaglobuliner
Low iNKT cells | 615122
nia | | 29. Omenn
syndrome | Hypomorphic mutations in RAG1, RAG2, artemis, IL7RA, RMRP, ADA, DNA ligase IV, IL-2RG, AK2, or associated with DiGeorge syndrome; some cases have no defined gene mutation | | Present; restricted T
cell repertoire, and
impaired function | Normal or
decreased | Decreased,
except
increased IgE | Erythroderma,
eosinophilia,
adenopathies,
hepatosplenomegaly | 603554 | XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; SCID, severe combined immune deficiencies; EBV, Epstein–Barr virus; Ca++, calcium; MHC, major histocompatibility complex, RTE, recent thymic emigrants, HPV, human papillomavirus. Infants with SCID who have maternal T cells engraftment may have T cells that do not function normally; these cells may cause autoimmune cytopenias or graft versus host disease. Hypomorphic mutations in several of the genes that cause SCID may result in Omenn syndrome (OS), or "leaky" SCID or a less profound CID phenotype. Both OS and leaky SCID can be associated with higher numbers of T cells and reduced rather than absent activation responses when compared with typical SCID caused by null mutations. A spectrum of clinical findings including typical SCID, OS, leaky SCID, granulomas with T lymphopenia, autoimmunity, and CD4+ T lymphopenia can be found with RAG gene defects. RAC2 deficiency is a disorder of leukocyte motility and is reported in **Table 5**; however, one patient with RAC2 deficiency was found to have absent T cell receptor excision circles (TRECs) by newborn screening, but T cell numbers and mitogen responses were not impaired. For additional syndromic conditions with T cell lymphopenia, such as DNA repair defects, cartilage hair hypoplasia, IKAROS deficiency, and NEMO syndrome, see **Tables 2** and **6**; however, it should be noted that individuals with the most severe manifestations of these disorders could have clinical signs and symptoms of SCID. Severe folate deficiency (such as with malabsorption due to defects in folate carrier or transporter genes SLC10A1 or PCFT) and some metabolic disorders, such as methylmalonic aciduria, may present with reversible profound lymphopenia in addition to their characteristic presenting features. immunodeficiencies with syndromic features, as increasing numbers of these are being identified. The title and classification of **Tables 3–8** present the same major PID groups as in the previous report. In this updated version, we have added a new category in **Table 9** in which "Phenocopies of PID" are listed. This has resulted from our understanding and study of conditions that present as inherited immunodeficiencies, but which are not due to germline mutations and instead arise from acquired mechanisms. Examples include somatic mutations in specific immune cell populations that give rise to the phenotype of autoimmune lymphoproliferative syndrome (ALPS), and also autoantibodies against specific cytokines or immunological factors, with depletion of these factors leading to immunodeficiency. It is likely that increasing numbers of PID phenocopies will be identified in the future, and this may be the start of a much longer table. As with all complex diseases, any classification cannot be strictly adhered to. Certain conditions fall into more than one category and so appear in more than one table. For example, CD40L ligand deficiency is reported in both Tables 1 and 3 as it was initially identified as a defect of B cell isotype switching but is now known to be a defect of co-stimulatory T cell help and function. Similarly, XLP1 due to defects in SH2D1A is listed in Table 1 - combined immunodeficiencies, due to defects of T cell cytotoxicity, T cell help, and B cell maturation, but also in Table 4 - diseases of immune dysregulation, due to the susceptibility to hemophagocytosis. There is a growing appreciation that there can be wide phenotypic viability within a specific genotype that is a product of varied specific mutations between different patients as well as other host and/or environmental factors. The complexities of these conditions in terms of clinical and immunological presentation and heterogeneity cannot be easily captured in the limited space of a table format. For this reason, the furthest left column contains the Online Mendelian Inheritance in Man (OMIM) reference for each condition to allow access to greater detail and updated information. ^{*}Ten or fewer unrelated cases reported in the literature. Table 2 | Combined immunodeficiencies with associated or syndromic features. | Disease | Genetic defect/ presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum lg | Associated features | OMIM
number | |---|---|-------------|---|---|--|--|----------------| | 1, Congenital thr | ombocytopenia | | | *************************************** | *************************************** | | | | (a) Wiskott–
Aldrich
syndrome
(WAS) | Mutations in WAS;
cytoskeletal, and immunologic
synapse defect affecting
hematopoietic stem cell
derivatives | XL | Progressive
decrease, abnormal
lymphocyte
responses to
anti-CD3 | Normal | Decreased
IgM: antibody
to polysaccha-
rides
particularly
decreased;
often
increased IgA
and IgE | Thrombocytopenia with small platelets; eczema; lymphoma; autoimmune disease; lgA nephropathy; bacterial and viral infections. XL thrombocytopenia is a mild form of WAS, and XL neutropenia is caused by missense mutations in the GTPase binding domain of WASP | 301000 | | (b) WIP
deficiency ^a | Mutations in WIPF1;
cytoskeletal and immunologic
synapse defect affecting
hematopoietic stem cell
derivatives | AR | Reduced, defective
lymphocyte
responses to
anti-CD3 | Low | Normal,
except for
increased IgE | Recurrent infections;
eczema;
thrombocytopenia.
