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Table 3. Adjusted food-group scores for each cluster (JDOPPS data).

Cluster n Food-group score

Vegetables Fish Meat
Well-balanced ~ 0.297 (0.460) 216(0.936) 0.319(0.874)
Unbalanced 1.522 (0.454) 0.528 (0.809) 0.315(0.838)
Othe 971 (0.643) ).544,(0.980)

Each food-group score was adjusted for total daily energy intake by the residual method [20]. Values in parentheses are standard deviations.

doi:10.1371/journal.pone.0116677.t003

Dietary patterns in hemodialysis patients

Cluster analysis of the adjusted food-group scores revealed three clusters, which we call (1)
“well-balanced diet”, (2) “unbalanced diet,” and (3) “other diet” (Table 3). Patients in the first
of those three clusters, i.e. those whose diet was well-balanced, were those who ate approxi-
mately equal amounts of food from the meat, fish, and vegetable groups. Almost half of the
JDOPPS patients had a well-balanced diet (49.2%). Patients in the second of the three clusters,
i.e. those whose diet was unbalanced, were those who ate a much larger amount from the vege-
table group than from the meat group and the fish group. They amounted to 14% of the
JDOPPS patients.

Fig. 1 shows the amounts of micronutrients for each cluster of JDOPPS patients. According
to clinical guidelines, protein intake was within the prescribed range among those who ate a
well-balanced diet, too high among those who ate an unbalanced diet, and too low among the
others. [1] The mean salt intake was more than 6 g/day in all groups, and was highest among
those who ate an unbalanced diet. Potassium intake was within the prescribed range among
those who ate a well-balanced diet, too high among those who ate an unbalanced diet, and too
low among the others. Phosphorus intake was similar to potassium intake.

Patient characteristics by dietary pattern

Table 4 shows characteristics of the JDOPPS patients, stratified by the three dietary patterns.
Patients who ate an unbalanced diet were older than those who ate a well-balanced diet, and

fewer of them were male. Total daily energy intake, protein intake, salt intake, and potassium
intake were highest among those whose diet was unbalanced.

Association between dietary pattern and clinical outcomes in
hemodialysis patients

Table 5 shows associations between dietary patterns and the composite outcome. In Model 1,
which included adjustments for age, gender, and dialysis duration, the unbalanced diet was as-
sociated with a higher event rate than the well-balanced diet (adjusted hazard ratio [HR] 1.81,
95% CI 1.15-2.85). A similar association was seen in Model 2 (adjusted HR 1.90, 95% CI 1.19~
3.04), that is, after adjustment for serum albumin, BMI, and total daily energy intake, in addi-
tion to the covariates included in Model 1.

In the sensitivity analysis adjusted for the covariates included in Model 2 and also adjusted
for hemoglobin level, ESA dose, and single-pool Kt/V, we also found a similar association be-
tween unbalanced diet and the composite outcome (adjusted HR 1.89, 95% CI 1.11-3.23). In
the other sensitivity analysis, adjusted for the covariates included in Model 2 and also for smok-
ing habit, we again found a similar association between unbalanced diet and adverse clinical
events (adjusted HR 1.85, 95% CI 1.16-2.97).
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Figure 1. Micronutrient intake stratified by dietary pattern. Estimated micronutrient intake stratified by dietary pattern. Dotted lines show dietary
standards according to Japan's clinical guidelines (Dietary recommendations for chronic kidney disease, 2007, Japanese Society of Nephrology).

doi:10.1371/journal pone.0116677.g001

Discussion

Using PCA with data from a representative sample of the general population of Japan, we identi-
fied three food groups: meat, fish, and vegetables. We then found that hemodialysis patients
could be said to have diets that were “well-balanced” or “unbalanced” with regard to those three
food groups. (As noted previously, to identify dietary patterns based on foods or on food groups,
as we did in this study, is common in nutritional epidemiology.[17-19]) The hemodialysis pa-
tients whose diet was unbalanced were more likely to have important clinical events. These find-
ings suggest that limiting food portions, which is often recommended for hemodialysis patients
to prevent severe adverse clinical outcome, is not enough. In addition to portion control, a diet
that is balanced among meat, fish, and vegetables might help to prevent adverse outcomes.

