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Figure 2. Donor BM—derived progenitors comprise the long-term peripheral Treg pool. Lethally irradiated C3H recipients underwent transplantation as in Figure 1:
(B6 — C3H). The rates of CD45.2" spleen cell-derived (broken lines) and CD45.2~ BM—derived (solid lines) Treg in CD4*Foxp3™ Treg are shown. Spleen (A) and
mesenteric lymph nodes (MLN) {B) were isolated from (B6 — C3H) mice at various time points after BMT and cells were analyzed by fluorescent activated cell sorter.
(C) Lethally irradiated C3.SW (H-2%) recipients underwent transplantation from B6 (H-2") donors. The rates of CD45.2* splenic T cell-derived (broken lines) and
CD45.2™ BM—derived (solid lines) Treg in CD4*Foxp3* Treg in the spleen are shown. Each group consisted of 20 to 23 mice. The means (::SE) of each group are
shown. Data are from a representative of at least 2 independent experiments. (D) CD25%CD4" Treg were purified from the spleens of (B6 — C3H) mice (on day 120) or
naive B6 (WT). B6 CD4*CD25™ T cells (Tcon) together with various numbers of Treg were cultured with irradiated C3H CD11¢” DC as stimulators for 72 hours.

Proliferative activities were determined by monitoring >H-thymidine uptake.

parameters: weight loss, posture, activity, fur texture, and skin integrity
(maximum index, 10), as described previously {22}, Shaved skin from the
interscapular region (approximately 2 cm?), liver, and salivary gland speci-
mens of recipients were fixed in 10% formalin, embedded in paraffin,
sectioned, mounted on slides, and stained with hematoxylin and eosin. Skin
slides were scored on the basis of dermal fibrosis, fat loss, inflammation,
epidermal interface changes, and follicular drop out (0 to 2 for each category;
the maximum score was 10) {21}, Liver slides were scored based on bile duct
injury and inflammation (0 to 4 for each category), and the maximum score
was 8 {251 Salivary gland slides were scored based on atrophy and inflam-
mation (0 to 3 for each category), and the maximum score was 6. All slides
were scored by pathologists (T.K. and T.T.) blind to experimental group.

Immunohistochemistry

Immunohistochemical staining for Foxp3 and CD3 was performed using
the high polymer (HISTOFINE simple stain, NICHIREI, Tokyo, Japan) method.
Anti-Foxp3 (eBioscience) and anti-CD3 (Abcam, Cambridge, MA) were used
to identify Tregs and effector T cells, respectively.

Flow Cytometry

The mAbs used were unconjugated anti-CD16/32 (2.4G2); FITC-, PE-,
PerCP-, or APC-conjugated anti-mouse CD4, CD25, CD45.1, CD45.2, H-2% H-
24 (BD Pharmingen, San Diego, CA); and Foxp3 (eBioscience, San Diego, CA),
as described previously {2¢]. A Foxp3 staining kit (eBioscience) was used for
intracellular staining. Cells were analyzed on a FACSAria flow cytometer
with FACSDiva software (BD Immunocytometry Systems, San Diego, CA).

Mixed Leukocyte Reaction

CD4*CD25™ T cells, CD4"CD25* T cells, and CD11c¢* DC were magneti-
cally separated by AutoMACS using microbeads from a CD47CD25" regula-
tory T cell isolation kit and CD11c microbeads. CD4*CD25™ T cells (5 x 10% per
well) together with various numbers of CD257CD4" T cells (0 to 5 x 10? per
well) were cultured with irradiated (30 Gy) CD11c* DC as stimulators for
72 hours in 96-well round-bottomed plates. Cells were pulsed with 3H-
thymidine (1 pCi [.037 MBq] per well) for a further 16 hours | 27 . Proliferation
was determined using Topcount NXT (Packard Instruments, Meriden, CT).

Statistics

Data are given as means - SEM. The survival curves were plotted using
Kaplan-Meier estimates. Group comparisons of pathology scores were per-
formed using the Mann-Whitney U test. Comparative analysis of cell ratios
was performed by the unpaired 2-tailed Student t-test or Welch's t-test. In
all analyses, P < .05 was taken to indicate statistical significance.

RESULTS
Kinetics of Treg Reconstitution after Allogeneic BMT

We first examined whether Tregs intermixed in the graft
persist in the host for long periods post BMT using the MHC-
mismatched model of BMT. Lethally irradiated C3H (H-2)
recipient mice received 10 x 10% TCD-BM cells from B6.Ly-5a
(H-2°,CD45.1) mice with/without 1 to 2 x 10° spleen cells
from B6 (H-2°,CD45.2) mice. All of the recipients of allogeneic
C3H TCD-BM cells from B6 mice and syngeneic mice survived
and were resistant to induction of GVHD. Although 100% of
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Figure 3. Effects of CSA and mTOR inhibitors on the Treg compartment. Lethally irradiated C3H recipients underwent transplantation from B6 donor mice as shown
in Figure 1 and received i.p. injections of CSA (closed squares), mTOR inhibitor (rapamycin, RAPA; open triangles), or vehicle control (open squares) daily from day 0 to
110. The rates of CD45.2* splenic T cell—derived (broken lines) and CD45.2~ BM—derived (solid lines) Treg in CD4*Foxp3* Treg are shown. Spleen (A) and mesenteric
Iymph nodes (MLN) (B) were isolated from (B6 — C3H) mice at various time points after BMT and cells were analyzed by fluorescent activated cell sorter. Each group
consisted of 16 to 23 mice. The means (+SE) of each group are shown. Data are from a representative of at least 2 independent experiments.

the animals that received allogeneic BM plus 2 x 10° spleen
cells died by day 35 with clinical and histopathological signs
of severe GVHD, the recipients of allogeneic BM plus 1 x 10°
spleen cells (BM plus Sp cells) showed mild clinical signs of
GVHD and 60% survived by day 120 (Figure 1A); the following
experiment was performed in this setting. Flow cytometric
analysis of donor cell chimerism in the spleen 3 weeks after
allogeneic BMT showed that 98.8% + 0.7% of spleen cells were
derived from the donor in mice, thus confirming complete
donor cell engraftment. Host Tregs, as determined by
CD4"Foxp3tH-2%*, were not detected in the spleen on day 21
post transplantation (data not shown). On day 21 post
transplantation, the majority of CD4"Foxp3™ Tregs were
derived from CD45.2% splenic T cells (83.4% + 2.2%), sug-
gesting that splenic T cell-derived Tregs underwent ho-
meostatic and/or alloantigen-driven expansion (Figure 1B)
and the absolute number of Tregs in the spleens of the re-
cipients of BM plus Sp cells was significantly higher than in
TCD-BM recipients. From day 21 onward, due to GVHD-
induced lymphopenia, the absolute number of Tregs in the

spleens of recipients of BM plus Sp cells was lower than in
TCD-BM recipients (Figure 1C). The rate of CD45.2" splenic T
cell—derived Tregs in CD4*Foxp3™* Treg decreased gradually
and most CD4%Foxp3*t Treg were CD45.1%" BM-derived
(93.2%) on day 125 post transplantation (Figure 2A). The
rate of CD45.1" BM-derived Tregs in the mesenteric lymph
nodes (MLN) was also increased and became dominant in the
late post-transplantation period (Figure ZB). To exclude
strain-dependent artifacts, we next evaluated the kinetics of
Treg reconstitution in the B6 (H-2P) into C3.SW (H-2P) MHC-
compatible, multiple minor histocompatibility antigen
(miHA)-incompatible model of SCT. The Kinetics of Treg
reconstitution in the spleen was similar and most
CD4*Foxp3™ Tregs were derived from CD45.17 BM (97%) on
day 90 post transplantation (Figure 2C). These findings indi-
cated that the peripheral Treg pool was restored first by
expanded splenic T cell-derived mature Treg and then by
new Tregs generated from donor BM-derived progenitors.
Next, to examine the function of newly arising Tregs, purified
CD47CD25% T cells on day 120 post transplantation were
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Figure 4. CSA, but not mTOR, inhibitors hampered reconstitution of BM-derived Treg. (B6 — C3H) mice received i.p. injections of CSA (black bars), mTOR inhibitor
(rapamycin, RAPA; gray bars), or vehicle control (white bars) daily from day 0 to 110. The absolute numbers of Treg in the spleen (A), MLN (B), and thymus (C) are
shown. Each group consisted of 19 to 26 mice. The means (+SE) of each group are shown. Data are from a representative of at least 2 independent experiments.

*P <.05; *P < .01,
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assessed for their ability to inhibit proliferation by respond-
ing syngeneic CD47CD25™ B6 T cells. Their suppressive ac-
tivity was virtually indistinguishable from that of Tregs
obtained from normal B6 mice (Figure ZD). Taken together,
Tregs generated from donor BM-derived progenitors
comprise the long-term peripheral Treg pool and exhibit
immunosuppressive activity.

