nasal polyps from ECRS patients than in those from NECRS
patients. Consistent with our findings in murine CD4" T cells,
we demonstrated that IL-33 induced augmentation of /L5 and
IL1RL1 expression in memory CD4* T cells from ECRS patients.
IL-33 induced expression of not only /L5 but also ILTRL1, sug-
gesting that a positive-feedback mechanism resulted in a greater
responsiveness to IL-33 in memory CD4" T cells from ECRS
patients. In addition, IL-33-induced IL-5 augmentation also de-
pended on the activation of p38. Our study clearly demonstrates
the function and pathophysiological role of IL-33 in ECRS, a
chronic inflammatory human disease.

In summary, our study has identified memory Th2 cells as an
important target of IL-33 in the pathogenesis of airway inflamma-
tion. The p38-mediated signaling pathway is critical for TCR-in-
dependent IL-33-induced IL-5 expression in both murine and
human memory Th2 cells. Further detailed studies focused on
the 1L-33-ST2-p38-axis in pathogenic memory Th2 cells might
lead to the discovery of potential therapeutic targets for the treat-
ment of chronic allergic diseases.

EXPERIMENTAL PROCEDURES

Mice

The animals used in this study were backcrossed to BALB/c or C57BL/6 mice
ten times. Anti-OVA-specific TCR-a (DO11.10) transgenic (Tg) mice were pro-
vided by Dr. D. Loh (Washington University School of Medicine, St. Louis)
(Murphy et al., 1990). /I33~/~ mice were generated as previously described
(Oboki et al., 2010). Nl1rl1 =/~ mice were kindly provided by Dr. Andrew N.J.
McKenzie (Medical Research Council, Cambridge) (Townsend et al., 2000).
Ly5.1 mice were purchased from Sankyo Laboratory. All mice were used at
6-8 weeks old and were maintained under specific-pathogen-free conditions.
BALB/c, BALB/c nu/nu, and Rag2 ™/~ mice were purchased from CLEA Japan.
Animal care was conducted in accordance with the guidelines of Chiba
University.

The Generation and Culture of Effector and Memory Th2 Cells
Splenic CD62L*CD44~KJ1*CD4* T cells from DO11.10 OVA-specific TCR Tg
mice were stimulated with an OVA peptide (Loh15, 1 uM) plus antigen-pre-
senting cells (irradiated splenocytes) under Th2-cell-culture conditions
(25 U/ml IL-2, 10 U/ml IL-4, anti-IL-12 monoclonal antibody [mAb], and
anti-IFN-y mAb) for 6 days in vitro. The effector Th2 cells (3 x 10° were
transferred intravenously into BALB/c nu/nu or BALB/c recipient mice. Five
weeks after cell transfer, KJ1*CD4* T cells in the spleen were purified by au-
toMACS (Miltenyi Biotec) and cell sorting (BD Aria Il) and were then used as
memory Th2 cells.

Assessment of Memory Th2 Cell Function In Vivo

Memory Th2 cells were purified by fluorescence-activated cell sorting and
transferred (3 x 10%/mouse) again into //33*/* or /133~ mice. The mice were
exposed to aerosolized 1% OVA four times on days 1, 3, 9, and 11. For deple-
tion of ILC2s, Rag2~'~ mice were injected intraperitoneally with anti-CD90.2
(BioX Cell) antibody at a dose of 200 pg per day on days 2, 5, and 9. BAL fluid
for the analysis of cytokine production by ELISA was collected 12 hr after the
last challenge, and BAL fluid for the assessment of inflammatory cell infiltration
was collected on day 13. Intracellular-staining analysis was performed 12 hr
after the last inhalation. Lung histology was assessed on day 13. AHR was as-
sessed on day 12.

Quantitative Real-Time PCR

Total RNA was isolated with the TRIzol reagent (Invitrogen). cDNA was synthe-
sized with an oligo (dT) primer and Superscript Il RT (Invitrogen). Quantitative
real-time PCR was performed with the ABI PRISM 7500 Sequence Detection
System as described previously (Endo et al., 2011). Primers and TagMan
probes were purchased from Applied Biosystems. Primers and Roche Univer-
sal probes were purchased from Sigma and Roche, respectively. Gene
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expression was normalized with the Hprt mRNA signal or the 78S ribosomal
RNA signal.

siRNA Analysis of Gene Targeting

siRNA was introduced into memory Th2 cells by electroporation with a mouse
T cell Nucleofector Kit and Nucleofector | (Amaxa). Memory Th2 cells were
transfected with 675 pmol of control random siRNA or siRNA for p38 (Applied
Biosystems) and cultured for 5 days with IL-33.

Nasal Polyp Mononuclear Cells and Homogenate Preparation

Nasal polyp mononuclear cells (NPMCs) were obtained as previously
described (Yamamoto et al., 2007). In brief, freshly obtained nasal polyps
were immediately minced and incubated in RPMI 1640 medium containing
1 mg/ml collagenase, 0.5 mg/ml hyaluronidase, and 0.2 mg/ml DNase |
(Sigma-Aldrich). After incubation, NPMCs were obtained by the Ficoll-Hypa-
que technique. A volume of 1 ml of PBS was added for every 100 mg of tissue
and was supplemented with aprotinin and leupeptin (Roche).

Statistical Analysis

Data were analyzed with GraphPad Prism software (version 6). Comparisons
of two groups were calculated with non-parametric Mann-Whitney U tests. Dif-
ferences with p values below 0.05 or 0.01 were considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-
mental Procedures and can be found with this article online at http://dx.doi.
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Introduction

Summary

Invariant natural killer T (iNKT) cells play important immunoregulatory
functions in allergen-induced airway hyperresponsiveness and inflamma-
tion. To clarify the role of iNKT cells in allergic rhinitis (AR), we generated
bone marrow-derived dendritic cells (BMDCs), which were pulsed by
ovalbumin (OVA) and o-galactosylceramide (OVA/a-GalCer-BMDCs) and
administered into the oral submucosa of OVA-sensitized mice before nasal
challenge. Nasal symptoms, level of OVA-specific immunoglobulin (IgE), and
T helper type 2 (Th2) cytokine production in cervical lymph nodes (CLNs)
were significantly ameliorated in wild-type (WT) mice treated with OVA/a.-
GalCer-BMDCs, but not in WT mice treated with OVA-BMDCs. These anti-
allergic effects were not observed in Jo18~~ recipients that lack iNKT cells,
even after similar treatment with OVA/o-GalCer-BMDCs in an adoptive
transfer study with CD4" T cells and B cells from OVA-sensitized WT mice.
In WT recipients of OVA/0-GalCer-BMDCs, the number of interleukin (IL)-
21-producing iNKT cells increased significantly and the Th1/Th2 balance
shifted towards the Th1 dominant state. Treatment with anti-IL-21 and anti-
interferon (IFN)-y antibodies abrogated these anti-allergic effects in mice
treated with o-GalCer/OVA-BMDCs. These results suggest that activation of
iNKT cells in regional lymph nodes induces anti-allergic effects through pro-
duction of IL-21 or IFN-Yy, and that these effects are enhanced by simultane-
ous stimulation with antigen. Thus, iNKT cells might be a useful target in
development of new treatment strategies for AR.