Nutritional epidemiologic research in hemodialysis patients has largely focused on relation-
ships between individual food items, micronutrients, and outcomes. For example, relationships
between fish consumption, phosphate consumption, and outcomes in these patients have been
reported.[7,28] However, hemodialysis patients do not eat only one specific food item, but
rather various foods, and therefore dietary patterns should be determined on the basis of the
combinations of foods that people actually eat. We began with PCA, from which we identified
three groups of foods that are in fact eaten by people in Japan: meat, fish, and vegetables. We
then used cluster analysis, from which we identified hemodialysis patients’ actual patterns of
food consumption with reference to those groups. Those patterns (well-balanced, unbalanced,
and other) were associated with important clinical outcomes.

In hemodialysis patients, adequate protein intake (1.0 to 1.2 g/kg per day), such as can be
obtained from the meat and fish groups we identified, is recommended to counteract loss of
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Table 4. JDOPPS patient characteristics at baseline, by dietary pattern (n = 1,355).

Well-balanced (49.2%) Unbalanced (14.0%) Other (36.9%)
Mean (SD) age, years 62.3 (11.8) 64.2 (11.9) 59.2 (11.5)
Mean (SD) dialysis duration, years 72(7.2)

Periphel
Cancer

5.6 (1.3)

1592 (563)
51

883 (370) 1018 (376) 793 (395)

The “well-balanced diet” was characterized by approximately equal intake of the three food groups (fish, meat, and vegetables). The “unbalanced diet’
was characterized by relatively large vegetable intake compared with meat and fish intake, and the “other diet” refers to other intake patterns.

doi:10.1371/journal.pone.0116677.t004

protein via the dialysate.[29] Sufficient protein intake is critical to preventing malnutrition, but
excessive protein intake may lead to hyperphosphatemia, which may in turn lead to cardiovas-
cular events. Hemodialysis patients should also avoid excessive vegetable intake to prevent
hyperkalemia, which, like hyperphosphatemia, is associated with cardiovascular events. It is
therefore physiologically plausible that a diet well-balanced among food groups would be asso-
ciated with good clinical outcomes, as was found in this study.

The present study had a number of strengths. First, the Hisayama study and the JDOPPS
used representative samples of the general population of Japan and of hemodialysis patients in
Japan, respectively. Therefore the findings should be generalizable to all hemodialysis patients
in Japan. To the extent that differences in dietary patterns between hemodialysis patients in
Japan and those in other countries can result in differences in clinical outcomes, the present
findings might be used for nutritional research and possibly also for dietary recommendations
to improve the prognosis of patients in, for example, the US and Europe. Second, the use of the

Table 5. Dietary patterns and the composite outcome (JDOPPS data).

Dietary patterns Composite outcome rate (/100 person-years) Model 1 Model 2
Hazard ratio (95% Cl) Hazard ratio (95% CI)

analanced

1.81 (1.15-2.85) 1.90 (1.19-3.04)
Other :

The composite outcome included hospitalization due to cardiovascular disease, and death due to any cause. Model 1: Adjusted for age, gender, and
dialysis duration. Model 2: Adjusted for age, gender, dialysis duration, serum albumin, BMI, total daily energy intake, and comorbid conditions (diabetes,
coronary heart disease, cerebrovascular disease, other cardiovascular disease, and peripheral vascular disease).

doi:10.1371/journal.pone.0116677.t005
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BDHQ enabled us to measure food intake in clinical settings.[21-24] Third, results of the sensi-
tivity analyses indicated that the association of dietary pattern with the composite outcome was
robust with respect to hemoglobin level, ESA dose, Kt/V, and smaoking habit.

One possible limitation of this study is that food intake was self-reported. Actual food intake
might have differed from that estimated from the food-frequency questionnaire.[30] In partic-
ular, social-desirability bias might have caused hemodialysis patients, who were aware of their
dietary proscriptions, to report inaccurately-low levels of food intake, and the estimated intake
of micronutrients might therefore have been incorrect.

In summary, eating a diet that was not balanced among meat, fish, and vegetables was asso-
ciated with important adverse clinical events, which suggests that hemodialysis patients should
not only limit their food intake but should also strive for a proper balance among those three
food groups.
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Cardiorenal syndrome in chronic kidney disease

Kazuhiko Tsuruya™®
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INTRODUCTION

Chronic kidney disease (CKD) is an independent risk
factor for cardiovascular disease (CVD), and there is
a high prevalence of CVD among patients with CKD.
Mortality due to CVD is 10-30 times higher in
dialysis patients than in the general population
[1], and patients with CVD often have CKD. This
interaction between CKD and CVD is known as
cardiorenal syndrome (CRS).