CSA, but Not mTORinhibitors, Hampered Reconstitution
of BM-derived Treg

Coenen et al. reported that 28 days of CSA administration
hampered Treg homeostasis in normal mice [28]. We
examined whether the use of CSA for an extended period
affected the long-term peripheral Treg pool after BMT. C3H
recipient mice underwent transplantation from B6 donor
mice (as shown in Figure 1) and received i.p. injection of CSA,
mTOR inhibitor (rapamycin; RAPA), or vehicle control daily
from day 0. We analyzed the effects of CSA and RAPA on the
Treg compartment at 21, 35, 56, and 110 days post hemato-
poietic cell transplantation. Mice treated with CSA or RAPA
showed the same Treg reconstitution pattern as those
treated with vehicle solution. On day 21 post transplantation,
the majority of CD4"Foxp3* Tregs in the spleen were
CD45.2" splenic T cell—derived cells but the Treg compart-
ments were dominated by BM-derived cells on days 56 and
110 post transplantation in all 3 groups (Figure 3A). In the
MLN, these 3 groups also showed similar Treg reconstitution
kinetics (Figure 3B). There were no differences in the abso-
lute numbers of Treg among the 3 groups on day 21. From
day 21 onward, however, the absolute numbers of Tregs in
the CSA-treated mice were lower than those in control mice
both in the spleen (day 56: 1.3 + .4 versus 4.6 + .8 x 10°,
P < .01: day 110: 10.4 & 1.4 versus 16.7 = 2.4 x 10°, P < .05)
(Figure 4A) and in the MLN (day 56: 13 + .5 versus
74 + 16 x 104 P < 03; day 110: 29 + 1.0 versus
49+ 1.9 x 10°, P = 46) (Figure 4B). Especially in the thymus,
mice treated with CSA showed a marked reduction in the
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absolute numbers of Tregs compared with those treated with
vehicle control (day 110: 4.6 + 1.8 versus 25.7 + 5.0 x 104,
P < .01) (Figure 4C). In contrast to mice treated with CSA,
mice treated with RAPA showed no reduction in the absolute
numbers of Tregs and no differences compared with control
mice in the spleen or MLN at any time point post trans-
plantation (Figure 4AB). The absolute numbers of newly
arising Tregs in the thymus were also not reduced in mice
treated with RAPA (Fizure 4C). We next examined the effects
of another mTOR inhibitor, everolimus (RAD), which exhibits
greater polarity than RAPA and has been approved in Europe
for use as an immunosuppressant for prevention of cardiac
and renal allograft rejection. Reconstitution of newly arising
Tregs in the thymus was not impaired in mice treated with
RAD, and there were no differences in the absolute numbers
of spleen Tregs compared with control mice on day 110
(spleen: 15.4 + 2.5 versus 16.6 & 2.4 x 10°, P = .73, Supple-
mental Figure 1A; thymus: 17.4 + 3.2 versus 25.7 -+ 5.0 x 10%,
P = 26, Supplemental Figure 18), These findings suggested
that CSA, but not mTOR inhibitors, hampered the long-term
reconstitution of BM-derived Tregs.

CSA, but Not mTOR Inhibitors, Increased Liability to
Chronic GVHD

Recent studies revealed the association of reduced Treg
frequency in patients with chronic GVHD. In the present
study, we examined histopathological change in CSA-treated
mice where reconstitution of BM-derived Tregs was
impaired. The skin of CSA-treated mice showed pathogenic
features of chronic GVHD (Figure 5A), and pathogenic scores
revealed significantly exacerbated chronic GVHD pathology
compared with those treated with vehicle control (5.5 + .8
versus 1.6 .3, P <.01) (Figure 5B). A dry mouth is one of the
distinctive features of chronic GVHD. Lymphocytic inflam-
mation, fibrosis, and atrophy of acinar tissue were observed
in the salivary glands of CSA-treated mice (Figure 5A) and
pathological scores were significantly higher in CSA-treated
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Figure 5. CSA, but not mTOR, inhibitors increased the likelihood of chronic GVHD. (A) Histological findings of the skin (a to d), liver (e to h), and salivary glands (i to 1)
(on day 120) from (B6 — C3H) mice given CSA, mTOR inhibitor (RAPA, RAD), or vehicle control. Sclerodermatous skin changes, such as epidermal atrophy, fat loss,

follicular dropout, and dermal thickness (b); fibrosis in the portal area and peripheral mononuclear cells infiltrates in the liver (f); and fibrosis and atrophy of acinar
tissue in the salivary glands (j) were observed (original magnification: x 100) Pathological scores of skin (B), salivary gland (C) and liver (D). The data are expressed as
means - SE. Data are from a representative of at least 2 independent experiments. *P < .05; **P < .01.
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mice than in the controls (4.0 & .5 versus 1.8 + .1, P < .01)
(Figure 5C). CSA-treated mice showed bile duct injury and
fibrosis in the portal area and peripheral mononuclear cell
infiltration in the liver and pathological scores of the liver
also tended to be worse in CSA-treated mice, as compared
with those treated with vehicle control, although it was not
statistically significant (Figure 3D). In contrast to mice
treated with CSA, mice treated with RAPA showed no
pathogenic features of chronic GVHD and there were no
differences in pathogenic skin and salivary gland scores, as
compared with control mice (skin: .75 £ .4 versus 1.6 & .3,
P = .18, Figure 5B; salivary gland: 1.25 £ .2 versus1.78 + .1,
P =.08, Figure 5C). Immunohistochemical staining for Foxp3
and CD3 revealed that CD3* T cells infiltrated in the skin
tissue of all 3 groups, and RAD-treated mice showed
abundant infiltration by CD3% T cells and Foxp3* cells
(Figure BA). In contrast to RAD, Foxp3™ cells were scarcely
found in skin tissue of CSA-treated mice. The ratio of Foxp3
Tregs per 100 CD3* lymphocytes in the skin tissue of
CSA-treated mice was significantly lower than those in
RAD-treated mice (3.23 & .4 versus 19.5 £ 4.4, P <.05). CSA-
treated mice tended to show poorer survival, as compared
with those treated with mTOR inhibitors or vehicle control
(CSA 27.6% versus control 54.2%, RAD 57.1%, RAPA 61.5%,
P = .28, Supplemental data Figure 2). These findings sug-
gested that CSA, but not mTOR inhibitors, hampered the
reconstitution of BM-derived Treg and increased liability to
chronic GVHD.
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We next tested liability to chronic GVHD in CSA-treated
mice using adoptive transfer experiments. Previously,
Sakoda et al. demonstrated that impaired thymic negative
selection of the recipients permitted the emergence of
pathogenic T cells that cause chronic GVHD (Figure 7A) {23},
Lethally irradiated C3H recipients were reconstituted with
TCD BM from MHC class IlI-deficient (H2-Ab17/~) B6 mice
([H2-Ab1~/~ —C3H]). These mice developed disease condi-
tions that showed all of the clinical and histopathological
features of human chronic GVHD. CD4* T cells isolated from
chronic GVHD mice ([H2-Ab1~/ ~—C3H] CD4* T cells) cause
chronic GVHD when B6 antigens are provided by hemato-
poietic cells in the absence of B6 antigen expression on
target epithelium ([B6 — C3H] chimeras) {231. In the current
study, C3H mice underwent transplantation from B6 donors
as shown in Figure 1 and were orally administered CSA,
RAPA, or vehicle solution until 60 days post BMT, when none
of the recipients showed significant signs of chronic GVHD.
To test liability to chronic GVHD, these C3H-recipient mice
with B6-derived antigen presenting cells received adoptive
transfer of [H2-Ab17/~—C3H] CD4* T cells (Figure 7B). As
shown in Figure 7C and D, adoptive transfer of pathogenic
CD4™" T cells caused severe weight loss (CSA 81.1 + 4.1%
versus control 94.5 + 2.1%, P < .05; and CSA 81.1 + 4.1%
versus RAPA 98.9 + 1.5%, P <.01) and chronic GVHD in CSA-
treated mice, with a mortality rate of 83%. RAPA-treated
mice and controls showed resistance to induction of
chronic GVHD by transfer of pathogenic CD4™ T cells; the
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Figure 6. CSA, but not mTOR, reduces Treg infiltration in skin tissue. (A) Lethally irradiated C3H recipients underwent transplantation from B6 donor mice as shown
in Figure 1 and received vehicle control (a, d), CSA (b, ), or mTOR inhibitor (RAD; ¢, f), daily from day 0 to 120. Immunohistochemical staining was performed using
anti-Foxp3 (a to ¢) and anti-CD3 (d to f) antibodies on day 120. Arrows indicate Foxp3 positive cells. (B) The ratio of Foxp3 Tregs per 100 CD3* lymphocytes. The
number of CD3 and Foxp3 cells was counted in all the high-power fields. Results are expressed as mean + SD. Pictures and data are from a representative of 2