Keywords: o-galactosylceramide, bone marrow-derived dendritic cells, invari-
ant natural killer T cell, IFN-y, IL-21

stable and adequate response. In addition, some patients do
not show significant improvement of symptoms even with

During the past several decades, the prevalence of allergic
rhinitis (AR) has increased globally [1,2] and AR now
affects 400 million people worldwide as a common allergic
inflammatory disease that causes medical and socioeco-
nomic problems [3]. Significant improvement of AR
symptoms can be achieved using readily available drugs
such as Hl-anti-histamines and topical corticosteroids,
but these drugs do not treat the underlying disease [4].
Antigen-specific immunotherapy may potentially alter
the natural course of AR [4-6]; however, conventional
immunotherapies, including subcutaneous immunotherapy
(SCIT) and sublingual immunotherapy (SLIT), are not con-
venient, because several years are required to establish a

long-term therapy [7-9]. These burdens on patients would
be reduced by a new method with enhanced therapeutic
efficacy and a shortened duration of treatment without
serious adverse events.

Invariant natural killer T (iNKT) cells, a major subset of
NK T cells, express a unique semi-invariant T cell receptor
(TCR) with a Val4-Jol8 chain in mice and a Vo24-Jol8
chain in humans [10,11]. These cells produce many T
helper type 1 (Thl)- and Th2-type proinflammatory
cytokines, including interferon (IFN)-y and interleukin
(IL)-4, resulting in immune modulation of autoimmune
diseases and responses to tumour and infectious agents
[12-16]. TCRs of iNKT cells recognize monomorphic

© 2014 British Society for Immunology, Clinical and Experimental Immunology, 178: 65-74 65
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major histocompatibility complex (MHC) class I-like
CD1d molecules on antigen-presenting cells (APCs),
and glycolipid antigens such as o-galactosylceramide
(0t-GalCer) presented on CD1d preferentially activate iNKT
cells [17]. INKT cells have been suggested to be tolerogenic
in allergic airway inflammation [18-20], but it is unclear
whether iNKT cells regulate development of AR.

In this study, we administered ovalbumin (OVA)- and
o-GalCer-pulsed bone marrow-derived dendritic cells
(BMDCs) into the oral submucosa of OVA-sensitized mice
and examined the role of activated iNKT cells in an AR
mouse model. Administration of OVA/a-GalCer-pulsed
BMDCs suppressed antigen-specific responses, whereas
OVA-pulsed BMDCs did not do so. These results show that
activation of iNKT cells in draining lymph nodes amelio-
rated nasal allergic responses in an AR mouse model, and
that this anti-allergic effect is associated with IL-21 and
IFN-y production through activated iNKT cells.

Materials and methods

Mice

Female BALB/c mice (8 weeks old) were purchased from
SLC Inc. (Hamamatsu, Japan). Jou18-deficient (Jo187) mice
were established by specific deletion of the Jo18 gene
segment [15] and back-crossing 10 times to the BALB/c
background. These mice were also used at 8 weeks of age.
Mice were maintained under specific pathogen-free condi-
tions. Use of the mice was approved by the Chiba University
Institutional Animal Care and Use Committee and the
experiments were conducted in conformity with the guide-
lines of the committee.

Reagents

0-GalCer (KRN7000) was obtained from Kirin Brewery
(Gunma, Japan). OVA (grade 5) was purchased from
Sigma-Aldrich (St Louis, MO, USA) and dissolved in
endotoxin-free D-phosphate-buffered saline (PBS) (Wako
Pure Chemical Industries, Osaka, Japan). RPMI-1640
medium (Sigma-Aldrich) supplemented with 10% fetal
calf serum (FCS), l-glutamine (2 uM), penicillin (100 U/
ml), streptomycin (100 ug/ml), HEPES (10 mM), 2-
mercaptoethanol (55 uM), 1% non-essential amino acids
and 1 mM sodium pyruvate (all from Gisco BRL, Grand
Island, NY, USA) was used in cell culture experiments.
Anti-FcyRII/III monoclonal antibodies (mAbs) (2-4G2)
(BD Biosciences, San Jose, CA, USA) were used for Fc
blocking. Allophycocyanin-conjugated o-GalCer-loaded
CD1d tetramer was purchased from Proimmune (Oxford,
UK). Fluorescein isothiocyanate (FITC)-anti-CD1lc
(N418) (eBiosciences, San Diego, CA, USA), phycoerythrin
(PE)-conjugated mAbs including anti-CD4 (GK1-5), anti-
CD19 (6D5), anti-CD40 (3/23), anti-CD86 (GL-1)

(BioLegend, San Diego, CA, USA), anti-MHC class II
IA+IE  (M5/114-15)  or anti-CD80  (16-10A-1)
(eBiosciences) were used for fluorescence activated cell
sorter (FACS) analysis. Anitbodies including anti-IL-4
(11B11), anti-IL-5 (TRFK5; Mabtech Ab, Nacka, Sweden),
anti-IEN-y (AN18; BioLegend) or anti-immunoglobulin
(Ig)E (RME-1; BD Pharmingen, San Jose, CA, USA), and
biotin-conjugated antibodies including anti-IL-4 mAb
(BVD6-24G2), anti-IL-5 (TRFK4) (Mabtech antibody),
anti-IFN-y (R4-6A2; BioLegend) or anti-IgE (R35-72; BD
Pharmingen) were used in enzyme-linked immunosorbent
assays (ELISAs) [21]. A mouse IL-13 ELISA Ready-SET-Go!
Kit (eBiosciences) and a mouse anti-OVA IgE antibody
assay kit (Chondrex, Redmond, WA, USA) were also used in
the study.

Generation of BMDCs

Bone marrow cells obtained from the femurs of naive
BALB/c mice were cultured with 20ng/ml murine
granulocyte—macrophage colony-stimulating factor (GM-
CSF) (PeproTech, Rocky Hill, NJ, USA) for 8 days. Non-
adherent cells were harvested and pulsed with or without
100 ng/ml a-GalCer for 3 h, followed by a 6-h incubation
with or without 1 mg/ml OVA in 24-well plates at 1 x 10°
cells/well. These cells were stimulated with 10 pg/ml
lipopolysaccharide (LPS) (O111:B4; Sigma-Aldrich) for
3 h and then washed three times with PBS. DCs were ana-
lysed based on surface markers using FACS analysis
(FACSCalibur; Becton Dickinson, Franklin Lakes, NJ, USA).

Administration of BMDCs in OVA-sensitized mice

BALB/c mice were sensitized intraperitoneally with 100 pg
of OVA and 2 mg of alum (Pierce, Rockford, IL, USA) once
a week for 3 weeks. One week after the last sensitization, the
mice (n=5-6 in each group) received 5x10° cells of
BMDCs in 100 pl of PBS to the sublingual submucosa by
injection and were treated intranasally with 1 mg of OVA
for 7 consecutive days (challenge group) or with PBS for 6
consecutive days followed by OVA on the seventh day
(control group). After the last treatment, the behaviour of
the mice was documented for 5 min using a videorecorder.
Sneezing and nasal-rubbing events were counted by an
investigator who was blinded to the treatment. The mice
were then killed and the serum, cervical lymph nodes
(CLNSs) and spleens were collected.