Ronco et al. [2,3%] proposed division of CRS into
five categories according to the associated etiologic
and chronologic factors. Each category is character-
ized as follows: CRS type 1; acute worsening of
cardiac function [e.g. acutely decompensated con-
gestive heart failure (CHF)] leading to acute kidney
injury and/or dysfunction, CRS type 2; chronic
abnormalities in cardiac function (e.g. chronic
CHF) causing progressive and permanent CKD,
CRS type 3; acute worsening of kidney function
leading to acute cardiac injury and/or dysfunction,
such as acute myocardial infarction, CHF or arrhyth-
mia, CRS type 4; primary CKD contributing to

1062-4821 Copyright ©

2015 Wolters Kluwer Health, Inc. Al rights reserved.

decreased cardiac function, cardiac hypertrophy,
fibrosis and/or increased risk of adverse cardiovas-
cular events, CRS type 5; acute cardiac and renal
injury and dysfunction in the setting of an over-
whelming systemic insult.

This classification describes the clinical setting
associated with CRS, but is not based on pathophy-
siological mechanisms. CVD is common in patients
with CKD and is associated with substantially
increased risk of end-stage renal disease (ESRD)
and all-cause mortality before the development of
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ESRD [4"]. These findings suggest that cardiac and
renal injuries affect each other, and that CRS types 2
and 4 according to the Ronco classification are
overlapping and coexistent.

In addition to haemodynamic changes, neuro-
humoral factors such as renin-angiotensin system
(RAS) activation, sympathetic nerve activity (SNA)
activation and nitric oxide level play important
roles in the interactions between the heart and
kidneys in patients with CKD and CVD [5%6]. In
this review, we describe the interactions among
these factors and their impact on the mechanisms
underlying the development of CRS, and thera-
peutic strategies for the management of CRS.

CVD and CKD coexist in patients with CRS, and
conventional risk factors for CVD and CKD such as
hypertension and diabetes mellitus influence the
development of CRS [7]. Understanding of the fac-
tors that cause CRS in patients with both CKD and
CVD is important for determining optimal thera-
peutic strategies for these patients.

This study discusses the interactions among
three maladaptive cycles that lead to the develop-
ment of CRS: neurohumoral disorders, haemody-
namic alterations and CKD-related factors

(Fig. 1).

NEUROHUMORAL DISORDERS

Neurohumoral factors are essential haemodynamic
regulators and strongly affect blood pressure and
body fluid volume. Each of these factors interacts
complicatedly with each other and also has a direct
effect on organ injury in haemodynamic-
independent manner.

Renal

failure “

Heart
failure

ow cardiac outp enous congestiol

FIGURE 1. Pathophysiology of cardiorenal interactions in chronic kidney disease. The multifactorial cardiorenal interactions in
patients with CKD include three positive-feedback cycles: neurohumoral disorders, haemodynamic alterations and CKD-related

factors. Ca, calcium; P, phosphorus. This figure is original.
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Interactions among renin-angiotensin
system, sympathetic nerve activity and nitric
oxide

RAS, SNA and nitric oxide interact with each other
and have important roles in the neurohumoral mal-
adaptive cycle leading to the development of CRS
[6,8,9]. In an animal model, continuous intravenous
injection of angiotensin Il [10] or intracerebroven-
tricular injection of angiotensin I [11] caused SNA
activation, and increased secretion of renin from the
juxtaglomerular apparatus after SNA-induced acti-
vation of B1 receptors caused RAS activation, result-
ing in a positive-feedback cycle. The RAS interacts
with nitric oxide [12] and lowers the nitric oxide
level in the renal cortex of rats injected with angio-
tensin I [13].

Conversely, inhibition of nitric oxide by chronic
administration of N*-nitro-L-arginine methyl ester
increases RAS activation by reducing the renal cir-
culation [14,15"], although this inhibition of nitric
oxide initially lowers RAS activation [16] because of
volume overload [8]. Moreover, inhibition of nitric
oxide promotes a reduction in the glomerular filtra-
tion rate (GFR) by increasing the renal response to
angiotensin II [17].

Inhibition of nitric oxide in rats also results in
SNA activation by resetting of the baroreceptors over
time, although there is an initial transient decrease
in SNA activation due to the baroreceptor reflex
response to increased blood pressure [18]. Blocking
of the afferent baroreceptor pathways results in SNA
activation immediately after inhibition of nitric
oxide [18]. Several studies reported that decreased
nitric oxide production in the central nervous sys-
tem resulted in SNA activation [11,19].

On the contrary, activation of SNA inhibits nitric
oxide production. Decreased activity of the L-argi-
nine-nitric oxide metabolic pathway is reported in
patients with CHF in whom SNA activation is
thought to occur [20]. Couto et al. {21] found reduced
nitric oxide bioavailability in the small vessels of
mice that had sympathetic hyperactivity because
they lacked aya/azc-adrenergic receptors.