WAS-like phenotype | 614493 | | 2. DNA repair de
(a) Ataxia– | efects (other than those in Table 1) Mutations in <i>ATM</i> ; disorder of | |
Progressive | Normal | Often | Ataxia; telangiectasia; | 208900 | | telangiectasia | cell cycle checkpoint; and DNA
double-strand break repair | All | decrease | Normal | decreased
IgA, IgE, and
IgG
subclasses;
increased IgM
monomers;
antibodies
variably
decreased | pulmonary infections;
lymphoreticular and
other malignancies;
increased alpha
fetoprotein and
increased
radiosensitivity;
chromosomal
instability | 208900 | | b) Ataxia–
telangiectasia-
ike disease
(ATLD) ^a | Hypomorphic mutations in
MRE11; disorder of cell cycle
checkpoint and DNA
double-strand break repair | AR | Progressive
decrease | Normal | Antibodies
variably
decreased | Moderate ataxia;
pulmonary infections;
severely increased
radiosensitivity | 604391 | | c) Nijmegen
oreakage
syndrome | Hypomorphic mutations in NBS1 (Nibrin); disorder of cell cycle checkpoint and DNA double-strand break repair | AR | Progressive
decrease | Variably
reduced | Often decreased IgA, IgE, and IgG subclasses; increased IgM; antibodies variably decreased | Microcephaly; bird-like
face; lymphomas;
solid tumors;
increased
radiosensitivity;
chromosomal
instability | 251260 | | (d) Bloom
syndrome | Mutations in <i>BLM</i> ; RecQ-like helicase | AR | Normal | Normal | Reduced | Short stature; bird-like
face; sun-sensitive
erythema; marrow
failure; leukemia;
lymphoma;
chromosomal
instability | 210900 | Table 2 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |--|---|---|---|--|--|---|----------------| | (e) Immunodeficiency with centromeric instability and facial anomalies (ICF) | Mutations in DNA
methyltransferase <i>DNMT3B</i>
(ICF1) resulting in defective
DNA methylation | AR | Decreased or
normal; responses
to PHA may be
decreased | Decreased or
normal | Hypogamma
globulinemia;
variable
antibody
deficiency | Facial dysmorphic features; macroglossia; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multiradial configurations of chromosomes 1, 9, 16; no DNA breaks | 242860 | | (f) Immunodeficiency with centromeric instability and facial anomalies (ICF) | Mutations in <i>ZBTB24</i> (ICF2) | AR | Decreased or
normal; responses
to PHA may be
decreased | Decreased or
normal | Hypogamma
globulinemia;
variable
antibody
deficiency | Facial dysmorphic features; macroglossia; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multiradial configurations of chromosomes 1, 9, 16 | 242860 | | (g) PMS2
deficiency | Mutations in <i>PMS2</i> , resulting in class switch recombination deficiency due to impaired mismatch repair | AR | Normal | Switched and
non-switched B
cells are
reduced | Low IgG and
IgA, elevated
IgM, abnormal
antibody
responses | Recurrent infections;
café-au-lait spots;
lymphoma, colorectal
carcinoma, brain
tumor | 600259 | | (h) RNF168
deficiency* | Mutations in <i>RNF168</i> , resulting in defective DNA double-strand break repair | AR | Normal | Normal | Low IgG or
low IgA | Short stature; mild
motor control to ataxia
and normal
intelligence to learning
difficulties; mild facial
dysmorphism to
microcephaly;
increased
radiosensitivity | 611943 | | (i) MCM4
deficiency | Mutations in MCM4 (minichromosome maintenance complex component 4) gene involved in DNA replication and repair | AR | Normal | Normal | Normal | Viral infections (EBV,
HSV, VZV)
Adrenal failure
Short stature | 609981 | | 3. Inymic defects (a) DiGeorge anomaly | with additional congenital anomal Contiguous gene defect in 90% affecting thymic development; may also be due to heterozygous mutation in TBX1 (chromosome 22q11.2 deletion or TBX1 haploinsufficient syndrome) | alles <i>De novo</i> defect (majority) or AD | Decreased or
normal; 5% have
<1500 CD3 T
cells/μL | Normal | Normal or
decreased | Hypoparathyroidism,
conotruncal
malformation;
abnormal facies; large
deletion (3 Mb) in
22q11.2 (or rarely a
deletion in 10p) | 188400 | Table 2 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |---|---|---|--|---|--|---|------------------| | (b) CHARGE
syndrome | Variable defects of the thymus and associated T cell abnormalities often due to deletions or mutations in CHD7, SEMA3E, or as yet unknown genes | <i>De novo</i> defect
(majority) or AD | Decreased or
normal; some have
<1500 CD3 T
cells/µL | Normal | Normal or
decreased | Coloboma, heart
anomaly, choanal
atresia, retardation,
genital and ear
anomalies | 214800
608892 | | 4. Immune-osseo (a) Cartilage hair hypoplasia | us dysplasias Mutations in <i>RMRP</i> (RNase MRP RNA) involved in processing of mitochondrial RNA and cell cycle control | AR | Varies from severely
decreased (SCID) to
normal; impaired
lymphocyte
proliferation | Normal | Normal or
reduced.
Antibodies
variably
decreased | Short-limbed dwarfism with metaphyseal dysostosis, sparse hair, bone marrow failure, autoimmunity, susceptibility to lymphoma and other cancers, impaired spermatogenesis, neuronal dysplasia of the intestine | 250250 | | (b) Schimke
syndrome | Mutations in SMARCAL1 involved in chromatin remodeling | AR | Decreased | Normal | Normal | Short stature,
spondiloepiphyseal
dysplasia, intrauterine
growth retardation,
nephropathy;
bacterial, viral, and
fungal infections; may
present as SCID; bone
marrow failure | 242900 | | 5. Hyper-IgE syndi | | A.D. | NII | Name | Clay rate of 1 a.C. | Distinctive facial | 147000 | | (a) AD-HIES
(Job's
syndrome) | Dominant-negative heterozygous mutations in STAT3 | AD
Often <i>de novo</i>
defect | Normal Th-17 and T follicular helper cells decreased | Normal
Switched and
non-switched
memory B cells
are reduced;
BAFF level
increased | Elevated IgE;
specific
antibody
production
decreased | Distinctive facial features (broad nasal bridge), eczema, osteoporosis, and fractures, scoliosis, delay of shedding primary teeth, hyperextensible joints, bacterial infections (skin and pulmonary abscesses, pneumatoceles) due to Staphylococcus aureus, candidiasis, aneurysm formation | 147060 | | (i) Tyk2
deficiency® | Mutation in TYK2 | AR | Normal, but multiple
cytokine signaling
defect | Normal | (土) Elevated
IgE | Susceptibility to intracellular bacteria (<i>Mycobacteria</i> , <i>Salmonella</i>), fungi, and viruses | 611521 | # Table 2 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |--|---|-------------|---|---|---------------------------|---|----------------| | (ii) DOCK8 deficiency | Mutations in DOCK8 – regulator of intracellular actin reorganization | AR | Decreased impaired
T lymphocyte
proliferation | Decreased, low
CD27+
memory B cells | Low IgM,