independent experiments. (n = 3 to 4 per group). *P < .05.
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Figure 7. Adoptive transfer of pathogenic CD4™ T cells caused severe chronic GVHD. (A} Lethally irradiated C3H recipients were reconstituted with TCD BM from MHC
class N-deficient (H2-Ab17/~) B6 mice, These mice developed chronic GVHD and CD4" T cells isolated from chronic GVHD mice ([H2-Ab17/~ = C3H] CD4™ T cells)
were primarily donor reactive. These pathogenic CD4" Tcells cause chronic GVHD when B6 antigens are provided by hematopoietic cells in the absence of B6 antigen
expression on target epithelium ([B6 - C3H] chimeras). (B) C3H recipient mice underwent transplantation from B6 donors as shown in Figure 1 and received CSA,
RAPA, or vehicle solution until 60 days post BMT. These C3H recipient mice received adoptive transfer of [H2-Ab17/~ - C3H] CD4" T cells. Body weight change is
shown in (C) and overall survival is shown in (D), Data from 3 similar experiments are combined (n = 8 to 12 per group). The data are expressed as means =+ SE.
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survival rate on day 62 after adoptive transfer was 100%.
Taken together, these data demonstrated that CSA, but not
mTOR inhibitors, increased liability to chronic GVHD.

DISCUSSION

Patients with chronic GVHD have a lower frequency of
Tregs when compared with patients without chronic GVHD
[29-32]. Experimental BMT demonstrated that Tregs in the
1nocu1um can prevent acute GVHD when injected together
with donor T cells [ 12-14]; however, it is not known whether
Tregs in the grafts persist into the late post-transplantation
period and play a role in preventing chronic GVHD. Mas-
tuoka et al. prospectively monitored CD4™ T cell subsets and
showed that thymic generation of naive Treg was markedly
impaired and Treg levels subsequently declined in patients
with prolonged CD4* lymphopenia {32]. This resulted in a
relative Treg deficiency, which was associated with a high
incidence of extensive chronic GVHD. In the present study, we
monitored Treg reconstitution kinetics in the spleen, MLN,
and thymus according to 2 subsets, T cells derived from
peripheral-expanded mature T cells and newly arising T cells
from bone marrow stem cells, using 2 mouse BMT models
because this is difficult to examine in a human setting. The
results indicated that host Tregs disappeared rapidly in mice
receiving allogeneic T cells early in the early post-
tlansplantatlon period, consistent with a previous report
1. In addition, this study showed that splenic T cell—derived
Treg initially occupy a niche in lymphopenic transplantation
recipients, suggesting that mature Treg underwent homeo-
static andfor alloantigen-driven expansion. However, the
donor splenic T cell—derived Treg pool contracted gradually
and Tregs generated from donor BM-derived progenitors

comprised the long-term peripheral Treg pool. The BM-
derived Treg compartment was functionally competent, as
determined by in vitro lymphoid suppression, indicating that
these cells play a role in post-BMT immune tolerance.
Coenen et al. reported that 28 days of treatment with CSA
resulted in a reduction in thymic generation of CD4*Foxp3™ T
cells and peripheral CD25%Foxp3* Tcells in normal mice [281.
We assessed whether CSA affects the peripheral Treg pool
after allogeneic BMT; on day 21, there were no differences in
the absolute numbers of Tregs among 3 groups, and CSA had
no impact on early Treg reconstitution. Consistent with our
observations, Setoguchi et al. reported that in contrast to the
requirement of IL-2 for physiological expansion of
CD4™CD25" Treg cells in normal nonlymphopenic mice, ho-
meaostatic proliferation in a lymphopenic environment ap-
pears to be IL-2-independent {18]. Zeiser et al. also reported
that CSA administration has only a minor impact on the
expansion of adoptively transferred CD4*CD25" T cells on
day 7 post transplantation [34]. However, whether prolonged
use of CSA affects the long-term peripheral Treg pool has not
been reported. Our data showed that CSA, but not mTOR in-
hibitors, hampered the long-term reconstitution of BM-
derived Tregs. The numbers of Tregs in the spleen, thymus
and tissue were significantly reduced in mice receiving CSA in
comparison with those receiving mTOR inhibitors or PBS on
day 110. CSA blocks nuclear factor of activated T cells trans-
location into the nucleus by inhibiting calcineurin phospha-
tase activity {351 CSA inhibits the thymic generation of Tregs
by impairment of TCR signaling and by reducing nuclear
factor of activated T cells—dependent Foxp3 promoter activity
{36]. In contrast, rapamycin-sensitive downstream targets
of phosphatidyl-inositol 3-kinase are IL-2-independent, and
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rapamycin affects neither the initial signal transduction upon
TCR triggering nor the thymic generation of Treg {371
Immunosuppressive drugs have different mechanisms of
promoting immune suppression and our data revealed
different effects on the long-term peripheral Treg pool after
allogeneic BMT.

Although mouse models of chronic GVHD have provided
important insights into pathophysiology of this disease, one
factor that confounds the translation of findings in mouse
models to the human disease is that time course of devel-
opment of chronic GVHD is more rapid in most mouse models
than in human. Another factor is that most patients are given
immunosuppressive therapy to prevent acute GVHD {38}, and
these medications might influence the development of
chronic GVHD. In this study, histopathological examination
revealed that CSA-treated mice showed pathogenic features
of chronic GVHD, whereas those treated with mTOR in-
hibitors showed no significant differences compared with
control mice. This is the first report that long-term use of CSA
induces chronic GVHD in transplant-recipient mice. This may
have been due to induction of autoreactive T cells by CSA
{39,401 Wu et al. reported that CSA contributes to chronic
GVHD in experimental models, which was ascribed to the
disruption of clonal-deletion mechanisms in the thymus,
resulting in the export of autoreactive T cells {41 |. The present
study demonstrated another mechanism by which CSA
impaired Treg reconstitution. Adoptive transfer of the path-
ogenic CD4* T cells caused severe chronic GVHD in CSA-
treated mice, whereas mTOR inhibitor-treated and control
mice showed resistance to induction of chronic GVHD. These
findings suggest that the increased liability to chronic GVHD
in CSA-treated mice might be due to limited reconstitution of
BM-derived Treg cells; further mechanistic studies will be
required to determine if this is truly causative rather than
merely an association.

Here, we assessed the differential effects of CSA and
mTOR inhibitors on the long-term peripheral Treg pool after
allogeneic BMT. Our findings indicated that, in contrast to
mTOR inhibitors, CSA compromises homeostasis in periph-
eral immune compartments and thymic generation of
CD47CD25% Foxp3™ T cells. GVHD prophylaxis with mTOR
inhibitor and calcineurin inhibitor failed to reduce chronic
GVHD {11,42-451. The choice of calcineurin inhibitor—free
GVHD prophylaxis with mTOR inhibitors, such as mTOR in-
hibitors plus IL-2 { i€} or mTOR inhibitors plus antithymocyte
globulin {46} may have important implications for the con-
trol of chronic GVHD after BMT.
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Toxicity Tolerability Problem
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Abstract

Following phase | dose-finding oncology trials completed in Western countries, Asian investigators often conduct further phase |
trials to determine the maximum tolerated dose for Asian patients. This may be due to concerns about possible differences in
treatment tolerability between Caucasian and Asian patient groups. Our proposed approach aims to appropriately borrow
strength from a previous Caucasian trial to improve the maximum tolerated dose determination in an Asian population of
patients. We design an Asian phase | trial using the Bayesian continual reassessment method. First we analyze toxicity data from
a Caucasian trial to derive the prior distributions for a subsequent Asian trial. Then, we calibrate the informativeness of the prior
distributions according to prior effective sample size defined by Morita et al. Extensive simulation studies demonstrate favourable
operating characteristics of the proposed method, compared with two methods based on power and noninformative priors,
respectively.