Nitric oxide

Accumulation of asymmetric dimethylarginine
results in chronic inhibition of nitric oxide [227].
RAS and SNA activation result in accelerated pro-
gression of CKD, and decreased nitric oxide pro-
duction due to accumulation of asymmetric
dimethylarginine results in further RAS and SNA
activation and development of CRS [22%]. Bongartz
et al. [23,24] reported on the impact of nitric oxide
inhibition on CRS progression using two models of
CRS. These models of CRS induced by subtotal

1062-4821 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

nephrectomy as well as coronary ligation, or by
transient nitric oxide reduction, can be applied to
clinical situations [25], and show that nitric oxide
inhibition plays an important role in the develop-
ment of CRS. Although these findings suggest that
retrieval of nitric oxide should be an important
therapeutic strategy in CRS, this strategy has not
been shown to be clinically effective.

Renin-angiotensin system

RAS activation results in organ damage in patients
with CKD and CVD, and RAS inhibitors are used as
first-line treatment in hypertensive patients with
CRS [5%]. Albuminuria is an independent risk factor
for progression of CKD and CVD even when renal
function is normal [26], and randomized con-
trolled trials of RAS inhibitors found that greater
reduction in urinary protein excretion was associ-
ated with stronger protective effects against CRS
[27,28]. It has also been reported that reduction in
proteinuria in the early stage of CKD lowers the risk
of progression of CKD [29"]. Treatment with a RAS
inhibitor is therefore required from the early stage
of CKD to prevent the progression of CKD and
CVD, using the degree of albuminuria as a
therapeutic target.

Sympathetic nervous system

SNA activation is observed from the early stage of
CKD [30] and during progression to ESRD [31], and
is associated with CVD and mortality in these
patients [30]. SNA activation was reported in various
experimental models of renal injury [15%%,32,33]. Ye
et al. [33] reported SNA activation after a limited
renal injury induced by intrarenal injection
of phenol.

The mechanisms underlying SNA activation in
CKD include increased circulating RAS [10] and
brain RAS [11], nitric oxide depletion [18], stimu-
lation of renal baroreceptors, chemoreceptors and
sensory receptors [32], reduction in renal mass [33],
renal ischemia [34] and other factors [35].

A recent study reported that renal denervation
resulted in reduction of albuminuria without affect-
ing the blood pressure in a rat model of CRS induced
by hemi-nephrectomy and aortic regurgitation [36].
We then investigated the effects of renal denerva-
tion on the interaction between SNA and RAS in a rat
model of CRS induced by chronic nitric oxide inhi-
bition, and found that renal denervation had pro-
tective effects against cardiac and renal dysfunction
[157"]. These effects were associated with decreased
RAS activation and were independent of the blood
pressure lowering effects (Fig. 2).
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FIGURE 2. Renal denervation in an experimental study. Chronic administration of N“-nitro-l-arginine methyl ester (LNAME; a
nitric oxide synthase inhibitor) was used to induce proteinuria and cardiac hypertrophy, similar to cardiorenal syndrome, in
Wistar rats. These changes were suppressed by bilateral renal sympathetic denervation {Bil. DNx), but not by hydralazine
(Hyd) treatment, even though blood pressure and nitric oxide depletion were maintained at the same levels in both groups.
SBP {a), urinary nitric oxygen (NOx] (b), urinary protein excretion (c} and heart weight (d) are shown. Values are

mean =+ standard error of the mean. *P < 0.05 vs. control rats, **P< 0.05 vs. Bil. DNx rats, “*P< 0.05 vs. LNAME rats,

TP <0.05 vs. baseline values. This figure is a direct copy of [14].

Renal denervation using catheter devices has
been reported to be clinically effective for the pre-
vention of hypertension [37], atherosclerosis [38],
left ventricular hypertrophy (LVH) [39], albuminu-
ria [40] and CKD [41], but these studies were not
comparative trials. The blinded randomized con-
trolled SYMPLICITY HTN-3 trial [42%%], which used
a sham-operation group for comparison, did not
show a significant difference in the reduction of
SBP in patients with resistant hypertension
(Fig. 3). As many physicians expect renal denerva-
tion to be an attractive therapeutic modality in
patients with CRS, it should be determined why this
was not shown to be effective in the SYMPLICITY
HTN-3 trial [43]. First, it is possible that ablation
using the catheter device was incomplete. We found
that one-sided denervation did not prevent increase
in blood pressure or progression of organ damage
[15%%]. Second, it is possible that the patient selec-
tion process was not appropriate. In a preliminary
experiment using a puromycin aminonucleoside-
induced model of nephrotic syndrome, we did not

4 www.co-nephrolhypertens.com

find that renal denervation reduced proteinuria or
hypertension. It is important to identify clinical
markers that can be used to confirm adequate dener-
vation and to ensure appropriate selection of can-
didates for denervation.