increased IgE | Low NK cells with impaired function, hypereosinophilia, recurrent infections; severe atopy, extensive cutaneous viral and bacterial (staph.) infections, susceptibility to cancer | 243700 | | 6. Dyskeratosis co | ongenital (UKC)
Mutations in dyskerin (DKC1)
(Hoyeraal–Hreidarsson
syndrome) | XL | Progressive
decrease | Progressive
decrease | Variable | Intrauterine growth retardation, microcephaly, nail dystrophy, recurrent infections, digestive tract involvement, pancytopenia, reduced number and function of NK cells | 305000 | | (b) AR-DKC due
to NHP2
deficiency | Mutation in NOLA2 (NHP2) | AR | Decreased | Variable | Variable | Pancytopenia, sparse
scalp hair and
eyelashes, prominent
periorbital
telangiectasia,
and
hypoplastic/dysplastic
nails | 613987 | | (c) AR-DKC due
to NOP10
deficiency | Mutation in <i>NOLA3 (NOP10 PCFT)</i> | AR | Decreased | Variable | Variable | Pancytopenia, sparse
scalp hair and
eyelashes, prominent
periorbital
telangiectasia, and
hypoplastic/dysplastic
nails | 224230 | | (d) AR-DKC due
to RTEL1
deficiency | Mutation in <i>(RTEL1)</i> | AR | Decreased | Variable | Variable | Pancytopenia, sparse
scalp hair and
eyelashes, prominent
periorbital
telangiectasia, and
hypoplastic/dysplastic
nails | 608833 | | (e) AD-DKC due
to TERC
deficiency | Mutation in <i>TERC</i> | AD | Variable | Variable | Variable | Reticular hyperpigmentation of the skin, dystrophic nails, osteoporosis premalignant leukokeratosis of the mouth mucosa, palmar hyperkeratosis, anemia, pancytopenia | 127550 | ### Table 2 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |---|---|-------------|---|--|--|--|----------------| | (f) AD-DKC due
to TERT
deficiency | Mutation in TERT | AD | Variable | Variable | Variable | Reticular hyperpigmentation of the skin, dystrophic nails, osteoporosis premalignant leukokeratosis of the mouth mucosa, palmar hyperkeratosis, anemia, pancytopenia | 614742 | | (g) AD-DKC due
to TINF2
deficiency | Mutation in <i>TINF2</i> | AD | Variable | Variable | Variable | Reticular hyperpigmentation of the skin, dystrophic nails, osteoporosis premalignant leukokeratosis of the mouth mucosa, palmar hyperkeratosis, anemia, pancytopenia | 613990 | | 7. Defects of vital
(a) TCN2
deficiency | min B12 and folate metabolism Mutation in TCN2; encodes transcobalamin, a transporter of cobalamin into blood cells | AR | Normal | Variable | Decreased | Megaloblastic anemia,
pancytopenia,
untreated for
prolonged periods
results in mental
retardation | 275350 | | (b) SLC46A1
deficiency | Mutation in <i>SLC46A1</i> ; a proton coupled folate transporter | AR | Variable numbers
and activation profile | Variable | Decreased | Megaloblastic anemia,
failure to thrive
untreated for
prolonged periods
results in mental
retardation | 229050 | | (c) MTHFD1ª
deficiency | Mutations in <i>MTHFD1</i> ;
essential for processing of
single-carbon folate
derivatives | AR | Low | Low | Decreased | Megaloblastic anemia,
failure to thrive
neutropenia, seizures,
mental retardation | | | 8. Comel–
Netherton
syndrome | Mutations in <i>SPINK5</i> resulting in lack of the serine protease inhibitor LEKTI, expressed in epithelial cells | AR | Normal | Switched and
non-switched B
cells are
reduced | Elevated IgE
and IgA
Antibody
variably
decreased | Congenital ichthyosis,
bamboo hair, atopic
diathesis, increased
bacterial infections,
failure to thrive | 256500 | | 9. Winged helix
deficiency
(Nude)ª | Defects in forkhead box N1 transcription factor encoded by <i>FOXN1</i> | AR | Markedly decreased | Normal | Decreased | Alopecia, abnormal
thymic epithelium,
impaired T cell
maturation | 600838 | | 10. ORAI-I
deficiencyª | Mutation in <i>ORAI1</i> , a Ca ⁺⁺ release-activated channel (CRAC) modulatory component | AR | Normal number, but
defective
TCR-mediated
activation | Normal | Normal | Autoimmunity,
anhydrotic ectodermic
dysplasia,
non-progressive
myopathy defective
TCR-mediated
activation | 610277 | Table 2 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Serum Ig | Associated features | OMIM
number | |--|--|-------------|---|--|--|--|-----------------| | 11. STIM1
deficiency ^a | Mutations in <i>STIM1</i> , a stromal interaction molecule 1 | AR | Normal number, but
defective
TCR-mediated
activation | Normal | Normal | Autoimmunity,
anhydrotic ectodermal
dysplasia,
non-progressive
myopathy defective
TCR-mediated
activation | 605921 | | 12. STAT5b
deficiency ^a | Mutations in <i>STAT5B</i> , signal transducer, and transcription factor, essential for normal signaling from IL-2 and 15, key growth factors for T and NK cells | AR | Modestly decreased | Normal | Normal | Growth-hormone insensitive dwarfism Dysmorphic features Eczema Lymphocytic interstitial pneumonitis, autoimmunity | 245590 | | 13. Hepatic
veno-occlusive
disease with
immunodefi-
ciency
(VODI) | Mutations in <i>SP110</i> | AR | Normal (decreased
memory T cells) | Normal
(decreased
memory B
cells) | Decreased
IgG, IgA, IgM,
absent
germinal
centers,
absent tissue
plasma cells | Hepatic veno-occlusive disease; Pneumocystis jiroveci pneumonia; susceptibility to CMV, Candida; thrombocytopenia; hepatosplenomegaly | 235550 | | 14. IKAROS
deficiency ^a | Mutation in <i>IKAROS</i> | AD de novo | Normal, but
impaired lymphocyte
proliferation | Absent | Presumably decreased | Anemia, neutropenia,
thrombocytopenia | Not
assigned | | 15. FILS
syndrome® | Mutation in <i>POLE1</i> ; defective DNA replication | AR | Low naïve T cells;
decreased T cell
proliferation | Low memory B cells | Decreased
IgM and IgG;
lack of
antibodies to
polysaccha-
ride
antigens | Mild facial
dysmorphism (malar
hypoplasia, high
forehead), livedo,
short stature;
recurrent upper and
lower respiratory tract
infections, recurrent
pulmonary infections,
and recurrent
meningitis | 615139 | | 16. Immunode-
ficiency with
multiple
intestinal
atresias | Mutation in <i>TTC7A</i> [tetratricopeptide repeat (TPR) domain 7A] protein of unknown function | AR | Variable, but
sometimes absent | Normal | Decreased | Multiple intestinal
atresias, often with
intrauterine
polyhydramnios and
early demise; some