Adoptive transfer of CD4* T cells and B cells

CD4" T cells and B cells were sorted from OVA-sensitized
wild-type (WT) mice by negative selection using a magnetic
affinity cell sorting (MACS) system (Miltenyi Biotec,
Bergisch Gladbach, Germany). A single-cell suspension was
prepared from spleens [22]. After Fc blocking, splenic cells
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Table 1. Polymerase chain reaction (PCR) primers used in the study.
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Primer set Sense primer, 5~3’ Anti-sense primer, 5'~3

Vol4 CACTGCCACCTACATCTGTGT AGTCCCAGCTCCAAAATGCA
IL-21 GCCAGATCGCCTCCTGATTA CATGCTCACAGTGCCCCTTT

Bclo CCGGCTCAATAATCTCGTGAA GGTGCATGTAGATGTGTGAGTGA
IL-17RA AGTGTTTCCTCTACCCAGCAC GAAAACCGCCACCGCTTAC
RORyt CTTTCAATACCTCATTGTAT AGGTCCTTCTGGGGGCTTGC
Beta-actin CCAGCCTTCCTTCTTGGGTAT TGGCATAGAGGTCTTTACGGATGT

IL = interleukin; RORyt = RAR-related orphan receptor gamma t.

were incubated with a mixture of biotinylated antibodies,

including anti-IgM  (MA-69), anti-B220 (RA3-6B2),
anti-CD11b (M1/70), anti-CD11lc (N418), anti-TER-119
(TER-119), anti-Gr-1  (RB6-MC5) (Biolegend) or

allophycocyanin-conjugated ~ 0-GalCer-loaded ~ CD1d
tetramer to collect CD4" T cells, or with a mixture of
biotinylated antibodies including anti-CD3 (145-2Cl11;
BioLegend), anti-CD11b, anti-CD11c, anti-TER-119, anti-
Gr-1 or allophycocyanin-conjugated o-GalCer-loaded
CD1d tetramer to collect B cells. After washing, these cells
were incubated with anti-biotin beads and anti-
allophycocyanin-beads (Miltenyi Biotec) and then subjected
to MACS analysis. The purity of the cells was analysed using
FACSCalibur (BD Biosciences) and CellQuest software
(Becton Dickinson). Data were analysed with FlowJo soft-
ware (TreeStar, Ashland, OR, USA). The isolated CD4* T
cells (1x 107 cells) and B cells (1-5x 107 cells) were then
transferred intravenously to WT or Jo187 mice. One day
later, injection of BMDCs and nasal challenge were per-
formed as described above.

Neutralization assay

Anti-mouse IL-21 antibody (TY25), rat IgG2a antibody
(54447) (R&D Systems), anti-mouse IFN-y antibody (R4-
6A2) or rat IgG2a antibody (RTK2758) (BioLegend)
(250 pug) was injected intravenously in OVA-sensitized mice
1 day before BMDC administration and on day 3 of nasal
challenge.

Proliferation assay

CD4* T cells isolated from CLNs were cultured with OVA
and irradiated splenic feeder cells for 48 h, with tritium-
labelled thymidine (37 kBq/well) added for the last 8 h. The
cells were then harvested with a cell harvester (Perkin
Elmer, Waltham, MA, USA) onto a 3 plate and the radioac-
tivity was measured using a liquid scintillation counter
(Perkin Elmer).

Restimulation of CD4" T cells

Single-cell suspensions were prepared from CLNs and CD4*
T cells were sorted by the MACS technique using a
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biotinylated anti-CD4 antibody (GK1-5; BioLegend) and
anti-biotin beads (Miltenyi Biotec). The cells were cultured
for 48h at a density of 1-5x10° cells/well in round-
bottomed 96-well microculture plates in the presence of
1 mg/ml OVA with CD4" T cell-depleted and irradiated
splenic feeder cells (5 x 10° cells) obtained from naive mice.
The concentration of cytokines in the supernatant was
measured by ELISA.

Detection of IL-21-producing iNKT cells

IL-21-producing iNKT cells were detected by an enzyme-
linked immunospot (ELISPOT) assay [21] with anti-mouse
IL-21 antibody and biotinylated anti-mouse IL-21 antibody
(mouse IL-21 DuoSet; R&D Systems, Minneapolis, MN,
USA). A single-cell suspension was prepared from CLNs
and spleens, as described above. Splenocytes were incubated
with anti-FcyRII/IIT mAbs and depleted with biotinylated
antibodies, including anti-IgM, anti-B220, anti-CD11b,
anti-CD11c, anti-TER-119, anti-Gr-1 and anti-biotin beads,
using the MACS technique. The enriched spleen cells were
incubated with allophycocyanin-conjugated o-GalCer-
loaded CD1d tetramer and splenic iNKT cells were sorted
using FACS ARIA II (BD Biosciences). CLN cells (2 x 10°
cells/well) were cultured with o-GalCer (100 ng/well) and
splenic iNKT cells (5 x 10* cells/well) were co-cultured with
BMDCs (5% 10* cells per well) in 96-well filtration plates
(Multiscreen; Millipore Corp., Bedford, MA, USA) for
3 days.

Real-time reverse transcription—polymerase chain
reaction (RT-PCR)

Total RNA was extracted from CD4* cells in CLNs using
TRIzol reagent (Life Technologies, Gaithersburg, MD,
USA) and reverse transcribed using a high-capacity cDNA
reverse transcription kit (Applied Biosystems, Foster City,
CA, USA). Relative gene expression was calculated by a
sequence - detection system (StepOnePlus™; Applied
Biosystems) and the amount of ¢cDNA was normalized
using the beta-actin housekeeping gene. Primer sets
(Table 1) were purchased from Eurofins Operon MWG
(Ebersberg, Germany).
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Fig. 1. Similar expression levels of surface markers in each group of bone marrow-derived dendritic cells (BMDCs). BMDCs were incubated with
medium only, ovalbumin (OVA), o.-galactosylceramide (o-GalCer) or OVA/ai-GalCer, followed by addition of lipopolysaccharide (LPS), and surface
markers were analysed by fluorescence activated cell sorter (FACS). BMDCs were gated on CD11c". Shaded profiles in the histograms show
background staining with rat immunoglobulin (Ig)G2a. Data are representative of three independent experiments.

Statistical analysis

Statistical analysis was performed using a two-tailed Stu-
dent’s ¢-test with P < 0-05 considered to be significant. Data
are shown as the mean + standard deviation.

Results

Characteristics of BMDCs

Surface marker expression levels on stimulated BMDCs
were evaluated by FACS analysis prior to administration
into AR mice. The percentage of CD11c" cells in the gener-
ated BMDCs was approximately 95%. Based on the MHC
class II levels, there were few differences among BMDCs
cultured with medium, OVA, o-GalCer and OVA plus
0-GalCer. Similar patterns were observed for the expression
levels of CD40, CD80 and CD86 (Fig. 1).
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Oral submucosal administration of BMDCs in
OVA-sensitized mice

On the 7th day of nasal challenge with OVA, mice adminis-
tered OVA/0-GalCer-BMDCs showed significant decreases
in the number of sneezing and nasal rubbing attacks, and in
the levels of both OVA-specific and total IgE, compared
with mice administered BMDCs. There were no significant
differences in nasal symptoms and IgE levels among mice
that received BMDCs, OVA-BMDCs or a-GalCer-BMDCs
(Fig. 2a,b).