HAEMODYNAMIC ALTERATIONS

Haemodynamic alteration in CRS, which have been
explained as the low-flow theory, is an indispensa-
ble factor in talking about cardio-renal interaction.
We address the recent proposed theory about how
‘renal venous hypertension’ affects on the renal
perfusion in this section.

Abnormal pressure natriuresis for low
cardiac output (low-flow theory)

Regulation of sodium balance according to the pres-
sure natriuresis curve and heart and kidney function
is important for the maintenance of appropriate
blood pressure and body fluid volume [44].
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FIGURE 3. Renal denervation in a clinical study. In the
SYMPLICITY HTN-3 trial, the difference in change in blood
pressure between the two groups was 2.39 mmHg, which
was not significant. This figure is a direct copy of [41].

Increased blood pressure resulting from a normal
cardiac response to increased fluid volume, and
pressure natriuresis in response to the increased
blood pressure, are required for excretion of excess
sodium and body fluid. In patients with CKD who
have insufficient sodium excretion because of

reduced GFR due to reduced numbers of functional
nephrons, there is insufficient pressure natriuresis.
Pressure natriuresis is also affected by neurohumoral
factors, with a shift of the pressure natriuresis curve
to the right after RAS and SNA activation [44].

Renal venous hypertension

It was previously thought that impaired pressure
natriuresis was caused mainly by reduced renal
blood flow due to low cardiac output and by arterial
underfilling due to left ventricular contractile dys-
function. However, a study of 1184655 patients
with heart failure in the ADHERE database did not
find an association between left ventricular contrac-
tile dysfunction and renal dysfunction, suggesting
that renal dysfunction was not attributable only to
low cardiac output [45]. This finding suggests that
renal venous hypertension due to venous conges-
tion, rather than arterial underfilling, may cause
renal dysfunction.

The results of recent clinical trials also suggest
that renal dysfunction may be caused by renal
venous hypertension due to venous congestion
rather than by arterial underfilling [46,47]. A sub-
analysis of ESCAPE trial showed the relationship
between increase in central venous pressure and
decrease in estimated GFR after adjusting cardiac
index (Fig. 4) [46]. GFR is considered to decrease in
response to reduction in the net filtration pressure
caused by increased hydrostatic pressure in Bow-
man’s capsule secondary to increased interstitial
pressure (Fig. 5) [48,49]. Other suggested causes of
renal dysfunction are neurohumoral factors, myo-
genic responses, regulation of renal blood flow and
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FIGURE 4. Haemodynamic impact of cardiorenal syndrome. The relationship between central venous pressure (CVP) and
estimated GFR (eGFR) adjusted for age, sex and cardiac index. This figure is a direct copy of [45].
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Bowman's capsule

=== |nterstitial pressure

Net filtration pressure = Pg¢ - g - Pae

FIGURE 5. Hoemodynamic impact of renal
hypertension on glomerular capillary. Renal venous
hypertension is associated with increased efferent pressure
(decreased afferent—efferent gradient) and interstitial
pressure (Ppc elevation), resulting in reduced glomerular flow
and net filtration pressure. Py, hydrostatic pressure in
Bowman's capsule; Poc, glomerular capillary hydrostatic
pressure; mac, oncotic pressure in the glomerular capillaries.
This figure is original.

venous

GFR by tubuloglomerular feedback [8], and hypoxia
and inflammation of the renal parenchyma. These
factors suggest that abnormal pressure natriuresis
due to decreased GFR, exacerbation of venous con-
gestion and worsening of heart failure due to low
cardiac output create a positive-feedback cycle
(Fig. 1).

CHRONIC KIDNEY DISEASE RELATED
RISK FACTORS

In the past decade, two novel pathogenic mechan-
isms have been proposed for the development of
CVD in patients with CKD: the cardiorenal anae-
mia (CRA) syndrome proposed by Silverberg et al.
[50] and the malnutrition-inflammation-athero-
sclerosis (MIA) syndrome proposed by Stenvinkel
et al. [51]. In addition, it was also recently reported
that disturbances in mineral and bone metabolism
are involved in the pathogenesis of CVD in patients
with CKD. This mechanism has been termed CKD-
related mineral and bone disorder (CKD-MBD), and
includes abnormalities in bone and mineral metab-
olism and vascular calcification [52]. CRA syn-
drome, MIA syndrome and CKD-MBD are
considered to interact with each other in the patho-
genesis of CRS (Fig. 6).