with SCID phenotype | 243150 | SCID, severe combined immune deficiencies; XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; MSMD, Mendelian susceptibility of mycobacterial disease. T and B cell number and function in these disorders exhibit a wide range of abnormality; the most severely affected cases meet diagnostic criteria for SCID or leaky SCID and require immune system restoring therapy such as allogeneic hematopoietic cell transplantation. While not all DOCK8-deficient patients have elevated serum IgE, most have recurrent viral infections and malignancies as a result of combined immunodeficiency. AR-HIES due to Tyk2 deficiency is also listed in Table 6, because of its association with atypical mycobacterial disease resulting in MSMD. Riddle syndrome is caused by mutations in a gene involved in DNA double-strand break repair and is associated with hypogammaglobulinemia. Autosomal dominant and autosomal recessive forms of dyskeratosis congenita are included in this table. IKAROS-deficiency represents a single prematurely born infant who died at the age of 87 days and who had absent B and NK cells and non-functional T cells. ^aTen or fewer unrelated cases reported in the literature. Table 3 | Predominantly antibody deficiencies. | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Serum Ig | Associated features | OMIM
number | |---|---|-----------------------|---|--|-----------------| | Severe reduction in (a) BTK deficiency | all serum immunoglobulin isotypes v
Mutations in <i>BTK</i> , a cytoplasmic
tyrosine kinase activated by
crosslinking of the BCR | with profoundly
XL | decreased or absent B cells All isotypes decreased in majority of patients; some patients have detectable immunoglobulins | Severe bacterial infections;
normal numbers of pro-B cells | 300300 | | (b) μ Heavy chain
deficiency | Mutations in μ heavy chain; essential component of the pre-BCR | AR | All isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 147020 | | (c) λ5 Deficiency ^a | Mutations in I5; part of the surrogate light chain in the pre-BCR | AR | All isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 146770 | | (d) Igα deficiency ^a | Mutations in Iga (CD79a); part of the pre-BCR and BCR | AR | All
isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 112205 | | le) lgβ deficiency ^a | Mutations in Igb (CD79\$); part of the pre-BCR and BCR | AR | All isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 147245 | | (f) BLNK deficiency ^a | Mutations in <i>BLNK</i> ; a scaffold protein that binds to BTK | AR | All isotypes decreased | Severe bacterial infections;
normal numbers of pro-B cells | 604615 | | g) PI3 kinase
deficiency ^a | Mutations in <i>PIK3R1</i> ; a kinase involved in signal transduction in multiple cell types | AR | All isotypes decreased | Severe bacterial infections;
decreased or absent pro-B cells | 171833 | | (h) E47 transcription
factor deficiency ^a | Mutations in <i>TCF3</i> ; a transcription factor required for control of B cell development | AD | All isotypes decreased | Recurrent bacterial infections | 147141 | | ii) Myelodysplasia
with hypogamma-
globulinemia | May have monosomy 7, trisomy
8, or dyskeratosis congenita | Variable | One or more isotypes may be decreased | Infections; decreased number of pro-B cells | Not
assigned | | j) Thymoma with
mmunodeficiency | Unknown | None | One or more isotypes may be decreased | Bacterial and opportunistic infections; autoimmunity; decreased number of pro-B cells | Not
assigned | | | at least two serum immunoglobulin | | | | | | (a) Common variable
immunodeficiency
disorders | Unknown | Variable | Low IgG and IgA and/or
IgM | Clinical phenotypes vary: most
have recurrent infections, some
have polyclonal
lymphoproliferation,
autoimmune cytopenias, and/or
granulomatous disease | Not
assigned | | (b) ICOS deficiency ^a | Mutations in <i>ICOS</i> ; a co-stimulatory molecule expressed on T cells | AR | Low IgG and IgA and/or
IgM | Recurrent infections;
autoimmunity, gastroenteritis,
granuloma in some | 604558 | | (c) CD19 deficiency ^a | Mutations in <i>CD19</i> ;
transmembrane protein that
amplifies signal through BCR | AR | Low IgG and IgA and/or
IgM | Recurrent infections; may have glomerulonephritis | 107265 | | (d) CD81 deficiency ^a | Mutations in <i>CD81</i> ;
transmembrane protein that
amplifies signal through BCR | AR | Low IgG, low or normal IgA and IgM | Recurrent infections; may have glomerulonephritis | 186845 | # Table 3 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Serum Ig | Associated features | OMIM
number | |--|---|------------------------|---|---|-----------------| | (e) CD20 deficiency ^a | Mutations in <i>CD20</i> ; a B cell
surface receptor involved in B
cell development and plasma cell
differentiation | AR | Low IgG, normal or
elevated IgM and IgA | Recurrent infections | 112210 | | (f) CD21 deficiency ^a | Mutations in <i>CD21</i> ; also known as complement receptor 2 and forms part of the CD19 complex | AR | Low IgG; impaired anti-pneumococcal response | Recurrent infections | 614699 | | (g) TACI deficiency | Mutations in <i>TNFRSF13B</i> (TACI);
a TNF receptor family member
found on B cells and is a
receptor for BAFF and APRIL | AD or AR or
complex | Low IgG and IgA and/or
IgM | Variable clinical expression | 604907 | | (h) LRBA deficiency | Mutations in <i>LRBA</i> (lipopolysaccharide responsive beige-like anchor protein) | AR | Reduced I IgG and IgA in
most | Recurrent infections,
inflammatory bowel disease,
autoimmunity; EBV infections | 606453 | | (i) BAFF receptor
deficiency ^a | Mutations in <i>TNFRSF13C</i> (BAFF-R); a TNF receptor family member found on B cells and is a receptor for BAFF | AR | Low IgG and IgM | Variable clinical expression | 606269 | | (j) TWEAK ^a | Mutations in <i>TWEAK</i> | AD | Low IgM and IgA; lack of anti-pneumococcal antibody | Pneumonia, bacterial infections, warts; thrombocytopenia. neutropenia | 602695 | | (k) NFKB2
deficiency ^a | Mutations in <i>NFKB2</i> ; an essential component of the non-canonical NF-kB pathway | AD | Low IgG and IgA and IgM | Recurrent infections | 615577 | | (I) Warts, hypogam-
maglobulinemia,
infections,
myelokathexis
(WHIM) syndrome | Gain-of-function mutations of <i>CXCR4</i> , the receptor for CXCL12 | AD | Panhypogammaglobulinemia,
decreased B cells | Warts/human papilloma virus
(HPV) infection
Neutropenia
Reduced B cell number
Hypogammaglobulinemia | 193670 | | 3. Severe reduction in (a) CD40L deficiency | serum IgG and IgA with normal/eleva
Mutations in <i>CD40LG</i> (also
called <i>TNFSF5</i> or <i>CD154</i>) | ated IgM and no | ormal numbers of B cells IgG and IgA decreased; IgM may be normal or increased; B cell numbers may be normal or increased | Bacterial and opportunistic infections, neutropenia, autoimmune disease | 300386 | | (b) CD40 deficiency ^a | Mutations in <i>CD40</i> (also called <i>TNFRSF5</i>) | AR | Low IgG and IgA; normal or raised IgM | Bacterial and opportunistic infections, neutropenia, autoimmune disease | 109535 | | (c) AID deficiency | Mutations in <i>AICDA</i> gene | AR | lgG and lgA decreased;
lgM increased | Bacterial infections, enlarged
lymph nodes, and germinal
centers | 605257 | | (d) UNG deficiency | Mutations in <i>UNG</i> | AR | IgG and IgA decreased;