Analysis of CD4" T cells isolated from CLNs

Cytokine production by CD4* T cells in CLNs is shown in
Fig. 2c. Of the Th2 cytokines examined, IL-4, IL-5 and
IL-13 levels were significantly lower in CD4" T cells from
mice that received OVA/0-GalCer-BMDCs compared with

© 2014 British Society for Immunology, Clinical and Experimental Immunology, 178: 65-74
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Fig. 2. Prevention of development of nasal allergic symptoms by administration of ovalbumin, o-galactosylceramide-bone marrow-derived
dendritic cells (OVA, a-GalCer-BMDCs). (a) Number of sneezes and nasal rubs. (b) OVA-specific and total immunoglobulin (Ig)E levels in serum.
(c,e) Cytokine production and proliferation of CD4" T cells obtained from cervical lymph nodes (CLNs). Counts per minute, cpm. (d) Relative gene
expression of CD4" cells obtained from CLNs. Data are representative of three independent experiments. *P < 0-05; **P < 0-01.

those from mice that received BMDCs or OVA-BMDCs.
Enhanced IFN-y production occurred in mice that received
OVA/o-GalCer-BMDCs. Gene expression profiles from
quantitative RT-PCR analysis (Fig.2d) showed higher
Vo4 and IL-21 expression in the CLNs of OVA/o-GalCer-
BMDC-treated mice compared with other groups. However,
expression of Bcl-6, a Tth cell-related transcript, and
Th17 cell-related transcripts such as IL-17RA and RORYft,
did not differ among the groups. Proliferation of CD4* T
cells also showed no differences among the groups of mice
(Fig. 2e).

Adoptive transfer of CD4* T cells and B cells into
Jou187 mice

Following adoptive cell transfer of CD4" T cells (excluding
iNKT cells) and B cells from spleen of OVA-sensitized WT
mice, nasal symptoms after OVA challenge in WT mice were
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significantly suppressed by oral submucosal administration
of OVA/a-GalCer-BMDCs compared with mice adminis-
tered other BMDCs. However, similar suppression was not
observed in Jol87 [INKT knock-out (KO)] mice that
received OVA/a-GalCer-BMDCs (Fig. 3).

IL-21-producing iNKT cells in CLNs

After stimulation with o-GalCer, IL-21-producing cells
increased significantly in CLN cells of mice treated with
OVA/a-GalCer BMDCs (Fig. 4a), whereas IL-21 was not
detected in culture supernatants of CD4* T cells (data not
shown). To determine whether iNKT cells produce IL-21
in response to a-GalCer presented on BMDCs, splenic
iNKT cells of naive mice were co-cultured with BMDCs
plus a-GalCer. The results showed that OVA/q-GalCer
BMDCs stimulated IL-21 production in iNKT cells
(Fig. 4b).
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Fig. 3. Suppression of nasal symptoms by ovalbumin, o.-galactosylceramide-bone marrow-derived dendritic cells (OVA, o-GalCer-BMDCs) in an
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mice were transferred after removal of iNKT cells. (¢) Nasal symptoms after the final nasal challenge. Data are representative of three independent

experiments. *P < 0-05; **P < 0-01.

Treatment with anti-IL-21 or anti-IFN-y neutralizing
antibody

Treatment with anti-IL-21 mAb or anti-IFN-y mAb and
nasal challenge in OVA/o-GalCer BMDC-treated mice
increased the number of sneezes and nasal rubs, compared
with control mAb-treated mice (Figs 5a and 6a). OVA-
specific and total IgE levels were increased by anti-IL-21
mAb, whereas only OVA-specific IgE was increased by anti-
IFN-y mAb (Figs 5b and 6b).
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Discussion

The goal of this study was to assess the anti-allergic effects
of activated iNKT cells in CLNs, which are regional drain-
ing lymph nodes, in an AR mouse model. Single adminis-
tration of OVA/ol-GalCer-BMDCs into the oral submucosa
of OVA-sensitized mice suppressed nasal symptoms and the
level of OVA-specific IgE in association with IL-21 and
IFN-y in an iNKT cell-dependent manner. Other BMDCs
failed to alleviate the Th2 responses and, therefore, the
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production of both OVA-specific and total IgE was
up-regulated. These findings indicate that, if antigen stimu-
lation is provided simultaneously, activated iNKT cells in
CLNs can suppress a nasal allergic reaction by producing
[L-21 and IFN-y.

IL-21, a type I cytokine, prevents B cell proliferation and
correspondingly augments B cell death under certain condi-
tions [23-26]. This cytokine is produced preferentially by
activated iNKT cells and CD4* T cells, including Tfh cells
and Th17 cells [27-29]. Expression of Bcl6, a Tth cell-
related transcript, and Th17 cell-related transcripts such as
IL-17RA and RORYt, did not increase in this study; but
Val4, an INKT cell-related transcript, was markedly
up-regulated and IL-21-producing iNKT cells increased sig-
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nificantly in CLNs of mice treated with OVA/a-GalCer-
BMDCs in the oral submucosa. In addition, a neutralization
assay revealed that IL-21 plays a critical role in suppressing
OVA-specific IgE production. These results are congruent
with those reported by Hiromura etal. showing that
intranasal administration of recombinant mouse IL-21
reduces nasal symptoms and the serum level of OVA-
specific IgE [30].

The Th1/Th2 balance in CLNs changed towards a Thl-
skewed phenotype after administration of OVA/o.-GalCer-
BMDCs. An IFN-y neutralization indicated that this Thl
cytokine can play a pivotal role in suppressing the level
of OVA-specific IgE. In type I allergic diseases, allergens
trigger a Th2-dominant immune response that generates
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antigen-specific IgE-producing memory B cells, but the role
of IFN-y in IgE production remains unclear [31,32].
Antigen-specific IgE is produced mainly in draining lymph
nodes [21,33] and CLNs are regional lymph nodes from the
oral cavity, as well as the nasal cavity [33,34]. In the present
study, treatment with anti-IFN-y antibody exacerbated
nasal symptoms and the OVA-specific IgE titre in mice
treated with OVA/o-GalCer-BMDCs. These results suggest
that IFN-y exerts a potent inhibitory effect on IgE produc-
tion in AR.

The role of iNKT cells in allergic reactions is unclear.
These cells have been suggested to have a suppressive effect
on allergic disease [19,20,31,35]; however, other reports
show that iNKT cells have an essential role in development
of airway hyperreactivity [18,36,37]. This plasticity of iNKT
cells may arise partially from differences in systemic versus
topical administration of o-GalCer and the diversity
of APCs. In the present study, OVA/o-GalCer-BMDCs
led to suppress OVA-induced nasal allergic symptoms
and OVA-specific IgE production. These findings share
some features with the previous report demonstrating
that mice administered OVA/0-GalCer-BMDCs intra-
tracheally prior to OVA challenge failed to develop airway
hyperresponsiveness [38].

Brimnes et al. showed that repeated sublingual adminis-
tration of OVA for 5 days each week for 9 weeks resulted in
relief from nasal allergic symptoms in an AR mouse model
[39]. Direct administration of OVA and o-GalCer to the
oral mucosa failed to have this effect because o-GalCer is
not a water-soluble antigen and is not readily phagocytosed
by oral dendritic cells. In the present study, o-GalCer-
BMDCs did not exacerbate nasal allergic symptoms and

simultaneous administration of OVA and o-GalCer using
BMDCs led to efficient suppression of OVA-induced
allergic reactions.