Keywords
dose finding, phase | study design, historical data, prior effective sample size, continual reassessment method

Introduction Our proposed approach aims to appropriately borrow
strength from a previous Caucasian trial to improve the MTD
determination in an Asian population of patients. We design
an Asian phase I dose-finding trial using the Bayesian continual
reassessment method,*’ even if other Bayesian designs can be
used. The continual reassessment method is a model-based
method that enables us to utilize all available prior information

In this paper, we propose an approach to incorporating his-
torical data to establish prior distributions for a dose-finding
clinical trial to develop an anticancer agent. Following
phase I dose-finding trials completed in Western countries,
Asian investigators often conduct further phase I trials to
determine the maximum tolerated dose (MTD) for Asian
patients. This may be due to concerns about possible differ-
ences in treatment tolerability between Caucasian and Asian
patient groups. In several cases, different treatment MTDs
were estimated for Asians and Caucasians.'? For example,
phase I studies of capecitabine (Xeloda) monotherapy ' Department of Biostatistics and Epidemiology, Graduate School of Medicine,
undertaken in Caucasians identified 1657 mg/m® as the )okohama City University, Yokohama, Japan
MTD.>* After these studies were completed, a phase 1 trial Tilko),s:j:;:: Group, Data Science, Global Development, Astellas Pharma Inc,
in Japanese patients determined a higher dose level, 2510 3 pepartment of Biomedical Statistics and Bioinformatics, Graduate School of
mg/mz, as the MTD for Japanese patients.s Taking into  Medicine, Kyoto University, Kyoto, Japan
account the recent trend of the globalization of new drug
development, it may be worth considering the relevant use
of historical data from a previous trial to design and conduct
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a subsequent trial in a new region. It should, however, be Astellas Pharma Inc, 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8411,
noted that an overly use of prior information may rather |00,
degrade the study design of a subsequent trial. Email: kentaro.takeda@astellas.com
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through prior distributions of the model parameters. First, we
analyze toxicity data from a Caucasian trial to derive the priors
for a subsequent Asian trial. We suppose that the Caucasian
trial is conducted using a traditional “3 4 3” cohort design®
and that the same dose levels are tested commonly in Caucasian
and Asian trials. Second, we calibrate the informativeness of
the priors according to a prior effective sample size (ESS).”'
Morita et al'® wrote that the prior ESS provides a useful tool for
understanding the impact of prior assumptions in Bayesian
study design and data analysis. We call these priors based on
the prior ESS “ESS priors.” Finally, we conduct the Asian
phase I trial using the continual reassessment method with the
ESS priors.

In our study, we compare our proposed method with two
methods based on power and noninformative priors, respec-
tively, in terms of their performance in estimating MTD in a
subsequent Asian dose-finding study. The power prior was pro-
posed by Ibrahim and Chen'' to allow investigators to incorpo-
rate and downweight historical data. The power prior raises the
likelihood of historical data to a power parameter, ag € [0, 1],
that controls how much strength to borrow from the historical
data: “no borrowing (ag = 0)” to “full borrowing (ag = 1).”

This paper is organized as follows. In the next section, we
outline the Bayesian study designs of an Asian phase I trial
incorporating historical data from a previously conducted Cau-
casian phase I trial. We conduct extensive simulation studies to
examine the operating characteristics of our proposed method
in the subsequent section. We close with a brief discussion.

Probability Model and Study Designs

We compare the methods embedded with the 3 types of priors:
the ESS, power, and noninformative priors. Note that the dif-
ference among the 3 methods is only in establishing the priors
that are to be assumed in the Asian trial.

Preliminary Notation and Probability Model for Toxicity

Let Do and D4 denote data from the Caucasian and Asian
trials, respectively. That is, D¢ and Dy correspond to the his-
torical data and the current study data, respectively. Suppose
that both Caucasian and Asian phase I trials are conducted to
investigate a single anticancer agent with the same dose levels.
Each patient receives one of J doses denoted by d,...,d;,
with standardized doses x; = d;/s.d.(d,---,d;), where, s.d.
abbreviates standard deviation. As described in the introduc-
tion, we suppose that, for simplicity, the same dose levels are
tested commonly in Caucasian and Asian trials. However, it
is not difficult to extend our proposed method to cases where
different dose levels are examined between two populations
of patients.
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We use a two-parameter logistic model to derive the priors
based on the previous Caucasian data, as well as to design and
conduct a subsequent Asian phase I trial. The outcome variable
is the indicator Y) = 1 if a patient 7 suffers toxicity, 0 if not.
Denoting the probability of toxicity under dose x; by
n{x;, o, B), we assume the following two-parameter logistic
model,

exp(o + ;) (1)
I +exp(o+py)
with the intercept and slope parameters o and 3. We assume a
normal prior for o as

n(x;, o, B) = Pr(Y; = l|x;, 0, B) =

o~ N(Mw Ya) (2)
To constrain P to be positive, we assume a gamma prior for

B as

B~ Galg (1p: vp)> &2 (Hps ¥p))s (3)
where iy and vy are the prior mean and variance of , respec-
tively, and g; (s, 1) = s*/t and gy (s, ¢) = s/t. We assume that o
and P are a priori independent. We use Markov chain Monte
Carlo to compute the posteriors,'? because the joint posterior
distribution of regression coefficient parameters is not readily
available in closed form.

Establishing ESS Prior

By analyzing the historical data D¢ using the two-parameter
logistic model (1), we compute the posterior means and var-
iances of o and P that are denoted by (ﬁq‘rc? ﬁp,c) and
(Yucr¥p.c)» respectively. For the priors of the model para-
meters in the Asian phase I trial, we propose to assume

o~ N(ﬁa,C’“’ ' ?OL,C):

B~ Ga(gi(fige,w-Vpc)s(fipew Ypo))s
where w is a constant for the prior calibration. Then we cali-
brate the prior distributions by tuning w so that the priors have
a prior ESS, m.”'° That is, we use the prior ESS as a guide to
calibrate the priors. A prior ESS quantifies the prior informa-
tion in terms of an equivalent number of hypothetical patients.
As described in the next section, in the simulation study we will
vary the values of m (e.g, m =1,2,...,10) to examine the
impact of the prior informativeness on the operating character-
istics of the study design. The algorithm to derive the prior dis-
tributions is summarized as follows:

)

Step 1: Retrospectively analyze D¢ to estimate [i, ¢, Hg c»
Ya.c» and ¥p o using the model ,

Step 2: Calibrate the informativeness of the priors (4) by tun-
ing w according to the prior ESS.

In step 1, we use the priors (2) and (3) to stabilize the retro-
spective analysis of D¢. We obtain the two estimates of the
probabilities of toxicity at two doses, the second lowest (d;)
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Table 1. True dose-toxicity relationships (true toxicity probability at 6 doses) under 2 scenarios in Caucasian patients and 6 scenarios in Asian

patients.
Dose Level
Scenario d[ d2 d3 d4 ds de
Caucasian
| 0.01 0.05 0.10 0.30 0.50 0.60
2 0.01 0.02 0.03 0.05 0.10 0.30
Asian
| 0.0l 0.05 0.10 0.30 0.50 0.60
2 0.05 0.14 0.36 0.65 0.86 0.95
3 0.10 0.30 0.50 0.60 0.70 0.80
4 0.41 0.58 0.82 0.94 0.98 0.99
5 0.01 0.02 0.03 0.05 0.10 0.30
6 0.03 0.06 0.12 0.21 0.36 0.53

Maximum tolerated doses are shown in boldface.

and second highest (d;_,), from preclinical study data. These
two probabilities give the prior means p, and H3-7 Then, we
assume the common prior variance for o and B (ie, v, = vp)
that is specified as having an appropriate amount of prior infor-
mation (prior ESS = 3) so that the priors never dominate the
posterior inference.”'°

Power and Noninformative Priors

In this study, we use the most basic version of power prior, that
is, the power prior with a fixed aq € [0, 1], rather than expres-
sing uncertainty about @y by using an additional prior distribu-
tion.!*> With D¢ as historical data, we denote the historical
likelihood by L(a, B|Dc). This likelihood is specified by the
two-parameter logistic model (1). We use the folloWing condi-
tional power prior for the parameters o and § in the Asian trial,

(o, BlDc; ao) o< L, B|Dc)*p(a, B).- (5)
In this paper we define ao as ap = nc/Nc, where N is the
total number of patients treated in the previous Caucasian trial
and nc is an integer € [1, N¢|. Note that n¢ in this power prior
plays the same role of 7 in the ESS prior.” In the simulation
study, we similarly vary the values of nc from 1 to an appropri-
ate number < N¢ as with m. With respect to p(a, ), we assume
a noninformative normal prior N{0, 10000) for o and a nonin-
formative gamma prior Ga(0.0001,0.0001) with mean 1 and
variance 10,000 for . We also use the same noninformative
priors of o and [ in the third method that is based on noninfor-
mative priors.

Trial Conduct

Recall that we suppose that the Caucasian phase I trial was con-
ducted with the traditional “3 + 3 cohort design. The Cauca-
sian trial started the dose escalation at the lowest dose d;. After
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the MTD in the Caucasian patients was determined according
to the “3 + 3” design, 12 patients were added on the MTD
level as an expansion cohort.