6 www.co-nephrolhypertens.com

Inflammation

Inflammation in CKD is induced by increased levels
of inflammatory cytokines due to increased pro-
duction of uremic toxins [53] and reduced clearance
due to renal dysfunction [54]. Inflammation is a
predictor of cardiovascular and total mortality in
CKD [55], and is also a predictor of mortality and
disease severity in patients with heart failure [56].

Venous congestion and volume overload have
increasingly recognized roles in the development of
inflammation in patients with CRS [57]. Edematous
bowels, veins and peripheral tissues can be important
sources of inflammatory mediators when exposed to
high intravascular and interstitial pressures.

We recently reported that inflammation and
malnutrition play important roles in the develop-
ment of vascular calcification in rats with adenine-
induced chronic renal failure [58™], and that vascular
calcification in these rats was ameliorated by anti-
oxidant treatment [59].

Inflammation is considered to be one of the
important factors regulating CRS. However, recently
conducted randomized controlled trials of immune-
selective anti-inflammatory derivatives such as eta-
nercept [60] and infliximab [61] did not show any
effects on the risk of death from any cause or hos-
pitalization for heart failure. The ACCLAIM trial
investigated the effects of nonspecific immunomo-
dulation in patients with heart failure and showed
no significant effects in the group overall, but was
associated with reduced risk of death from any cause
and first hospitalization for CVD in patients with no
history of myocardial infarction and patients with
NYHA class II heart failure [62].

Anaemia

Patients with heart failure may have anaemia even
though they have a high plasma erythropoietin
(EPO) concentration. This EPO-resistant anaemia
is considered to be caused by inflammation [63].
In patients with CRS, anaemia is attributed to both
EPO deficiency and inflammation-induced EPO
resistance. Appropriate management of anaemia is
important, because it influences mortality and renal
survival in patients with CRS.

Caicium-phosphate imbalance

CRS has been reported to be associated with CKD-
MBD. Activation of vitamin D exerts various
effects such as reduction of RAS activation,
reduction of inflammation, reduction of apopto-
sis, inhibition of cell proliferation and immune
modulation, in addition to regulation of bone and
mineral metabolism. Two studies reported that the
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FIGURE 6. Schematic diagram of inferactions among chronic kidney disease related factors. Malnutrition—inflammation—
atherosclerosis {MIA) syndrome, cardiorenal-anemia {CRA)} syndrome and CKD-related related mineral and bone disorder
(CKD-MBD) interact with each other. Inflammation plays a central role in all three mechanisms. Ca, calcium; P, phosphorus.

This figure is original.

anti-inflammatory effects of activated vitamin D
provided cardiorenal protection. One study found
improvements in proteinuria and renal dysfunc-
tion in a murine model of adriamycin-induced
nephropathy [64], and another found improve-
ment in LVH in rats with CKD induced by subtotal
nephrectomy [657]. Two recent randomized con-
trolled trials investigated the cardiorenal protec-
tion provided by paricalcitol therapy. Paricalcitol
therapy reduced albuminuria in the VITAL study
[66], but did not improve LVH in patients with
CKD in the PRIMO trial [67]. Further accumulation
of evidence of beneficial effects of vitamin D recep-
tor activator (VDRA) on CRS is required in the
clinical setting.

Recent studies found that an increase in the
serum FGF23 level, which causes reduction of the
serum phosphate level by inhibition of proximal
tubular phosphate reabsorption through its own
suppressive effect on the expression of type 2a
and 2c sodium-phosphate cotransporter in the
brush border membrane of proximal tubules, and
by inhibition of intestinal phosphate absorption
secondary to reduction of the 1,25-dihydroxyvita-
min D level, is associated with CVD [68%]. It is
currently unclear whether FGF23 is a biomarker or

1062-4821 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

a pathogenic factor in this process. Faul et al. [69]
reported that intramyocardial or intravenous injec-
tion of FGF23 in wild-type mice resulted in LVH.
However, Shalhoub et al. [70] reported that admin-
istration of anti-FGF23 neutralizing antibodies
increased vascular calcification and mortality in a
rat model of CKD. FGF23 has a preventive effect on
arterial calcification because it controls the serum
phosphate level via its phosphaturic action in
patients with nondialyzed CKD and induces LVH
by reducing the activation of vitamin D in patients
with ESRD without phosphaturia. FGF23 may there-
fore have different effects in different patients with
CRS, depending on the stage of CKD. It is expected
that further elucidation of the pathophysiological
impact of FGF23 will lead to the development of
new strategies for the treatment of CRS.