We have reported previously that DCs isolated from
PBMCs of patients with head and neck cancer migrated to
CLNs after oral submucosal administration [34], and we
showed that this treatment was safe [40]. Simultaneous
administration of an antigen with o-GalCer-DCs is thus an
accessible way to activate iNKT cells in regional lymph
nodes; however, further studies are needed to clarify the role
of activated INKT cells in regional lymph nodes in treat-
ment of AR.

In conclusion, oral submucosal administration of OVA/
0-GalCer-pulsed BMDCs activated iNKT cells in CLNs and
suppressed Th2 responses in OVA-sensitized mice. In the
present study, simultaneous stimulation with antigen and
o-GalCer were considered essential to exert anti-allergic
effects and led to relief of nasal allergic symptoms. This
finding indicates that the activated INKT cells have the
potential to alleviate nasal allergic symptoms in the pres-
ence of antigen. Thus, activation of iNKT cells in regional
lymph nodes might be an important target in new treat-
ment strategies for AR.
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Pulmonary function in patients with chronic
rhinosinusitis and allergic rhinitis
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Abstract
Background: A close relationship between upper and lower respiratory tract diseases has been reported. However,
little is known about pulmonary function in patients with upper respiratory tract diseases.

Methods: Pulmonary function was measured in: 68 patients with chronic rhinosinusitis without nasal polyps, 135
patients with chronic rhinosinusitis with nasal polyps, 89 patients with allergic rhinitis and 100 normal control
subjects. The relationships between pulmonary function and clinical parameters were assessed. These parameters
included radiographic severity of chronic rhinosinusitis, serum total immunoglobulin E levels, concentrations of
cytokines in nasal secretions and exhaled nitric oxide levels.

Results: The pulmonary function of patients with chronic rhinosinusitis was significantly affected. The level of
interleukin-5 in nasal secretions was significantly correlated with pulmonary function in patients with chronic
rhinosinusitis.

Conclusion: The findings indicated latent obstructive lung function changes in chronic rhinosinusitis patients.
The cytokines in nasal secretions might be related to obstructive lung function changes in chronic rhinosinusitis.

Key words: Sinusitis; Rhinitis; Asthma; Chronic Obstructive Pulmonary Disease; COPD; Lung Function Tests
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Introduction

Chronic rhinosinusitis is defined as a persistent inflam-
matory response involving the mucous membranes of
the nasal cavity and paranasal sinuses. It has recently
been divided into two subgroups: chronic rhinosinusitis
with nasal polyps, and chronic rhinosinusitis without
nasal polyps.' Allergic rhinitis is characterised by a
number of symptoms, including sneezing, nasal con-
gestion, nasal itching and rhinorrhoea.” Chronic rhino-
sinusitis and allergic rhinitis are common upper
respiratory tract diseases.> > The presence of allergic
rhinitis is one of the risk factors for the development
of asthma; the association between allergic rhinitis
and asthma is explained by the ‘united airway
disease’ hypothesis.”® It has been suggested that
chronic obstructive pulmonary disease (COPD) is
also associated with upper airway diseases including
chronic rhinosinusitis.”

Although numerous studies have described a rela-
tionship between upper and lower respiratory tract dis-
eases, pulmonary function in patients with upper
respiratory tract diseases has not been fully examined.
To the best of our knowledge, no study has compared
pulmonary function in patients with upper respiratory
tract diseases (chronic rhinosinusitis and allergic
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rhinitis) with that in normal controls. This study
aimed to evaluate pulmonary function in patients
with chronic rhinosinusitis or allergic rhinitis who
had not been diagnosed with lower respiratory tract
diseases.

Materials and methods

This study was approved by the Institutional Review
Board of Okayama University (approval number,
RINRI-877), and was conducted in compliance with
the Helsinki Declaration of 1975, as revised in 2008.
Informed consent was obtained from all enrolled
subjects.

Subjects

Four groups of participants were enrolled in this study:
a chronic rhinosinusitis without nasal polyps group, a
chronic rhinosinusitis with nasal polyps group, an aller-
gic rhinitis group and a normal control group.

A total of 203 chronic rhinosinusitis patients who
were scheduled to undergo functional endoscopic
sinus surgery (FESS) at Okayama University were
recruited and divided into two groups (chronic rhinosi-
nusitis without nasal polyps and chronic rhinosinusitis
with nasal polyps groups). The diagnosis of chronic
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rhinosinusitis with nasal polyps was based on the defin-
ition in the European Position Paper on Rhinosinusitis
and Nasal Polyps 2012." All chronic rhinosinusitis
patients were resistant to medical treatment, including
macrolide therapy.'’ Chronic rhinosinusitis patients
with chronic lower lung diseases including bronchial
asthma and COPD were excluded from this study.
The diagnoses of asthma and COPD were based on
the internationally accepted clinical guidelines.'"'?
Eighty-nine patients with allergic rhinitis took part in
this study. Allergic rhinitis was defined according to
the clinical symptoms and serological results reported

in the Practical Guideline for the Management of

Allergic Rhinitis in Japan (2008)."* The radioallergo-
sorbent test was used for the diagnosis of immuno-
globulin E (IgE) mediated allergic reactions.
Computed tomography (CT) was performed to
exclude the possibility of coexisting paranasal sinus
abnormalities. Allergic rhinitis patients who were clin-
ically diagnosed as having lower respiratory tract dis-
eases were excluded from this study.

Age-matched, normal control subjects with no
chronic respiratory diseases were also recruited (n =
100).

Because cigarette smoking could affect pulmonary
function, smoking status was examined and the
Brinkman Index (number of cigarettes per day X
smoking years) was calculated.

Pulmonary function tests

Prior to FESS, pulmonary function testing was per-
formed with the Chestac-9800 spirometer (Chest MI,
Tokyo, Japan) according to the standardisation of
lung function tests of the American Thoracic Society
and European Respiratory Society.'* The following
parameters were measured or calculated: percentage
of predicted vital capacity; forced expiratory volume
in 1 second; percentage of predicted forced expiratory
volume in 1 second; forced expiratory volume in 1
second / forced vital capacity ratio; mean forced
expiratory flow between 25 and 75 per cent of the
forced vital capacity; peak expiratory flow; maximal
expiratory flow rate at 50 per cent of vital capacity;
maximal expiratory flow rate at 25 per cent of vital cap-
acity; and the maximal expiratory flow rate at 50 per
cent of vital capacity / maximal expiratory flow rate
at 25 per cent of vital capacity ratio.

Rhinomanometry

In all chronic rhinosinusitis patients, nasal obstruction
was examined (prior to FESS) by active anterior rhino-
manometry with a nasal nozzle at air pressure 100 Pa
(MPR-3100; Nihon Kohden, Tokyo, Japan), according
to the manufacturer’s instructions.”