We carry out an Asian phase I dose-finding trial using the
continual reassessment method. That is, we have a continual
reassessment method-type goal of finding the “optimal™ dose
x*. Optimal is defined as the posterior mean of n(x*) being clo-
sest to some fixed target n*. The maximum sample size is 30,
with the cohort size of 3, starting at the lowest dose d; and not
skipping a dose level when escalating, with target toxicity
probability 7t* = 0.33. Dose assignment is based on the poster-
ior distribution conditional on all data available at the time of
the decision. This allows for a precise estimation of the dose
level with expected toxicity closest to the desired target
toxicity.

Simulation Studies
Simulation Study Design

We studied the performance of the proposed study design
embedded with the ESS prior (ESS design) by comparing it
to the two other designs with the power and noninformative
priors (power design and noninformative design) in the setting
of a new phase I trial in Asian patients. As summarized in
Table 1, we constructed 2 and 6 different toxicity scenarios
specifying dose-toxicity relations in the Caucasian and Asian
patient groups, respectively. Under all 12 combinations of the
2 and 6 scenarios, we simulated the Caucasian and Asian trials
3000 times. That is, in each of the 3000 simulations, we first
generated one set of Caucasian data, analyzed the data for the
prior derivation, and then simulated one subsequent Asian trial.
The same basic setup for the Asian trial simulations was used in
all 3 designs for a fair comparison with respect to the dose lev-
els (=6 levels; 100, 200, 300, 400, 500, 600 mg), the
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maximum number of patients per trial (= 30), cohort size
(= 3), starting dose (== d}), and target n* = .33. We investi-
gated the operating characteristics of the ESS design under
m = 1,3, and 10, and those of the power design similarly under
ne = 1,3, and 10, as described above. As reference, in the
simulations of Caucasian trials, the average number of patients
per trial was around 30. Thus, for example, ne = 3 on average
corresponds to ag = 0.1 in the simulations. We carried out the
simulation study using the integer values m = 1 to 10.
Although we drew the figures using all the values of m from
1 to 10, we described the simulation results limited to the val-
ues of m = 1, 3, and 10 in the tables.

Simulation Results

The operating characteristics for the 3 designs are summarized
in Table 2, which is organized into scenario sections. The
results are summarized in terms of the percentage of times that
each design selected each dose level as the final MTD and the
percentages of patients who were treated at each dose level.
Correct selection percentages are given in boldface. We also
report the average number of patients experiencing toxicity
in the trial. The simulation results with the 6 Asian scenarios
under Caucasian scenario 1 are shown in Table 2. For each sce-
nario section, the first rows represent the true toxicity probabil-
ities at the 6 dose levels in Asian population of patients.

Under Caucasian scenario 1 and Asian scenario 1, both
patient groups have the same MTD (= d4). The ESS and power
designs more correctly selected dy as the MTD than the nonin-
formative design, obviously due to the prior information
derived from the preceding phase I trial. With increasing m and
n¢ (incorporating more prior information), the percentage of
correct final recommendations gradually increased in both the
ESS and power designs.

Under Asian scenario 2, the ESS and power designs more
correctly selected the MTD than the noninformative design.
The correct selection percentages were higher than those
obtained under Asian scenario 1, even for the noninformative
design. These high percentages may be in part due to the setup
of the relatively high true toxicity probability ds (= .65), which
may lead to decreasing the selection of dy and increasing the
selection of ds.

Under Asian scenario 3, the ESS design appeared to perform
better than the power design in terms of selecting 5 as the
MTD for Asian patients. The difference in the performance
between those two designs may be partly due to the formula-
tions of the embedded priors. The power prior (5) in a sense
directly incorporated toxicity data observed at each of the 6
doses. Thus, it seemed that the power design more intensely
reflected the Caucasian data, especially that observed at upper
dose levels (ie, dy and ds) than the ESS design. In the
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simulations of the Caucasian trial, 28.9% and 9.3% of patients
were treated at dy and s, respectively. In contrast, the ESS
design, in this paper, constructed the two separate priors for the
intercept and slope parameters by analyzing the preceding trial
data. This formulation might lead to more desirable perfor-
mance of the ESS design. In addition, and more interesting,
it seemed that the ESS design might have an optimal range
of prior informativeness (ie, prior ESS, m) that provides the
best performance under several conditions of the study design.
Figure 1 shows the percentages of final MTD recommendation
at each dose level with respect to prior ESS values (m = 0 to
10) under Asian scenario 3. The correct MTD selection
(= dy) percentages got the highest mark in between m = 1 and
3, perhaps because the ESS priors with such prior informative-
ness played an important role as a useful guide for dose escala-
tion/de-escalation decisions early in the trial, and after
enrolling 3 patients, the information from the likelihood started
to dominate the prior, as desired. The results under the other
scenarios are shown in Appendix Figure S1.

Under Asian scenarios 4 and 5, even the noninformative
design worked sufficiently well. As expected, the frequency.
of correct MTD selection gradually decreased in both the ESS
and power designs as m and n¢ went up. Under Asian scenario
6, the ESS design seemed to perform somewhat better than the
power design.

Under Caucasian scenario 2, results and findings were sim-
ilar to those under Caucasian scenario 1 (Appendix Table S1).

Discussion

We have proposed an approach to quantifying prior informa-
tion from a previous dose-finding trial to design a subsequent
trial in a different population of patients via specified prior dis-
tributions. Our proposal is to calibrate the derived priors
according to a prior ESS. It is motivated by the idea that one
may avoid the use of an overly informative prior in the sense
that inference is dominated by the prior rather than the data.
Our simulations show that our proposed method has more
advantages over the other two methods based on the power and
noninformative priors in terms of their performance at estimat-
ing MTD in a subsequent Asian dose-finding study.

Several limitations to our proposed approach should be kept
in mind. Our approach heavily depends on the model assump-
tion—that is, the two-parameter logistic model for the dose-
toxicity relationship. As always, the robustness of our approach
to the model assumption should be evaluated before being rec-
ommended for practical use. Furthermore, the essential disad-
vantage of our approach may be in using the information
obtained from one single previous study to derive priors for a
subsequent trial in a different patient population. To deal with
this issue, an extension of our method to combine multiple
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Table 2. Simulation results using designs based on the effective sample size prior, power prior, and noninformative prior for a subsequent phase
| trial in Asian patients under Caucasian scenario |.

Dose Level Allocation %
Method d, dy ds dy ds de MTD >MTD Average Toxicity
Caucasian scenario | True toxicity prob. 0.0l 005 0.10 030 050 060"
Asian scenario | True toxicity prob. 0.0l 005 0.0 030 050 0.60
Noninformative prior 0.1 0.5 96 544 276 7.9 342 252 7.8
Effective sample size prior
m=1 0.0 0.0 63 63.0 273 34 366 267 8.1
m=3 0.0 0.0 59 635 282 2.5 380 256 8.0
m=10 % Recommendation 0.0 0.0 50 673 264 14 428 225 7.9
Power prior
ne =1 0.2 0.5 79 581 274 5.8 365 263 8.1
n.=3 0.2 0.2 73 61.2 258 5.3 377 262 8.2
n.= 10 0.1 0.3 80 645 225 46 400 236 8.0
Asian scenario 2 True toxicity prob. 005 0.14 036 065 086 0.95
Noninformative prior 07 208 685 8.8 1.2 0.0 45.9 13.6 9.1
Effective sample size prior
m=1 0.2 184 76.9 4.4 0.1 0.0 50.6 13.1 9.3
m=3 0.0 158 79.2 5.0 0.0 0.0 538 13.2 9.6
m=10 % Recommendation 0.0 87 852 6.0 0.0 0.0 58.3 16.9 10.4
Power prior
ne=1 1.0 185 72.0 79 0.6 0.1 470 172 9.8
n.=3 1.8 127 75.9 9.0 0.5 00 492 197 10.3
n.=10 1.8 84 776 120 0.2 00 482 252 1.2
Asian scenario 3 True toxicity prob.  0.10 030 050 060 070 0.80
Noninformative prior 123 56.8 253 4.4 0.9 0.3 464 290 9.5
Effective sample size prior
m=1 51 68,9 241 1.7 0.1 00 514 316 10.0
m=3 22 684 279 1.5 0.0 00 516 350 10.5
m=10 % Recommendation 0.2 53.4 442 22 0.0 0.0 365 533 1.9
Power prior
ne=1I 99 545 305 42 0.7 02 401 378 104
ne=3 100 48.1 359 53 0.5 0.2 340 451 10.9
n.=10 97 339 478 8.0 0.5 0.1 254 574 122
Asian scenario 4 True toxicity prob.  0.41 058 082 094 098 0.99
Noninformative prior 96.0 39 0.1 0.0 0.0 0.0 88.2 1.8 13.1
Effective sample size prior
m=| 96.1 39 0.0 0.0 0.0 00 831 16.9 133
m=3 92.7 73 0.0 0.0 0.0 00 736 265 3.8
m=10 % Recommendation 67.1  32.9 0.0 0.0 0.0 0.0 367 633 16.2
Power prior
ne= | 92.6 6.8 0.6 0.0 0.0 0.0 824 176 13.5
ne=73 92.1 7.2 0.6 0.0 0.0 0.0 789 211 13.8
n.= 10 88.6 0.1 1.1 0.2 0.0 00 67.1 329 14.9
Asian scenario 5 True toxicity prob.  0.01 002 003 0.05 0.10 0.30
Noninformative prior 0.0 0.0 0.0 04 9.1 90.4 406 — 4.5
Effective sample size prior
m=1 0.0 0.0 0.0 0.1 76 924 451 — 48
m=3 0.0 0.0 0.0 0.0 83 91.6 444 — 4.8
m=10 % Recommendation 0.0 0.0 0.0 0.2 1.2 88.6 393 — 44
Power prior
ne=1 0.0 0.1 0.1 0.3 96 89.9 433 — 4.7
n.=3 0.1 0.0 0.1 0.4 106 88.7 430 — 4.7
ne=10 0.0 0.2 1.7 42 120 81.9 382 — 43
(continued)
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Table 2. (continued)