More recently, a new phosphate-centric para-
digm for pathophysiology and therapy of CKD has
been proposed that extracellular phosphate exerts
its cytotoxicity when it forms insoluble nanopar-
ticles with calcium and fetuin-A, referred to as cal-
ciprotein particles (CPPs) [71%%]. These observations
have raised the possibility that CPPs may promote
progression of CKD and vascular calcification,
resulting in development and progression of CRS.
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CONCLUSION

Although many pathogenic factors leading to CRS
have been identified, it is possible that an important
underlying mechanism remains unclear. Further
elucidation of the mechanisms underlying the
development of CRS may lead to clinically feasible
strategies for the treatment of this condition.
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Abstract

Background Previous epidemiological evidence has sug-
gested that responsiveness to erythropoiesis-stimulating
agents (ESAs) is related to prognosis in hemodialysis (HD)
patients. We investigated the effects of hyporesponsiveness
to ESA on mortality and cardiovascular events in Japanese
HD patients, taking modifying factors into account.
Methods A total of 2,905 Japanese HD patients aged
>18 years who received ESA treatment were prospectively
followed up for 4 years. Responsiveness to ESA was esti-
mated using an erythropoietin resistance index (ERI), defined
as erythropoietin dosage per week divided by post-HD weight
and hemoglobin value (U/kg/week/g/dl). Patients were divi-
ded into three groups by tertiles of ERI levels: low ER],
<5.10; intermediate ERI, 5.11-9.43; high ERI, >9.44. Risk
estimates were calculated by a Cox proportional hazards
model, adjusting for potential confounders.

Results During follow-up, 482 patients died from any
causes. The 4-year survival rate decreased linearly with
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higher ERI levels, being 87.5, 82.9, and 72.0 % for low,
intermediate, and high ERI group (p for trend <0.001).
Compared with the low ERI group, the multivariate-
adjusted hazard ratio (mHR) was significantly higher in the
high ERI group [mHR, 1.64 (95 % confidence interval,
1.27-2.1D)]. In the high ERI group, patients with Kt/
V > 1.57 had a significantly lower risk of death from any
causes compared with those with Kt/V < 1.56 [mHR, 0.73
(0.54-0.98)].

Conclusion Our findings suggest that ESA responsive-
ness can be considered a significant prognostic factor in
Japanese HD patients.

Keywords Hemodialysis - ESA responsiveness -
Mortality - Major cardiovascular events

Introduction

Hyporesponsiveness to erythropoiesis-stimulating agents
(ESAs) has received attention for its association with mor-
tality in patients receiving maintenance hemodialysis (HD)
[1-3]. Epidemiological evidence has suggested that lower
hemoglobin levels are associated with poor prognosis in HD
patients [4, 5]. Paradoxically, evidence from randomized
control trials suggested that treatment with ESA to raise
target hemoglobin levels increased the risk of all-cause
death in patients on dialysis [0, 7]. A retrospective obser-
vational study also found that a higher dose of ESA was
associated with increased risk of mortality irrespective of
hemoglobin levels [8]. The required dose of ESA to improve
anemia varies widely across HD patients, and seems to be
influenced by the individual responsiveness to ESA.
Therefore, hyporesponsiveness to ESA may be linked to the
prognosis in HD patients.
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The definitions of ESA responsiveness vary among the
different clinical studies [1, 2, 9]. The National Kidney
Foundation-Kidney Disease Outcomes Quality Initiative
(KDOQI) and European guidelines define hyporespon-
siveness to ESA as failing to achieve target hemoglobin
levels while receiving an ESA dosage of >500 U/kg/week
[10, 11]. However, the average ESA dose and hemoglobin
levels in Japan are lower than those in Western countries
[12, 13], and the impact of ESA responsiveness on mor-
tality remains uncertain in populations using relatively
lower ESA dosages. In addition, the responsiveness to ESA
is likely to be affected by various factors [14-17]. There-
fore, it would be of great clinical value to identify the
factors that modify the responsiveness to ESA.

Herein, we present some findings from a prospective
cohort study, the Q-Cohort study, which was set up to
explore the risk factors for comorbidities and mortality in
Japanese patients receiving HD treatment. The aim of the
present study was to investigate the effects of hypore-
sponsiveness to ESA on mortality in Japanese HD patients,
taking modifying factors into account.