Chronic rhinosinusitis assessment

The radiographic severity of chronic rhinosinusitis was
assessed (prior to FESS) using the Lund—MacKay CT
staging system.'®
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Blood tests

Blood samples were taken prior to FESS. The periph-
eral blood eosinophil count was determined. Serum
total IgE levels were measured with the ImmunoCap
250 system (Phadia AB, Uppsala, Sweden), according
to the manufacturer’s protocols.

Inflammatory mediators assessment

Nasal secretion was collected (prior to FESS) from 13
randomly selected chronic rhinosinusitis patients
without lung disease (mean age * standard deviation
(SD), 48.2 + 12.5 years; i.e. 3 chronic rhinosinusitis
patients without nasal polyps and 10 chronic rhinosinu-
sitis patients with nasal polyps). A bicinchoninic acid
assay was performed to quantify the total protein con-
centration in each sample using the Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific, Rockford,
Illinois, USA). The concentrations of inflammatory
mediators (tumour necrosis factor-a (TNF-a), interleu-
kin (IL)-1p, IL-4, IL-5, IL-6, IL-8, IL-17 and
interferon-y) were determined by BD OptEIA enzyme-
linked immunosorbent assay sets (BD, Franklin Lakes,
New Jersey, USA). A zero value was assigned when
the concentration of inflammatory mediators was
under the detection limit of the enzyme-linked
immunosorbent assay set. The concentrations of
TNF-a, IL-1B, IL-4, IL-5, IL-6, IL-8, IL-17 and inter-
feron-y (pg/ml) were divided by the concentration of
total protein of each sample (mg of total protein per
ml) for standardisation. The calculated concentrations
of each cytokine (pg/mg total protein) were used for
statistical evaluation.

Exhaled nitric oxide concentration

The Niox Mino device (Aerocrine AB, Solna, Sweden)
was used to measure the level (fraction) of exhaled
nitric oxide according to the manufacturer’s instruc-
tions. This was carried out (prior to FESS) in 13 ran-
domly selected chronic rhinosinusitis patients without
lung disease (mean age = SD, 48.2 + 12.5 years; i.e.
3 chronic rhinosinusitis patients without nasal polyps
and 10 chronic rhinosinusitis patients with nasal

polyps).

Statistical analysis

Values are presented as means = SD. Differences in
proportions were examined using the chi-square test.
For comparisons between groups, a one-way analysis
of variance was conducted to establish the significance
of inter-group variability. The two-tailed unpaired 7-test
was then used for between-group comparisons for nor-
mally distributed data. A correlation analysis was per-
formed using Spearman’s rank correlation coefficient.
P values less than 0.05 were considered significant.
Statistical analyses were performed with the
Statistical Package for the Social Sciences software
(SPSS, Chicago, Illinois, USA).
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Results
Subject characteristics

Demographic data are presented in Table I. There was a
significantly higher ratio of males to females in the
chronic rhinosinusitis group compared with the
normal control group. There were no significant differ-
ences in age or smoking status among the groups.

Pulmonary function

Pulmonary function data for patients with chronic rhi-
nosinusitis (without any clinically diagnosed lung
disease) and normal control subjects are shown in
Figure [. There were no significant differences
between chronic rhinosinusitis patients and normal
controls in terms of forced expiratory volume in 1
second and the percentage of predicted vital capacity.
However, pulmonary function was significantly
affected in chronic rhinosinusitis patients (compared
with normal controls) in the following parameters: per-
centage of predicted forced expiratory volume in 1
second; forced expiratory volume in 1 second /
forced vital capacity ratio; peak expiratory flow;
mean forced expiratory flow between 25 and 75 per
cent of the forced vital capacity; maximal expiratory
flow rate at 50 per cent of vital capacity; maximal
expiratory flow rate at 25 per cent of vital capacity;
and maximal expiratory flow rate at 50 per cent of
vital capacity / maximal expiratory flow rate at 25
per cent of vital capacity ratio. No significant differ-
ences were observed between the chronic rhinosinusitis
without nasal polyps group and the chronic rhinosinu-
sitis with nasal polyps group in any parameters.

In patients with allergic rhinitis, the percentage of
predicted vital capacity was 114.9 = 15.8 per cent,
the forced expiratory volume in 1 second was 3.58 +
0.75 litres per second, the percentage of predicted
forced expiratory volume in 1 second was 106.0 +
11.8 per cent, the forced expiratory volume in
1 second / forced vital capacity ratio was 84.2 = 7.73
per cent, the peak expiratory flow was 8.76 = 1.98
litres per second, the mean forced expiratory flow
between 25 and 75 per cent of the forced vital capacity

was 3.56 = 1.20 litres per second, the maximal expira-
tory flow rate at 50 per cent of vital capacity was 4.21 +
1.24 litres per second, the maximal expiratory flow rate
at 25 per cent of vital capacity was 1.63 + 0.82 litres
per second, and the maximal expiratory flow rate at
50 per cent of vital capacity / maximal expiratory
flow rate at 25 per cent of vital capacity ratio was
3.10 £ 1.76. No significant differences in pulmonary
function parameters were seen between allergic rhinitis
patients and normal controls.

Nasal obstruction

The factors that might affect pulmonary function in
chronic rhinosinusitis patients were investigated.
Rhinomanometry was used to evaluate nasal obstruc-
tion. The mean nasal resistances at delta P (transnasal
differential pressure) 100 Pa in the chronic rhinosinusi-
tis without nasal polyps group was 0.32 + 0.23 Pa/
cm®/s, and in the chronic rhinosinusitis with nasal
polyps group it was 0.34 +0.24 Pa/cm’/s. There
was no significant difference in nasal resistance
between the chronic rhinosinusitis groups (p =
0.772). No significant correlations were observed
between nasal resistance and pulmonary function in
either of the chronic rhinosinusitis groups (Tables II
and I1I).

Computed tomography score

The Lund—Mackay CT score was used to evaluate
chronic  rhinosinusitis ~ severity. The average
Lund—Mackay scores on pre-operative CT scans were
6.75 =440 in the chronic rhinosinusitis without
nasal polyps group and 11.71 + 5.75 in the chronic rhi-
nosinusitis with nasal polyps group; this difference was
significant (p < 0.001). No significant correlations
were observed between pre-operative CT score and pul-
monary function in either of the chronic rhinosinusitis
groups (Tables II and III).

Peripheral blood eosinophil count

The mean peripheral blood eosinophil count was
204.9 = 162.8 in the chronic rhinosinusitis without

TABLE 1
SUBJECT CHARACTERISTICS
Parameter CRSsNP CRSwNP AR Normal P
Subjects () 68 135 89 100
Male/female (n) 41/27 91/44 64/25 51/49 0.014*
Age (years) 39.5+114 374119 37.1+14.1 38.7+10.8 0.531°
Smoking status
— Ex 12/68 (17.6%) 26/135 (19.3%) 20/89 (22.5%) 25/100 (25.0%) 0.678*
— Current 20/68 (29.4%) 40/135 (29.6%) 22/89 (24.7%) 20/100 (20.0%)
— Never 36/68 (52.9%) 69/135 (51.1%) 47/89 (52.8%) 55/100 (55.0%)
Brinkman index
— All smokers 438.2 +£309.3 383.6 £305.3 335.7 = 369.9 313.2 2893 0.328"
— Ex-smokers 380.2 +323.5 360.0 + 291.1 33554422 307.0 = 301.5 0.919°
— Current smokers 473.0 £ 303.4 399.0 =316.9 335.9 = 300.5 321.0 = 280.9 0.364"