Dose Level Allocation %

dy d4 ds de, MTD >MTD Average Toxicity

Method d, d,
Asian scenario 6 True toxicity prob.  0.03 0.06
Noninformative prior 0.0 0.5
Effective sample size prior
m = | 0.0 0.0
m =3 0.0 0.0
m= 10 % Recommendation 0.0 0.0
Power prior
ne=1 0.4 0.5
ne=3 0.4 0.5
n.=10 0.2 0.4

0.12 02l 0.36 053

45 279 415 256 23.6 13.7 7.0
20 313 49.1 17.7 26.6 13.6 74
1.6 324 503 15.7 27.1 1.8 7.2
1.0 359 522 10.9 28.8 7.6 6.9
38 290 435 228 23.4 16.6 7.5
32 312 43.1 21.6 23.6 16.7 7.5
39 355 415 18.6 226 14.8 7.3

Correct selection percentages are given in boldface. MTD, maximum tolerated dose.
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Figure I. Percentages of final recommended MTDs at each dose level
(d,: blue, dy: red, dj: green, dy: brown, ds: purple, dg: pale green) with
respect to prior ESS values (m = 0 to 10) under Caucasian scenario |
and Asian scenario 3. ESS, effective sample size; MTD, maximum
tolerated dose.

previous trials would be useful. It may be possible to improve
the robustness of our method by evaluating the interstudy varia-
bility of parameters of interest. We could use Bayesian hier-
archical models for these purposes.'® The prior ESS extended
to determine the prior informativeness in a conditionally inde-
pendent hierarchical model'® may be useful in this setting.

So far, several Bayesian methods have been proposed for
evaluating the similarity of treatment effects among patient
subgroups in a randomized clinical trial setting.'®!” Schoenfeld
et al'® proposed a Bayesian approach to pediatric trial design,
which allows borrowing strength from previous or simulta-
neous adult trials. Taking into consideration that pediatric clin-
icians often rely on evidence from clinical trials in adults, our
proposed method can be applied to a dose-finding study for
pediatric cancer by regarding adult patients as in the previous
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trial. In addition, our proposed method can be extended to all
phases of a dose-finding study to incorporate historical
data—for example, Asian to Caucasian, preclinical to clinical,
monotherapy to combination therapy, and previous regimen to
current regimen.
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Biomarker-based Bayesian randomized
phase II clinical trial design to identify a
sensitive patient subpopulation

Satoshi Morita,”*" Hideharu Yamamoto® and Yasuo Sugitani®

The benefits and challenges of incorporating biomarkers into the development of anticancer agents have been
increasingly discussed. In many cases, a sensitive subpopulation of patients is determined based on preclinical
data and/or by retrospectively analyzing clinical trial data. Prospective exploration of sensitive subpopulations
of patients may enable us to efficiently develop definitively effective treatments, resulting in accelerated drug
development and a reduction in development costs. We consider the development of a new molecular-targeted
treatment in cancer patients. Given preliminary but promising efficacy data observed in a phase 1 study, it may
be worth designing a phase II clinical trial that aims to identify a sensitive subpopulation. In order to achieve
this goal, we propose a Bayesian randomized phase II clinical trial design incorporating a biomarker that is
measured on a graded scale. We compare two Bayesian methods, one based on subgroup analysis and the other
on a regression model, to analyze a time-to-event endpoint such as progression-free survival (PFS) time. The
two methods basically estimate Bayesian posterior probabilities of PFS hazard ratios in biomarker subgroups.
Extensive simulation studies evaluate these methods’ operating characteristics, including the correct identifica-
tion probabilities of the desired subpopulation under a wide range of clinical scenarios. We also examine the
impact of subgroup population proportions on the methods’ operating characteristics. Although both methods’
performance depends on the distribution of treatment effect and the population proportions across patient
subgroups, the regression-based method shows more favorable operating characteristics. Copyright © 2014 John
Wiley & Sons, Ltd.

Keywords: biomarker; molecular-targeted agent; Bayesian statistics; randomized phase II trial; time-
to-event data

1. Introduction

Recently, the benefits and challenges of incorporating biomarkers into the development of anticancer
agents have been increasingly discussed [1]. Many clinical trials are conducted to develop new molecular-
targeted anticancer agents that are likely to benefit only a subset of patients. If a clinical trial is performed
in a broad population of patients, which includes insensitive as well as sensitive patients, any effect of a
new agent on the sensitive subset of patients may be missed. Therefore, drug development should aim to
optimize the target population of patients for treatment by appropriately focusing on patients who could
obtain a sufficient benefit from a molecular-targeted agent. In addition, identifying the sensitive subset
of patients may be a vital process in clinical development in terms of speeding up the drug development
process and reducing development costs [2-5].

The following two examples of clinical development represent two different extremes in the approach
to this problem. First, trastuzumab, which is a humanized monoclonal antibody with high specificity for
the human epidermal growth factor receptor 2 (HER2) protein, demonstrated high antitumor activity in
patients with HER2-overexpressing metastatic breast cancer [6—-8]. Based on preclinical and clinical data
that strongly supported the existence of a sensitive subpopulation of patients, the clinical development of
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trastuzumab prospectively focused on studying the agent in HER2-overexpressing breast cancer patients.
Secondly, during the development of monoclonal antibodies targeting epidermal growth factor receptor
(EGFR), such as panitumumab, and EGFR tyrosine kinase inhibitors, such as gefitinib, patients were
enrolled in clinical trials without preselection based on EGFR status or other biomarkers [6,7]. For exam-
ple, Amado et al. [9] retrospectively analyzed whether the effect of panitumumab on progression-free
survival (PFS) in patients with metastatic colorectal cancer differed by KRAS status and showed a signif-
icant treatment effect in the wild-type KRAS subgroup. That is, in the first case, solid prior data enabled
clinical investigators to prospectively design subsequent clinical trials to develop a molecular-targeted
agent in a patient subpopulation identifiable with a biomarker assay. In the other case, retrospective sub-
group analysis of a phase III trial conducted in unselected patients was able to successfully identify a
sensitive patient subpopulation. In many cases, however, the reality may lie in between these two cases.

If a study population of patients contains nonsensitive subpopulations, a much larger sample size would
be required to establish statistically significant results in a final confirmatory phase III trial [10]. When
considering the entire course of a new agent’s clinical development, therefore, conducting a properly
designed phase II trial may be key to raising the ‘success probability’ of a subsequent phase III trial. In
particular, pharmacogenetically developed drugs often rely on assays to measure target expression levels
(e.g., HER2 or EGFR) on a graded scale; these levels are then dichotomized to define two subsets of
patients with positive or negative status. We call the subset of patients with positive status the sensitive
subpopulation. In this paper, we consider identifying the sensitive subpopulation using a graded-scale
biomarker in a randomized phase II clinical trial to develop a new molecular-targeted agent. In order
to design the phase II trial, we adopt a Bayesian approach for the decision-making flexibility it affords
during the exploratory phase of clinical development. We compare two Bayesian methods, one based
on subgroup analysis and the other on a regression model, in terms of their performance in identifying
a sensitive subpopulation. In addition, we consider interim analyses to prematurely terminate the trial
because of futility.

As reviewed by Yin [11], there is a substantial literature on study designs that are used to identify
sensitive patient subpopulations, including Jiang et al. [10], Wang et al. [12], Brannath et al. [13], and
Eickhoff et al. [14], and Jenkins et al. [15] proposed adaptive two-stage designs in which the patient
subset(s) specified in the first stage is used to evaluate the treatment effect in the second stage. Their
proposed study designs presume that two mutually exclusive patient subgroups are determined in advance
on the basis of preclinical research or a separate exploratory study. Our focus is simply on identifying a
sensitive patient subpopulation in the phase II stage, although the preceding study designs consider phase
TI/IIT or phase III trial settings.