IgM increased | Enlarged lymph nodes and germinal centers | 191525 | | Isotype or light chair Ig heavy chain
mutations and
deletions | deficiencies with generally normal
Mutation or chromosomal
deletion at 14q32 | numbers of B c
AR | ells One or more IgG and/or IgA subclasses as well as IgE may be absent | May be asymptomatic | Not
assigned | #### Table 3 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Serum Ig | Associated features | OMIM
number | |---|--|-------------------------|---|--|-----------------| | (b) κ Chain
deficiency ^a | Mutations in Kappa constant gene | AR | All immunoglobulins have lambda light chain | Asymptomatic | 147200 | | (c) Isolated IgG
subclass deficiency | Unknown | Variable | Reduction in one or more
IgG subclass | Usually asymptomatic; a minority may have poor antibody response to specific antigens and recurrent viral/bacterial infections | Not
assigned | | (d) IgA with IgG
subclass deficiency | Unknown | Variable | Reduced IgA with
decrease in one or more
IgG subclass | Recurrent bacterial infections | Not
assigned | | (e) PRKC 8
deficiency ^a | Mutation in <i>PRKCD</i> ; encoding a member of the protein kinase C family critical for regulation of cell survival, proliferation, and apoptosis | AR | Low IgG levels; IgA and IgM above the normal range | Recurrent infections; EBV chronic infection
Lymphoproliferation SLE-like
autoimmunity (nephrotic and
antiphospholipid syndromes) | 615559 | | (f) Activated PI3K-8 | Mutation in <i>PIK3CD</i> , PI3K-8 | AD gain-of-
function | Reduced IgG2 and
impaired antibody to
pneumococci and
hemophilus | Respiratory infections,
bronchiectasis; autoimmunity;
chronic EBV, CMV infection | 602839 | | (g) Selective IgA
deficiency | Unknown | Variable | lgA decreased/absent | Usually asymptomatic; may have recurrent infections with poor antibody responses to carbohydrate antigens; may have allergies or autoimmune disease. A very few cases progress to CVID, others coexist with CVID in the family | 137100 | | 5. Specific antibody
deficiency with
normal Ig concen-
trations and normal
numbers of B cells | Unknown | Variable | Normal | Reduced ability to produce antibodies to specific antigens | Not
assigned | | 6. Transient
hypogammaglobu-
linemia of infancy
with normal
numbers of B cells | Unknown | Variable | IgG and IgA decreased | Normal ability to produce antibodies to vaccine antigens, usually not associated with significant infections | Not
assigned | XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; BTK, Bruton tyrosine kinase; BLNK, B cell linker protein; AID, activation-induced cytidine deaminase; UNG, uracil-DNA glycosylase; ICOS, inducible costimulator; Ig(k), immunoglobulin or k light chain type. *Ten or fewer unrelated cases reported in the literature. Several autosomal recessive disorders that might previously have been called CVID have been added to **Table 3**. CD81 is normally co-expressed with CD19 on the surface of B cells. As for CD19 mutations, mutations in CD81 result in normal numbers of peripheral blood B cells, low serum IgG, and an increased incidence of glomerulonephritis. Single patient with a homozygous mutation in CD20 and CD21 has been reported. Common variable immunodeficiency disorders (CVID) include several clinical and laboratory phenotypes that may be caused by distinct genetic and/or environmental factors. Some patients with CVID and no known genetic defect have markedly reduced numbers of B cells as well as
hypogammaglobulinemia. Alterations in TNFRSF13B (TACI) and TNFRSF13C (BAFF-R) sequences may represent disease-modifying mutations rather than disease causing mutations. CD40L and CD40 deficiency are included in **Table 1** as well as this table. A small minority of patients with XLP (**Table 4**), WHIM syndrome (**Table 6**), ICF (**Table 2**), VOD1 (**Table 2**), thymoma with immunodeficiency (Good syndrome), or myelodysplasia are first seen by an immunologist because of recurrent infections, hypogammaglobulinemia, and normal or reduced numbers of B cells. Patients with GATA2 mutations (**Table 5**) may have markedly reduced numbers of B cells, as well as decreased monocytes and NK cells, and a predisposition to myelodysplasia but they do not usually have an antibody deficiency. April 2014 | Volume 5 | Article 162 | 15 Table 4 | Diseases of immune dysregulation. | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional
defect | Associated features | OMIM
number | |---|--|-------------|--|--|---|--|---| | | phagocytic lymphohistiocytosis | | 9S | основнительного приняти принят | on taman kendan kendan kengan kengalan pada kendan kengan kanan panjan pemakan k | enement († 140) de Oriki, gradu († 140) franza za vozaný (hadrada 144) de Polyador († 147) de vozana vozan | *************************************** | | (a) Perforin
deficiency
(FHL2) | Mutations in <i>PRF1</i> ; perforin is a major cytolytic protein | AR | Increased
activated T
cells | Normal | Decreased to
absent NK and CTL
activities
(cytotoxicity) | Fever, hepatosplenomegaly
(HSMG), hemophagocytic
lymphohistiocytosis (HLH),
cytopenias | 603553 | | (b) UNC13D/
Munc13-4
deficiency
(FHL3) | Mutations in <i>UNC13D*</i> ;
required to prime vesicles
for fusion | AR | Increased
activated T
cells | Normal | Decreased to
absent NK and CTL
activities
(cytotoxicity and/or
degranulation) | Fever, HSMG, HLH,
cytopenias | 608898 | | (c) Syntaxin 11
deficiency
(FHL4) | Mutations in <i>STX11</i> ,
required for secretory
vesicle fusion with the cell
membrane | AR | Increased
activated T
cells | Normal | Decreased NK activity (cytotoxicity and/or degranulation) | Fever, HSMG, HLH,
cytopenias | 603552 | | (d) STXBP2/
Munc18-2
deficiency
(FHL5) | Mutations in STXBP2, required for secretory vesicle fusion with the cell membrane omes with hypopigmentation | AR | Increased
activated T
cells | Normal | Decreased NK and
CTL activities
(cytotoxicity and/or
degranulation) | Fever, HSMG, HLH,
cytopenias | 613101 | | (a) Chediak–
Higashi
syndrome | Mutations in <i>LYST</i>
Impaired lysosomal
trafficking | AR | Increased
activated T
cells | Normal | Decreased NK and
CTL activities
(cytotoxicity and/or
degranulation) | Partial albinism Recurrent infections, fever HSMG, HLH Giant lysosomes, neutropenia, cytopenias Bleeding tendency Progressive neurological dysfunction | 214500 | | (b) Griscelli
syndrome,
type 2 | Mutations in RAB27A
encoding a GTPase that
promotes docking of
secretory vesicles to the
cell membrane | AR | Normal | Normal | Decreased NK and
CTL activities
(cytotoxicity and/or
degranulation) | Partial albinism, fever,
HSMG, HLH, cytopenias | 607624 | | (c) Hermansky–