Data represent means =+ standard deviation unless specified otherwise. *Chi-square test. {One-way analysis of variance. CRSSNP = chronic
rhinosinusitis without nasal polyps; CRSWNP = chronic rhinosinusitis with nasal polyps; AR = allergic rhinitis
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FIG. 1

Pulmonary function in patients with chronic rhinosinusitis, specifically: (a) percentage of predicted vital capacity (%VC); (b) forced expiratory
volume in 1 second (FEV,); (c) percentage of predicted forced expiratory volume in 1 second (FEV,); (d) forced expiratory volume in 1
second / forced vital capacity (FEV,/FVC) ratio; (¢) mean forced expiratory flow between 25 and 75 per cent of the forced vital capacity
(FEF250,_7504); (f) peak expiratory flow (PEF); (g) maximal expiratory flow rate at 50 per cent of vital capacity (Vs); (h) maximal expiratory
flow rate at 25 per cent of vital capacity (V2s); and (i) maximal expiratory flow rate at S0 per cent of vital capacity / maximal expiratory flow rate
at 25 per cent of vital capacity (Vso/Vas) ratio. (Rectangles include range from 25th to 75th percentile, horizontal lines indicate median, vertical
lines indicate range from 10th to 90th percentile and black squares represent mean value.) CRSsNP = chronic rhinosinusitis without nasal
polyps; CRSWNP = chronic rhinosinusitis with nasal polyps

nasal polyps group and 343.6 +311.4 in the chronic
rhinosinusitis with nasal polyps group; this difference
was significant (p < 0.001). There was no significant
correlation between peripheral blood eosinophil count
and pulmonary function for either chronic rhinosinusi-
tis group (Tables II and III).

Immunoglobulin E level

The mean total serum IgE level was 344.0 = 494.7 IU/
ml in the chronic rhinosinusitis without nasal polyps
group and 268.6 + 455.8 IU/ml in the chronic rhinosi-
nusitis with nasal polyps group; this difference was not
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significant. There was no significant correlation
between serum IgE level and pulmonary function for
either chronic rhinosinusitis group (Tables II and IIT).

Inflammatory mediators

The mean concentrations of tumour necrosis factor-a,
interleukin (IL)-1B, IL-4, IL-5, IL-6, IL-8 and inter-
feron-y in nasal secretions were 3.4 +0.6, 14.1
177,64 +£6.3,35+22,39+1.9,112.4 £43.3 and
26+1.0 pg/mg total protein, respectively.
Interleukin-17 was undetectable in all samples. The
level of IL-5 was significantly correlated with
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PULMONARY FUNCTION AND CLINICAL PARAMETERS CORRELATION: PATIENTS WITHOUT NASAL POLYPS

Parameter Nasal resistance CT score Blood eosinophil Serum IgE level
count

r P r D r D r D
%VC 0.276 0.339 —0.195 0.123 —0.145 0.251 —0.126 0.420
FEV, 0.057 0.841 —-0.216 0.087 —0.019 0.876 —0.004 0.978
%FEV, 0.287 0.299 —0.290 0.020 —0.228 0.065 —0.058 0.708
FEV:FVC 0.135 0.632 —0.121 0.342 —0.087 0.490 —0.007 0.966
PEE —0.162 0.565 —0.169 0.180 0.097 0.441 0.237 0.122
FEF50, 759 0.089 0.754 —0.108 0.397 —0.027 0.827 —0.005 0.975
Vso —0.011 0.969 —0.167 0.187 —0.108 0.387 —0.033 0.830
25 0.188 0.502 0.014 0.911 0.068 0.585 —0.048 0.756
Vs50:Vas —0.303 0.272 0.139 0.274 0.161 0.197 0.039 0.800

CT = computed tomography; IgE = immunoglobulin E; %VC = percentage of predicted vital capacity; FEV, = forced expiratory volume in
1 second; %FEV, = percentage of predicted forced expiratory volume in 1 second; FEV:FVC = forced expiratory volume in 1 second /
forced vital capacity ratio; PEF = peak expiratory flow; FEF,s0, 750, = mean forced expiratory flow between 25 and 75 per cent of forced
vital capacity; Vso = maximal expiratory flow rate at 50 per cent of vital capacity; V,s = maximal expiratory flow rate at 25 per cent of
vital capacity; Vso:Vas = maximal expiratory flow rate at 50 per cent of vital capacity / maximal expiratory flow rate at 25 per cent

of vital capacity ratio

pulmonary function (forced expiratory volume in 1
second / forced vital capacity ratio, p = 0.048; mean
forced expiratory flow between 25 and 75 per cent of
the forced vital capacity, p = 0.027; maximal expiratory
flow rate at 50 per cent of vital capacity, p = 0.043;
maximal expiratory flow rate at 25 per cent of vital cap-
acity, p = 0.043; maximal expiratory flow rate at 50 per
cent of vital capacity / maximal expiratory flow rate at
25 per cent of vital capacity ratio, p = 0.032) (Table I'V).

Exhaled nitric oxide

The mean level of exhaled nitric oxide was 27.8 + 17.1
parts per billion. There were no significant correlations
between levels of exhaled nitric oxide and each pul-
monary function test result.

Discussion
Recent studies have shown a strong link between
asthma and allergic rhinitis, and COPD may also be

. . . . 2 -
associated with upper airway involvement.>*'"~ "

Patients with asthma and COPD show increased nasal
symptoms and more nasal inflammation.’

Although numerous studies have reported an associ-
ation between upper and lower airway diseases based
on the concept of the ‘united airway disease’ hypoth-
esis, pulmonary function in patients with upper
airway diseases has not been fully examined.”® One
study reported spirometric abnormalities in patients
with allergic rhinitis, but there was no normal control
group in that study.”’ Furthermore, no previous study
has investigated pulmonary function in chronic rhinosi-
nusitis patients without lower respiratory tract disease.
The present study showed, for the first time, that
patients with chronic rhinosinusitis had latent obstruc-
tion of the small airway.

The effects of allergic rhinitis and chronic rhinosinu-
sitis on lung function in patients with lower lung disease
remain controversial. A recent report noted that

TABLE III

PULMONARY FUNCTION AND CLINICAL PARAMETERS CORRELATION: PATIENTS WITH NASAL POLYPS

Parameter Nasal resistance CT score Blood eosinophil Serum IgE level
count

r P r V% r D r P
%VC 0.050 0.681 —0.036 0.689 -0.012 0.889 —0.105 0.262
FEV, —0.191 0.109 0.029 0.739 —0.024 0.787 0.055 0.551
%FEV, 0.039 0.749 0.021 0.813 —0.104 0.241 —0.158 0.086
FEV:FVC —0.083 0.491 —0.084 0.342 —-0.075 0.395 0.020 0.832
PEF —0.090 0.457 —0.028 0.755 —0.068 0.444 0.009 0.926
FEF,50,_75% —0.141 0.239 —0.034 0.699 —=0.075 0.397 0.031 0.742
Vso —0.111 0.357 —0.044 0.620 —0.047 0.599 0.001 0.988
25 —0.140 0.243 —0.028 0.754 —0.104 0.241 0.050 0.590
Vs50:Vas —0.018 0.879 0.018 0.842 0.207 0.018 0.017 0.857