This paper is organized as follows. In Section 2, we provide a motivating example. Section 3 outlines
the study design of a Bayesian randomized phase II clinical trial to identify a sensitive patient subpopu-
lation. We conduct extensive simulation studies to examine the operating characteristics of our proposed
study design in Section 4. We close with a brief discussion in Section 5.

2. A motivating example

In this section, we present a case study based on the actual clinical development of a new molecular-
targeted monoclonal antibody. Preclinical and clinical works suggested that antitumor activity of the new
antibody should depend significantly on the target protein amounts. In this study, the intensity of the
biomarker expression is defined using a graded scale (e.g., 0, 1+, 2+, and 3+), with higher values indicat-
ing higher expression. Results from a phase I dose-finding clinical trial suggested a possible association
between biomarker expression and the efficacy of the antibody, that is, a longer PFS time tended to be
observed in patients with a higher expression (e.g., 2+ and 3+). In this study, we assume monotonicity
in the efficacy of the new agent with respect to the biomarker grade.

While effective first-line therapies exist for patients with advanced stages of cancer and poor prog-
noses, in particular hepatocellular carcinoma (HCC) and pancreatic carcinoma, no standard second-line
treatments have yet been established. In randomized phase II clinical trials to develop second-line oncol-
ogy treatments, the experimental and control arms (arms E and C) should be the ‘best supportive case
(BSC) + new agent’ and ‘BSC + placebo’, and a time-to-event outcome such as PFS time is often used
as the primary endpoint [16]. In some cases, a biomarker may not only be a predictive factor for a new
agent but also a prognostic factor for patients with a specific cancer type. In this study, we assume that
the biomarker predicts the efficacy of the new agent but does not predict patient prognosis. That is, we
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consider the situation where the efficacy in the control (placebo) arm is not modified by the biomarker.
However, it is not difficult to extend our proposed study design to cases where prognosis differs between
subgroups.

Under these settings, we consider designing a randomized phase Il trial to assess whether the addition
of a new monoclonal antibody therapy to BSC sufficiently benefits the patients in terms of prolongation
of PFS time. The biomarker grade is used as a stratification factor when randomization is carried out. In
order to summarize the PFS data, we basically use a hazard ratio comparing arm E with arm C, which
is denoted by A. In this study, we consider evaluating the hazard ratios in & biomarker subgroups, which
are denoted by 4,, g = 1,...,G. Our specific goal is to find the upper subset consisting of subgroups
g 2 kg, which meets the definition of the sensitive subpopulation, by evaluating these hazard ratios.
Then, a subsequent phase III trial is to be conducted in the identified subpopulation. The value of cutoff
kg € {1,..., G+ 1} is unknown and will be determined based on data observed in the trial. As one of the
two extreme cases, K = 1 suggests that arm E should be beneficial for the entire population of patients,
and one can make a decision to proceed to a subsequent phase I1I trial that enrolls the entire population
of patients. On the other hand, the cutoff x, = G + 1 indicates that arm E will not be beneficial for any
subgroup and that the ‘no-go’ decision to a subsequent phase III trial should be taken.

3. Biomarker-based Bayesian randomized phase II study design

We use the two Bayesian methods that are both based on a common probability model for PES time.
One method is based on a subgroup analysis (S-A method), and the other on a regression model
(R-M method).

3.1. Notation, probability model for progression-free survival time, and Bayesian posterior computation

For patient #, let x; denote the treatment indicator, with x; = 1 if patient i receives the experimental arm
and x; = 0if he or she receives the control arm. Let 7; denote PES time for patient i. For subgroups 1 to G
defined by the biomarker grade, z; , = 1 if patient / is in subgroup g and 0 if not. Thus, z; =(z;, ..., z;5) 18
the subgroup indicator vector for patient i. Let ¢, ... , ¢ denote the proportions of patients in subgroups
1,...,G, who would be enrolled into the phase II trial. These proportions reflect the true biomarker
subgroup prevalence in the entire population of patients. Although @ = (¢, ..., ¢) is actually unknown,
in the simulation study, we will handle the proportions @ as fixed values and vary the values to examine
the sensitivity of simulation results to the subgroup prevalence. That is, although the proportions ® could
be handled as additional parameters to be estimated in a Bayesian study design, we will not consider
them in this study.

The two Bayesian methods explained in the next subsection commonly use the following proportional
hazards model. Under the proportional hazards assumption in each subgroup, the hazard at time ¢ for
patient i with x; can be modeled as

G
h(t | x;,2;) = hy(t) exp (Z ﬁgxiz,.’g) , (N
g=1

where h(f) denotes the baseline hazard function and f, denotes the regression coefficient for x; in sub-
group g. According to Sinha et al. [17] and Ibrahim er al. [18], we use the partial likelihood of the
Cox proportional hazards model as the likelihood to compute the posterior distributions of the parame-
ters in the two Bayesian methods. We used Markov chain Monte Carlo to compute the posteriors [19],
because the joint posterior distribution of regression coefficient parameters is not readily available in
closed form.

As the criteria to identify the sensitive subpopulation, we basically use the following Bayesian posterior
probability given the observed data D from the trial,

p(A<n"|D)>x", )

where #* is the upper limit and z* is the upper probability cutoff. These design parameters, #* and z*,
need to be calibrated on the basis of operating characteristics of the study design, which are examined in
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simulation studies. More specifically, let D, denote the data observed in subgroup g and D,; denote the
data observed in all G subgroups.

3.2. Two Bayesian methods to analyzé progression-free survival time

The objective of the phase II trial is to prove the concept of a targeted therapy, that is, to evaluate
whether higher efficacy of the new antibody is observed in patients with higher biomarker expression.
Therefore, we assume the monotonicity in the efficacy of the new antibody in both methods but in
different ways.

The S-A method separately evaluates the hazard ratio in each subgroup using the data observed in
that subgroup. Assuming the monotonic increase in p(/lg < n* | Dg) for g = 1,...,G, this method
sequentially assesses whether p(4, < n* | D,) > =* from subgroups 1 to G. That is, if p(4; < #* | D))
is higher than z*, we determine x, = 1. If not, we proceed to subgroup 2. If p(4, < #* | D,) > =¥,
we determine x, = 2 and decide to identify subgroups 2 to G as the sensitive subpopulations. Similar
computations and decision making are then repeated up to subgroup G. If all of the posterior probabilities,
p(Ay < 7* | D)), ..., p(dg < #* | Dg) are lower than z*, we determine x; = G + 1. We assume a
noninformative normal prior N(0, 1000) for each of the regression coefficient parameters, f,, ..., fig, t0
perform these posterior computations.

The R-M method assumes a monotonic decrease in hazard ratio for the biomarker subgroups with the
parameter constraint §; > f, > --- > f. In addition, this method uses the data observed in all G sub-
groups, D, to evaluate the posterior distribution of 4, for g = 1, ..., G. For computational convenience,
we reparameterize (fy, ..., fg) With (B, vy, ..., v as i =Py, Bo=b61— 71> s B =Po1 —Yg-1=
PL—=71 =7y~ —Ys-1» Where y; > 0,7, > 0,...,75.; > 0. Assuming a noninformative normal
prior N(0O, 1000) for §; and a noninformative gamma prior Ga(0.001,0.001) with mean 1 and variance
1000 for y,, ..., 751, We compute the marginal posterior distribution of the hazard ratios. Based on the
computations, we find the cutoff k; to satisfy the following equation:

o= gGJl?{G) {e1p (4 <7" | D) > 7"} (3)

That is, the cutoff x is specified as the minimum of the integers g € {1, ..., G} that meet p(4, < n* |
D, > n*.

Although we suppose the S-A method has more flexibility, it may perform more poorly at identifying
a sensitive subpopulation because of its S-A approach. In contrast, although we expect the R-M method
to show a higher performance owing to the parameter constraint and the use of D, this method may
be vulnerable to departures from the monotonicity assumption. We will evaluate the advantages and
disadvantages of the two methods in the simulation study.

3.3. Interim study monitoring rules

It may be important to terminate a clinical trial early from ethical and practical points of view. In the
randomized phase II trial, we consider early termination of the entire trial due to futility by planning
interim analyses.

Although it may also be useful to consider partly terminating insensitive patient subgroups or reducing
the size of those subgroups, we did not take these measures in this study. This is because it may be
generally desirable to obtain sufficient data on patients in the nonselected subpopulation in order to more
precisely evaluate their response to and the safety of the new treatment [20].