Pudlak
syndrome,
type 2 | Mutations in AP3B1 gene,
encoding for the b subunit
of the AP-3 complex | AR | Normal | Normal | Decreased NK and
CTL activities
(cytotoxicity and/or
degranulation) | Partial albinism Recurrent infections Pulmonary fibrosis Increased bleeding Neutropenia HLH | 608233 | | 2. Lymphoprolifer
(a) SH2D1A
deficiency
(XLP1) | rative syndromes Mutations in SH2D1A encoding an adaptor protein regulating intracellular signaling | XL | Normal or
increased
activated T
cells | Reduced
memory B
cells | Partially defective
NK cell and CTL
cytotoxic activity | Clinical and immunological
features triggered by EBV
infection: HLH
Lymphoproliferation, aplastic
anemia, lymphoma
Hypogammaglobulinemia
Absent iNKT cells | 308240 | Table 4 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional
defect | Associated features | OMIM
number | |---|--|-------------|--|---|--|--|----------------| | (b) XIAP
deficiency
(XLP2) | Mutations in XIAP/BIRC4 encoding an inhibitor of apoptosis | XL | Normal or increased activated T cells; low/normal iNKT cells | Normal or
reduced
memory B
cells | Increased T cells
susceptibility to
apoptosis to CD95
and enhanced
activation-induced
cell death (AICD) | EBV infection, splenomegaly,
lymphoproliferation
HLH, colitis, IBD, hepatitis
Low iNKT cells | 300635 | | (c) ITK
deficiency ^a | Mutations in <i>ITK</i> encoding IL-2 inducible T cell kinase required for TCR-mediated activation | AR | Progressive
decrease
| Normal | Decreased T cell activations | EBV-associated B cell
lymphoproliferation,
lymphoma
Normal or decreased IgG | 613011 | | (d) CD27
deficiency ^a | Mutations in CD27, encoding TNF-R member superfamily required for generation and long-term maintenance of T cell immunity ts of regulatory T cells | AR | Normal | No memory
B cells | Low T and NK cells functions | Clinical and immunological
features triggered by EBV
infection: HLH
Aplastic anemia, lymphoma,
hypogammaglobulinemia
Low iNKT cells | 615122 | | (a) IPEX,
immune
dysregulation,
polyen-
docrinopathy,
enteropathy
X-linked | Mutations in <i>FOXP3</i> , encoding a T cell transcription factor | XL | Normal | Normal | Lack of (and/or
impaired function
of) CD4+ CD25+
FOXP3+ regulatory
T cells (Tregs) | Autoimmune enteropathy Early-onset diabetes Thyroiditis, hemolytic anemia, thrombocytopenia, eczema Elevated IgE, IgA | 304790 | | (b) CD25
deficiency ^a | Mutations in <i>IL-2RA</i> , encoding IL-2R α chain | AR | Normal to decreased | Normal | No CD4+ C25+
cells with impaired
function of Tregs
cells | Lymphoproliferation,
autoimmunity. Impaired T
cell proliferation | 606367 | | (c) STAT5b
deficiency ^a | Mutations in STAT5B,
signal transducer, and
transcription factor,
essential for normal
signaling from IL-2 and 15,
key growth factors for T
and NK cells | AR | Modestly
decreased | Normal | Impaired development and function of y8T cells, Tregs, and NK cells Low T cell proliferation | Growth-hormone insensitive
dwarfism
Dysmorphic features
Eczema
Lymphocytic interstitial
pneumonitis, autoimmunity | 245590 | | 4. Autoimmunity (a) APECED (APS-1), autoimmune polyen- docrinopathy with candidiasis and ectodermal dystrophy | without lymphoproliferation Mutations in AIRE, encoding a transcription regulator needed to establish thymic self-tolerance | AR | Normal | Normal | AIRE-1 serves as checkpoint in the thymus for negative selection of autoreactive T cells and for generation of Tregs | Autoimmunity: hypoparathyroidism hypothyroidism, adrenal insufficiency, diabetes, gonadal dysfunction, and other endocrine abnormalities Chronic mucocutaneous candidiasis Dental enamel hypoplasia Alopecia areata Enteropathy, pernicious anemia | 240300 | # Table 4 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional
defect | Associated features | OMIM
number | |---|--|-------------|---|---|---|--|----------------| | (b) ITCH
deficiency* | Mutations in <i>ITCH</i> , an E3 ubiquitin ligase catalyzes the transfer of ubiquitin to a signaling protein in the cell including phospholipase Cγ1 (PLCγ1) | AR | Not assessed | Not
assessed | Itch deficiency may
cause immune
dysregulation by
affecting both
anergy induction in
autoreactive
effector T cells and
generation of Tregs | Early-onset chronic lung disease (interstitial pneumonitis) Autoimmune disorder (thyroiditis, type I diabetes, chronic diarrhea/enteropathy, and hepatitis) Failure to thrive, developmental delay, dysmorphic facial features | 613385 | | 5. Autoimmune l
(a) ALPS-FAS | ymphoproliferative syndrome (A | ALPS)
AD | Increased | Marmal Inv. | Apostonia defeat | Calanamagalu | 601050 | | (d) ALFS-FAS | Germinal mutations in TNFRSF6, encoding CD95/Fas cell surface apoptosis receptor ^b | AR° | CD4-CD8-
TCRα/β double
negative (DN)
T cells | Normal, low
memory B
cells | Apoptosis defect
FAS mediated | Splenomegaly,
adenopathies, autoimmune
cytopenias
Increased lymphoma risk
IgG and A normal or
increased
Elevated FasL and IL-10,
vitamin B12 | 601859 | | (b) ALPS-
FASLG | Mutations in <i>TNFSF6</i> , Fas
ligand for CD95 apoptosis | AR | Increased DN
T cells | Normal | Apoptosis defect
FAS mediated | Splenomegaly,
adenopathies, autoimmune
cytopenias, SLE
Soluble FasL is not elevated | 134638 | | (c) ALPS-
caspase 10 ^a | Mutations in <i>CASP10</i> ,
intracellular apoptosis
pathway | AD | Increased DN
T cells | Normal | Defective
lymphocyte
apoptosis | Adenopathies, splenomegaly, autoimmunity | 603909 | | (d) ALPS-
caspase 8ª | Mutations in <i>CASP8</i> , intracellular apoptosis, and activation pathways | AR | Slightly
increased DN
T cells | Normal | Defective
lymphocyte
apoptosis and
activation | Adenopathies,
splenomegaly, bacterial and
viral infections,
hypogammaglobulinemia | 607271 | | (e) FADD
deficiency ^a | Mutations in FADD
encoding an adaptor
molecule interacting with
FAS, and promoting
apoptosis | AR | Increased DN
T cells | Normal | Defective
lymphocyte
apoptosis | Functional hyposplenism,
bacterial and viral infections
Recurrent episodes of
encephalopathy and liver
dysfunction | 613759 | | (f) CARD11
gain-of-function
(GOF)
mutations ^a | GOF mutations in CARD11,
encoding a protein required
for antigen
receptor-induced NFxB
activation in B and T
lymphocytes | AD | Normal | Increased
M+D+CD19+
CD20+ B
cells | Constitutive
activation of NF-κB
in B & T | Lymphoproliferation Bacterial and viral infections EBV chronic infection Autoimmune cytopenia Hypogammaglobulinemia | 606445 | | (g) PRKC8
deficiency³ | Mutations in <i>PRKCD</i> , encoding a member of the protein kinase C family critical for regulation of cell survival, proliferation, and apoptosis | AR | Normal | Low
memory B
cells and
elevation of