CT = computed tomography; IgE = immunoglobulin E; %VC = percentage of predicted vital capacity; FEV; = forced expiratory volume in
1 second; %FEV, = percentage of predicted forced expiratory volume in 1 second; FEV:FVC = forced expiratory volume in 1 second /
forced vital capacity ratio; PEF = peak expiratory flow; FEF,s¢, 750, = mean forced expiratory flow between 25 and 75 per cent of forced
vital capacity; Vs, = maximal expiratory flow rate at 50 per cent of vital capacity; Vo5 = maximal expiratory flow rate at 25 per cent of
vital capacity; Vso:V2s = maximal expiratory flow rate at 50 per cent of vital capacity / maximal expiratory flow rate at 25 per cent

of vital capacity ratio

7
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T : 2y TABLE IV S : : ,
- PULMONARY FUNCTION AND NASAL SECRETION CYTOKINE LEVELS CORRELATION

1.4 IL-5 IL-6 IL-8 IFN-y

IL-1p

TNF-a

Parameter

0.089
0.105
0.632
0.850
0.676
0.471
0.609
0.472
0.246

—0.490
—0.470
—0.147
—0.058
—0.129
—0.219
=0157
—0.219

0.347

0214
0.919
0.437
0.130
0.649
0.209
0.197
0.227
0.377

—0.031
0.236

—0.442
—0.140
—0.373
—0.382
—0.360

0.369
0.268

0.696
0.597
0.988
0.138
0.621
0.131
0.167
0.143
0.375

0.120
—0.162
0.004
—0.434
—0.154
—0.441
—0.407
—0.430
0.269

0.394
0.062
0.904
0.048
0.385
0.027
0.043
0.043
0.032

—0.258
—0.531
—0.037
—0.557
—0.263
—0.609
—0.568
—0.567
0.594

0.737
0.204
0.921
0.066
0.541
0.080
0.075
0.133
0.084

—0.103
—0.377
—0.030
—0.523
—0.187
—0.502
—0.509
—0.438

0.496

0.718
0.209
0.953
0.044
0.681
0.055
0.073
0.082
0.037

—0.111
—0.373
—0.018
—0.564
—0.126
—0.543
—0.512
—0.498
0.580

0.108
0.299
0.124
0.562
0.274
0.955
0.282
0.340
0.017

0.467
0.312
0.448
—0.177
0.328
—0.017
0.323
—0.288
0.647

= percentage of predicted forced
mean forced expiratory flow between 25 and

25%—75% —

peak expiratory flow; FEF

percentage of predicted vital capacity; FEV, = forced expiratory volume in 1 second; %FEV,

interferon; %VC

forced expiratory volume in 1 second / forced vital capacity ratio; PEF

75 per cent of forced vital capacity; Vs, = maximal expiratory flow rate at 50 per cent of vital capacity; V,5s = maximal expiratory flow rate at 25 per cent of vital capacity; Vso:V»s = maximal expiratory

flow rate at 50 per cent of vital capacity / maximal expiratory flow rate at 25 per cent of vital capacity ratio

interleukin; IFN

tumour necrosis factor; IL =

expiratory volume in 1 second; FEV:FVC

TNF
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asthmatics without rhinitis tend to have poorer lung
function than asthmatic patients with rhinitis.*** In
the present study, it was clear that patients with
chronic rhinosinusitis had a normal percentage of pre-
dicted vital capacity. However, compared with normal
control subjects, the following parameters were
affected: percentage of predicted forced expiratory
volume in 1 second; forced expiratory volume in 1
second / forced vital capacity ratio; peak expiratory
flow; mean forced expiratory flow between 25 and 75
per cent of the forced vital capacity; maximal expiratory
flow rate at 50 per cent of vital capacity; maximal
expiratory flow rate at 25 per cent of vital capacity;
and maximal expiratory flow rate at 50 per cent of
vital capacity / maximal expiratory flow rate at 25 per
cent of vital capacity ratio. These findings suggest that
chronic rhinosinusitis patients who are not clinically
diagnosed as having lung disease do show evidence
of obstructive lung function changes, even if these
changes are asymptomatic. In contrast, there were no
significant differences between allergic rhinitis patients
and control subjects in spirometric parameters.

The present study investigated the factors that might
influence obstructive lung function in chronic rhinosi-
nusitis patients. Rhinomanometry is a sensitive and
specific technique for the measurement of nasal
obstruction.”® The upper respiratory tract has important
roles, including acting as a physical filter, resonator,
heat exchanger and humidifier of inhaled air.** The
conditions leading to nasal obstruction may trigger
lower airway dysfunction.” The CT score based on
the Lund—Mackay staging system is commonly used
to assess the extent and severity of inflammatory
changes in chronic rhinosinusitis."”> Deal and
Kountakis reported that the CT score was greater in
chronic rhinosinusitis with nasal polyps patients than
in chronic rhinosinusitis without nasal polyps
patients.”® Although the presence of polyps in the
nasal area causes blocked nose, nasal resistance to
airflow (measured by rhinomanometry and CT score)
was not significantly correlated with lung function in
the present study.

Peripheral blood eosinophil count and serum IgE
level are widely used to evaluate patients with
various allergic diseases, including asthma and allergic
thinitis.””** In the present study, no relationship was
found between pulmonary function and these inflam-
matory mediators.

Various explanations for the upper and lower airway
association have been presented. These hypotheses
include: systemic reactions; nasobronchial reflex; phar-
yngobronchial reflex; post-nasal drainage of inflamma-
tory mediators from the upper to lower airways; and
inhalation of dry, cold air and environmental pollu-
tants.**** ! In an animal study by Kogahara et al., it
was evident that a viscous post-nasal drip could flow
into the lower respiratory organs when the host was
asleep.’> Cytokines and chemokines are important
factors in the pathogenesis of upper respiratory
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diseases, and they play a key role in asthma and
COPD.**** The present study showed that patients
with increased nasal interleukin-5 levels had asymp-
tomatic lung lesions. Although the number of
samples was limited, the present study findings
suggest that post-nasal drip containing cytokines
might be associated with obstructive lung injury in
patients with chronic rhinosinusitis.

e A close relationship has been reported
between upper and lower respiratory disease

e Spirometry indicated obstructive lung
function in chronic rhinosinusitis patients
without lower respiratory tract disease

o Cytokines in nasal secretions might be related
to lung function

Exhaled nitric oxide is a marker of airway inflamma-
tion, and the concentration of exhaled nitric oxide is
elevated in patients with bronchial asthma, COPD,
and chronic rhinosinusitis with nasal polyps.>>* In
the present study, no significant correlation was
found between exhaled nitric oxide level and pulmon-
ary function test parameters.

Conclusion

Chronic rhinosinusitis patients without clinically diag-
nosed lung disease had latent lung obstruction. The
chronic rhinosinusitis patients with decreased lung
function may be in danger of developing lower respira-
tory disease. Our findings suggest that the patients with
upper respiratory disease should be followed carefully
in order to detect lung disease. Several factors in the
upper respiratory tract are considered as potential
explanations for the effects on lung function. Among
these factors, the present findings suggest that cyto-
kines in nasal secretions might be related to lung
obstruction.
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