The number and timing of interim analyses should be determined by taking into account the practical-
ities of patient enrollment rates and collecting and processing of study data. In the randomized phase II
trial, we consider two interim analyses with the first and second analyses occurring after 60% and 80% of
patients are recruited, respectively. When using the S-A method, given the lower probability cutoff =*

stop®

we consider the experimental arm to have disappointingly insufficient efficacy if p(4, <#* | D,) < nj‘mp

for all g. Similarly, we stop the trial early if p(4, < n* | D) < Jc;‘mp for all g when using the R-M
method. The lower cutoff z¥ _needs to be calibrated on the basis of the study design operating charac-

Sto
teristics in the same way as the upper cutoff z*. As another interim monitoring rule, it may be useful
to include early stopping for efficacy by using an efficacy stopping criterion, such as p(4, < #* | D) >
7, e OWing to the same reasons mentioned earlier, however, we will not apply this rule to the phase
1 ttial,
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4. Evaluation of operating characteristics

4.1. Parameter calibration and simulation plan

To evaluate and compare the two Bayesian methods in the case study with four subgroups, we simulated
the trial 5000 times using extensively varying situations. We used Markov chain Monte Carlo methods to
obtain samples from the posterior distributions of the parameters. In order to complete the study design,
we needed to calibrate the design parameters (%, 7™, n:wp, N) on the basis of the desired type I error rate
under a null hypothesis and power under an alternative hypothesis in the trial with the projected total
sample size N. The detailed definitions of type I error and power are given in the following. :

We first performed a series of simulation studies with all 12 combinations of the three fixed upper
limits (" = 0.70,0.80, 0.85), the two upper probability cutoffs (z* = 0.70,0.80), and the two lower
probability cutoffs (z}, == 0.10,0.20) under N = 500. Although the total sample size of 500 may be too
large for a phase II triaf, we used N = 500 to reliably evaluate the performances of the two methods in
the simulation study. The simulation results are summarized in supplemental tables (see the supporting
information). After determining the best combination of #*, #*, and z}, . we evaluated the operating
characteristics using six sample size values (N = 250,300, 350,400,45’0, and 500) to determine the
appropriate sample size for the randomized phase II trial. Furthermore, we assumed the five patterns
of subpopulation proportions & = (¢, ¢, ¢, 4), as shown in Table I, to evaluate the sensitivity of
simulation results to the subgroup prevalence. We predicted that patterns 1 and 3 were more likely to be
observed in the phase II trial according to the historical data.

We assumed the five clinical scenarios for the simulation study based on hazard ratios as shown in
Table 1. Each scenario is characterized by the true (fixed) hazard ratios (HR,, HR,, HR,, HR,) for the
four subgroups. Scenario (1) is a null case, with all hazard ratios equal to 1.0. The sensitive subpopulation,
found under each scenario, is indicated in boldface. In order to define the sensitive subpopulation, we first
specify the efficacy threshold so that subgroup g is contained in the sensitive subpopulation if HR, < the
threshold. One possible way to specify the efficacy threshold may be to hold discussions with physicians
regarding the published results of clinical trials, because such a specification needs to take into account
the current medical environment, such as state-of-the-art therapy and medical costs. For example, in
advanced HCC, Llovet et al. [21] explored the ability of several biomarkers to predict the efficacy of a
new small molecule, sorafenib, using the data from the phase III sorafenib HCC assessment randomized
protocol trial [22]. Based on this report as well as other previous data, we solicited the opinions of the
two hepatologists in the study group regarding the efficacy threshold. They suggested that an efficacy
threshold of 0.6 should be clinically acceptable. We will use a power value to designate the probability
of correctly identifying the target subgroup(s) as the sensitive subpopulation under alternative scenarios
and a type I error to designate the probability of identifying any subgroup(s) under the null scenario.

Subgroup

1 2 3 4
Subpopulation proportion patterns b, b, s o
1 Equal 0.25 0.25 025 0.25
2 Higher in subgroups 1 and 4 0.35 0.15 0.15 0.35
3 Higher in subgroups 2 and 3 0.15 0.35 0.35 0.15
4 Increasing 0.05 0.15 0.30 0.50
5 Decreasing 0.50 0.30 0.15 0.05
Clinical scenarios HR, HR, HR, HR,
€)) Null case 1.0 1.0 1.0 1.0
@) Linear 1.0 0.8 0.6 04
3) Step-down 1.0 0.6 0.6 0.35
@ High efficacy in subgroups 3 and 4 1.0 1.0 0.5 0.3
5) High efficacy only in subgroup 4 1.0 1.0 1.0 0.5

The hazard ratio values in the sensitive subpopulation under each scenario are indicated in boldface.
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Taking historical data on second-line therapies for HCC into account, for the simulations, we assumed
that the median PFS time was 2.8 months for all four subgroups in the control arm of the trial, with
12.0 months of patient recruitment and 15.0 months of maximum follow-up (i.e., 3.0 months of mini-
mum follow-up). In addition, we assumed that patients arrived uniformly during the recruitment period.
Assuming that the patient PES times are independent and identically distributed exp(v), exponential with
parameter v, which has a PDF of f(¢ | v) = vexp(—vr), we generated PES times using the fixed param-
eter v, = 0.33 for the control arm. For the experimental arm, we used the parameter v HR, to generate
PFS times in subgroups g for g = 1, ..., 4. The SAS programs to carry out simulations using the S-A and
R-M methods are provided in the supporting information (SAS for Windows release 9.3, SAS Institute
Inc., Cary, NC, USA).

4.2. Simulation results

In presenting the results of the simulation studies comparing the S-A and R-M methods, we summarize
the probabilities of identifying the following: (i) none of the four subgroups; (ii) subgroup 4 only; (iii)
subgroups 3 and 4; (iv) subgroups 2—4; and (v) all four subgroups, as being in the sensitive subpopulation;
these categories are denoted by P, .., Py, P3_4, P5_4, and P, respectively. We chose the combination
of n* = 0.80, #* = 0.70, and z}, = 0.2, which were judged to provide the best operating characteristics
for the two methods, based on the extensive simulations (as shown in the supplementary tables in the
supporting information). Table II shows the simulation results with N = 500 under the five clinical
scenarios with the five patterns of patient subpopulation proportions.

Under scenario 1 (null), the R-M method yielded extremely high probabilities of identifying none of
the four groups (P,,,,,. = 0.98-1.00), while the values of P, ,,, with the S-A method were 0.70-0.80. That
is, the R-M method sufficiently controlled type I etror, holding it to less than 0.05 regardless of the pattern
of subpopulation proportions under N = 500, while the S-A method did not. In addition, the R-M method
resulted in early trial termination due to considerably high probabilities of identifying none of the four
groups, especially at the first interim analysis. The likelihood of early termination differed significantly
between the R-M and S-A methods. This may be because the R-A method analyzed the data observed in
all four subgroups, resulting in much sharper posterior distributions of 4, than those obtained by the S-A
method, which used the data observed in each subgroup.

Under scenario 2 (linear), neither of the two methods worked sufficiently well; that is, P;_, were
at most 0.50 for both methods. In cases where an obvious sensitive subpopulation may not seem to
exist, such as in a scenario that assumes that the hazard ratios change steadily over subgroups, it may
be hard to definitively identify the target subpopulation using either of the methods. Under scenario 3
(step-down), although both the S-A and R-M methods performed well overall, the performance of the
R-M method may depend significantly on subpopulation proportions. In pattern 4 in particular, where
the number of patients enrolled in subgroup 1 (nonsensitive subpopulation) was very slight, the R-M
method was more likely to select all the subgroups, resulting in poorer performance. Under scenario
4 (very high efficacy in subgroups 3 and 4), the R-M method selected subgroups 3 and 4 at suffi-
ciently high probabilities across all patterns of subpopulation proportions, and these probabilities were
higher than or almost equal to those obtained by the S-A method. Under scenario 5 (very high efficacy
only in subgroup 4), the two methods were almost comparable in terms of the probability of identify-
ing subgroup 4 under pattern 1. In cases where the subpopulation proportion of subgroup 4 (sensitive
subpopulation) was relatively high, such as in patterns 2 and 4, the R-M method performed much bet-
ter than the S-A method, as expected. However, under patterns 3 and 5, in which the subpopulation
proportion of subgroup 4 was small, the performance of the R-M method was lower than that of the
S-A method.

Figure 1 indicates the type I error rates (lower circles) and power values (upper circles) provided by
the R-M method for the six sample sizes (N = 250, 300, 350, 400, 450, and 500) under the five patterns
of subpopulation proportions. In this simulation study, we focused only on the R-M method because the
S-A method could not sufficiently control the type I error rate even under N = 500. The R-M method
held the type I error to less than 0.05 even under N = 250. In terms of providing 80% of the power,
N = 300 may be sufficient for the projected total sample size of the phase II trial, considering that we
actually expect the subpopulation proportions to be like pattern 1 or 3.
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