CD5 B cells | Apoptotic defect in
B cells | Recurrent infections; EBV chronic infection Lymphoproliferation SLE-like autoimmunity (nephrotic and antiphospholipid syndromes) HypolgG | 615559 | ### Table 4 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional defect | Associated features | OMIM
number | |---|--|-------------|------------------------|------------------------|---|---|-----------------| | 6. Immune dysreg
(a) IL-10
deficiency ^a | gulation with colitis
Mutations in <i>IL-10</i> ,
encoding IL-10 | AR | Normal | Normal | No functional IL-10 secretion | Inflammatory bowel disease
(IBD) folliculitis
Recurrent respiratory
diseases
Arthritis | Not
assigned | | (b) IL-10Rα
deficiency | Mutations in <i>IL-10RA</i> ,
encoding IL-10R1 | AR | Normal | Normal | Leukocytes, no response to IL-10 | IBD, folliculitis
Recurrent respiratory
diseases
Arthritis, lymphoma | 613148 | | (c) IL-10Rβ
deficiency | Mutations in <i>IL-10RB</i> ,
encoding IL-10R2 | AR | Normal | Normal | Leukocytes, no
response to IL-10,
IL-22, IL-26, IL-28A,
IL-28B, and IL-29 | IBD, folliculitis
Recurrent respiratory
diseases
Arthritis, lymphoma | 612567 | | 7. Type 1 interferor
(a) TREX1
deficiency,
Aicardi–
Goutieres
syndrome 1
(AGS1) | nopathies Mutations in TREX1, encoding nuclease involves in clearing cellular nucleic debris | AR
AD° | Not assessed | Not
assessed | Intracellular accumulation of abnormal single-stranded (ss) DNA species leading to increased CSF alpha-IFN production | Progressive encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia Elevated hepatic transaminases Chronic cerebrospinal fluid (CSF) lymphocytosis | 606609 | | (b) RNASEH2B
deficiency,
AGS2 | Mutations in RNASEH2B,
encoding nuclease subunit
involves in clearing cellular
nucleic debris | AR | Not assessed | Not
assessed | Intracellular
accumulation of
abnormal ss-DNA
species leading to
increased CSF
alpha-IFN
production | Progressive encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia Elevated hepatic transaminases Chronic CSF lymphocytosis | 610326 | | (c) RNASEH2C
deficiency,
AGS3 | Mutations in RNASEH2C,
encoding nuclease subunit
involves in clearing cellular
nucleic debris | AR | Not assessed | Not
assessed | Intracellular
accumulation of
abnormal ss-DNA
species leading to
increased CSF
alpha-IFN
production | Progressive encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia Elevated hepatic transaminases Chronic CSF lymphocytosis | 610330 | | (d) RNASEH2A
deficiency,
AGS4ª | Mutations in RNASEH2A,
encoding nuclease subunit
involves in clearing cellular
nucleic debris | AR | Not assessed | Not
assessed | Intracellular
accumulation of
abnormal ss-DNA
species leading to
increased CSF
alpha-IFN
production | Progressive
encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia Elevated hepatic transaminases Chronic CSF lymphocytosis | 606034 | Table 4 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Circulating
T cells | Circulating
B cells | Functional
defect | Associated features | OMIM
number | |---|--|-------------|------------------------|------------------------|--|---|----------------| | (e) SAMHD1
deficiency,
AGS5 | Mutations in SAMHD1, encoding negative regulator of the immunostimulatory DNA response | AR | Not assessed | Not
assessed | Induction of the cell intrinsic antiviral response, apoptosis, and mitochondrial DNA destruction leading to increased CSF alpha-IFN production | Progressive encephalopathy intracranial calcifications Cerebral atrophy, leukodystrophy HSMG, thrombocytopenia, anemia elevated lactates Chronic CSF lymphocytosis Skin vasculitis, mouth ulcers, arthropathy | 612952 | | (f) ADAR1
deficiency,
AGS6 | Mutations in <i>ADAR1</i> ,
encoding an RNA-specific
adenosine deaminase | AR | Not assessed | Not
assessed | Catalyzes the
deamination of
adenosine to
inosine in dsRNA
substrates
markedly elevated
CSF IFN-alpha | Progressive encephalopathy intracranial calcification Severe developmental delay, leukodystrophy | 615010 | | (g) Spondylo
enchondro-
dysplasia with
immune
dysregulation
(SPENCD) | Mutations in ACP5,
encoding tartrate-resistant
acid phosphatase (TRAP) | AR | Not assessed | Not
assessed | Upregulation of
IFN-alpha and type
I IFN-stimulated
genes | Recurrent bacterial and viral infections, intracranial calcification SLE-like autoimmunity (Sjögren's syndrome, hypothyroidism, inflammatory myositis, Raynaud's disease and vitiligo), hemolytic anemia, thrombocytopenia, skeletal dysplasia, short stature | 607944 | XL, X-linked inheritance; AR, autosomal recessive inheritance; AD, autosomal dominant inheritance; FHL, familial hemophagocytic lymphohistiocytosis; HLH, hemophagocytic lymphohistiocytosis; HSMG, hepatosplenomegaly; DN, double negative; SLE, systemic lupus erythematous; IBD, inflammatory bowel disease; CSF, chronic cerebrospinal fluid. Fourteen new disorders have been added to **Table 4**. Two new entries have been added in the table, including immune dysregulation with colitis and Type 1 interferonopathies. EBV-driven lymphoproliferation is also observed in MAGT1 deficiency (**Table 1**). Table 5 | Congenital defects of phagocyte number, function, or both. | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Affected function | Associated features | OMIM
number | |--|--|-------------|----------------|----------------------------|--------------------------------|---| | Defects of neutrophil f | unction | | | | | *************************************** | | (a) Severe congenital
neutropenia 1 (ELANE
deficiency) | Mutation in <i>ELANE</i> : misfolded protein response, increased apoptosis | AD | N | Myeloid
differentiation | Susceptibility to MDS/leukemia | 202700 | | (b) SCN2ª (GFI 1 deficiency) | Mutation in <i>GFI1</i> : loss of repression of ELANE | AD | N | Myeloid
differentiation | B/T lymphopenia | 613107 | ^aTen or fewer unrelated cases reported in the literature. ^b Somatic mutations of TNFRSF6 cause a similar phenotype (ALPS–sFAS), see **Table 9**. Germinal mutation and somatic mutation of TNFRSF6 can be associated in some ALPS–FAS patients. ^{*}AR ALPS-FAS patients have a most severe clinical phenotype. ^d Somatic mutations in KRAS or NRAS can give this clinical phenotype associated autoimmune leukoproliferative disease (RALD) and are now included in **Table 9** entitled phenocopies of PID. ^{*}De novo dominant TREX1 mutations have been reported. ### Table 5 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Affected function | Associated features | OMIM
number | |---|---|--------------------------|-------------------|---|--|----------------| | (c) SCN3 (Kostmann
disease) | Mutation in <i>HAX1</i> : control of apoptosis | AR | N | Myeloid
differentiation | Cognitive and neurological defects in patients with defects in both HAX1 isoforms, susceptibility to MDS/leukemia | 610738 | | (d) SCN4 (G6PC3
deficiency) | Mutation in <i>G6PC3</i> : abolished enzymatic activity of glucose-6-phosphatase, aberrant glycosylation, and enhanced apoptosis of N and F | AR | N + F | Myeloid
differentiation,
chemotaxis, O₂
production | Structural heart defects,
urogenital abnormalities, inner
ear deafness, and venous
angiectasias of trunks and limbs | 612541 | | (e) SCN5 | Mutation in VPS45 controls vesicular trafficking | AR | N + F | Myeloid
differentiation,
migration | Extramedullary hematopoiesis,
bone marrow fibrosis,
nephromegaly | 615285 | | (f) Glycogen storage
disease type 1b | Mutation in <i>G6PT1</i> :
glucose-6-phosphate
transporter 1 | AR | N + M | Myeloid
differentiation,
chemotaxis, O ₂
production | Fasting hypoglycemia, lactic acidosis, hyperlipidemia, hepatomegaly | 232220 | | (g) Cyclic neutropenia | Mutation in <i>ELANE</i> : misfolded protein response | AD | · N | Differentiation | Oscillations of other leukocytes and platelets | 162800 | | (h) X-linked
neutropenia/ª
myelodysplasia | Mutation in WAS: regulator of actin cytoskeleton (loss of auto-inhibition) | XL, gain-of-
function | N + M | Mitosis | Monocytopenia | 300299 | | (i) P14/LAMTOR2
deficiency ^a | Mutation in <i>ROBLD3/LAMTOR2</i> : endosomal adaptor protein 14 | AR | N + L
Mel | Endosome
biogenesis | Neutropenia
Hypogammaglobulinemia
↓ CD8 cytotoxicity
Partial albinism
Growth failure | 610389 | | (j) Barth syndrome | Mutation in tafazzin (TAZ)
gene: abnormal lipid structure
of mitochondrial membrane,
defective carnitine metabolism | XL | N | Myeloid
differentiation | Cardiomyopathy, myopathy, growth retardation | 302060 | | (k) Cohen syndrome | Mutation in <i>COH1</i> gene: Pg
unknown | AR | N | Myeloid
differentiation | Retinopathy, developmental delay, facial dysmorphisms | 216550 | | (I) Clericuzio syndrome
poikiloderma with
neutropenia
2. Defects of motility | Mutation in <i>C16ORF57</i> , affects genomic integrity | AR | N | Myeloid
differentiation | Poikiloderma, neutropenia, MDS | 613276 | | (a) Leukocyte
adhesion deficiency
type 1 (LAD1) | Mutation in <i>ITGB2</i> : adhesion protein (CD18) | AR | N + M +
L + NK | Adherence,
chemotaxis,
endocytosis,
T/NK cytotoxicity | Delayed cord separation, skin
ulcers
Periodontitis
Leukocytosis | 116920 | | (b) Leukocyte
adhesion deficiency
type 2 (LAD2)ª | Mutation in <i>FUCT1</i> :
GDP-fucose transporter | AR | N + M | Rolling,
chemotaxis | Mild LAD type 1 features plus
hh-blood group plus mental and
growth retardation | 266265 | | (c) Leukocyte
adhesion deficiency
type 3 (LAD3) | Mutation in <i>KINDLIN3</i> :
Rap1-activation of β1–3
integrins | AR | N + M +
L + NK | Adherence,
chemotaxis | LAD type 1 plus bleeding tendency | 612840 | | (d) Rac 2 deficiencyª | Mutation in <i>RAC2</i> : regulation of actin cytoskeleton | AD | N | Adherence,
chemotaxis, O ₂ -
production | Poor wound healing,
leukocytosis | 602049 | Table 5 | Continued | Disease | Genetic defect/
presumed pathogenesis | Inheritance | Affected cells | Affected function | Associated features | OMIM
number | |--|--|-------------|-------------------------|--|---|----------------| | (e) β-Actin deficiency* | Mutation in <i>ACTB</i> :
cytoplasmic actin | AD | N+M | Motility | Mental retardation, short stature | 102630 | | (f) Localized juvenile
periodontitis | Mutation in <i>FPR1</i> : chemokine receptor | AR | Ν | Formylpeptide
induced
chemotaxis | Periodontitis only | 136537 | | (g) Papillon–Lefèvre
syndrome | Mutation in <i>CTSC</i> : cathepsin C activation of serine proteases | AR | N + M | Chemotaxis | Periodontitis, palmoplantar
hyperkeratosis in some patients | 245000 | | (h) Specific granule
deficiency ^a | Mutation in <i>C/EBPE</i> ; myeloid transcription factor | AR | N | Chemotaxis | Neutrophils with bilobed nuclei;
absent secondary granules and
defensins | 245480 | | (i)
Shwachman–
Diamond syndrome | Mutation in <i>SBDS</i> : defective ribosome synthesis | AR | N | Chemotaxis | Pancytopenia, exocrine
pancreatic insufficiency,
chondrodysplasia | 260400 | | 3. Defects of respiratory | | VI | N 1 - N 4 | Danie w s 🗢 | D | 000/ | | (a) X-linked chronic
granulomatous
disease (CGD) | Mutation in <i>CYBB</i> : electron transport protein (gp91phox) | XL | N + M | Killing (faulty O_2^- production) | Recurrent bacterial infection, susceptibility to fungal infection, inflammatory gut manifestations McLeod phenotype in patients with deletions extending into the contiguous Kell locus | 306400 | | (b) Autosomal
recessive CGD – p22
phox deficiency | Mutation in <i>CYBA</i> : electron transport protein (p22phox) | AR | N + M | Killing (faulty O_2^- production) | Recurrent bacterial infection,
susceptibility to fungal infection,
and inflammatory gut
manifestations | 233690 | | (c) Autosomal
recessive CGD – p47
phox deficiency | Mutation in <i>NCF1</i> : adapter protein (p47phox) | AR | N + M | Killing (faulty O_2^- production) | Recurrent bacterial infection,
susceptibility to fungal infection,
and inflammatory gut
manifestations | 233700 | | (d) Autosomal
recessive CGD – p67
phox deficiency | Mutation in <i>NCF2</i> : activating protein (p67phox) | AR | N + M | Killing (faulty O_2^- production) | Recurrent bacterial infection,
susceptibility to fungal infection,
inflammatory gut
manifestations | 233710 | | (e) Autosomal
recessive CGD – p40
phox deficiency ^a | Mutation in <i>NCF4</i> : activating protein (p40phox) | AR | N + M | Killing (faulty O_2^- production) | Inflammatory gut
manifestations only | 601488 | | Mendelian susceptibili (a) IL-12 and IL-23 receptor β1 chain deficiency | ity to mycobacterial disease (MSMD
Mutation in <i>IL-12RB1</i> : IL-12 and
IL-23 receptor β1 chain |)
AR | L+NK | IFN-γ secretion | Susceptibility to Mycobacteria and Salmonella | 209950 | | (b) IL-12p40 deficiency | Mutation in <i>IL-12B</i> : subunit p40 of IL-12/IL-23 | AR | М | IFN-γ secretion | Susceptibility to <i>Mycobacteria</i> and <i>Salmonella</i> | 161561 | | (c) IFN-γ receptor 1 deficiency | Mutation in <i>IFNGR1</i> : IFN-γR
ligand binding chain | AR, AD | M + L | IFN-γ binding
and signaling | Susceptibility to <i>Mycobacteria</i> and <i>Salmonella</i> | 107470 | | (d) IFN-γ receptor 2
deficiency | Mutation in <i>IFNGR2</i> : IFN-γR accessory chain | AR | M + L | IFN-γ signaling | Susceptibility to Mycobacteria and Salmonella | 147569 | | (e) STAT1 deficiency
(AD form) ^a | Mutation in <i>STAT1</i> (loss of function) | AD | M + L | IFN-γ signaling | Susceptibility to Mycobacteria | 600555 |