Materials and methods
Study population

The Q-Cohort Study is a multicenter, prospective, longi-
tudinal, observational study conducted in Japanese HD
patients [18]. Briefly, a total of 3,598 outpatients aged
>18 years who underwent HD at 39 dialysis facilities in
Fukuoka and Saga prefectures in Kyushu Island, Japan, in
December 2006 and 2007 consented to participate in the
study. After excluding 562 patients who did not receive
ESA therapy, 34 patients who did not have demographic
data, 14 patients who did not have available data for the
erythropoietin resistance index (ERI), and 83 patients who
did not have information regarding outcome, the remaining
2,905 patients were enrolled in the study. The study was
conducted with approval from the Kyushu University
Institutional Review Board for Clinical Research
(Approval Number 20-31). Written informed consent was
obtained from all participants. The study was registered in
the University Hospital Medical Information Network
(UMIN) clinical trial registry (UMIN ID: 000000556), and
was performed according to the Ethics of Clinical Research
(Declaration of Helsinki) requirements.

Follow-up
The patients were followed up prospectively from the date

of their study registration to December 2010. Their health
status was checked annually by local physicians at each
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dialysis facility and by mail or telephone for any patients
who moved to other dialysis facilities where no collabo-
rators of the study existed.

Definition of ESA responsiveness

Responsiveness to ESA was estimated using an ERI [2],
which was calculated by the following equation:

ERI (U/kg/week/g/dl) = weekly ESA dose (U/week)/
(post — HD weight (kg) x Hb {(g/dl)).

The ESAs used in this study were epoetin o, epoetin §,
and darbepoetin «. The ESA dosage for darbepoetin o
administration was obtained by multiplying the dosage
(ng) of darbepoetin o by 200. The patients were divided
into three groups by tertiles of ERI level: low ERI <5.10,
intermediate ERI 5.11-9.43, high ERI >9.44.

Outcomes

The primary outcome was all-cause mortality rate, and the
secondary outcome was major cardiovascular events, which
were defined as first-ever development of cardiovascular
death, stroke, myocardial infarction, hospitalization for
unstable angina, coronary intervention (coronary artery
bypass surgery or angioplasty), hospitalization for heart
failure, and/or peripheral vascular disease. Stroke was
defined as sudden onset of a non-occlusive and focal neu-
rological deficit persisting for more than 24 h. Myocardial
infarction was defined as a definitive diagnosis based on
prolonged severe chest pain, abnormally elevated levels of
cardiac biochemical parameters, diagnostic electrocardio-
graphic changes, and morphological changes, including
local asynergy of cardiac wall motion on electrocardiogra-
phy and persistent perfusion defect on cardiac scintigraphy.
Unstable angina was defined as a medical condition
involving chest pain, abnormally elevated levels of cardiac
biomarkers, and diagnostic electrocardiographic changes,
without meeting the criteria for myocardial infarction.
Heart failure was defined as unplanned presentation to an
acute care setting with signs and symptoms that required
active treatment for fluid removal. Peripheral vascular dis-
ease was defined as gangrene/tissue necrosis, lower limb
amputation, and/or revascularization procedure (bypass
surgery or angioplasty) for the peripheral vasculature. All
events were adjudicated on the basis of patient medical
records and imaging performed by the study members.

Risk factor measurements

The demographic information (e.g. age, sex, time on dial-
ysis therapy) and clinical data [e.g. hemoglobin, serum
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albumin, serum calcium, serum phosphorus, serum total
cholesterol, serum C-reactive protein (CRP), serum ferritin,
body mass index (BMI), and Kt/V] were collected at
baseline. The physicians at each dialysis facility checked
the current use of antihypertensive agents and history of
diabetes or cardiovascular disease. Body height and weight
were measured in light clothing without shoes, and the
BMI (kg/rnz) was calculated. All available data on blood
pressure were gathered from the medical records. Blood
samples were collected from a vascular access before the
initiation of dialysis. Hemoglobin levels were determined
using sodium lauryl sulfate. Serum albumin and total
cholesterol levels were determined enzymatically. Serum
CRP levels were determined by a latex immunity nephe-
lometry measurement method. Serum ferritin levels were
measured by chemiluminescent enzyme immunoassay.
Dialysis doses were measured by single-pool Kt/V by the
Daugirdas method [19].

Statistical analysis

Baseline data are presented as mean (standard deviation),
median (interquartile range), or percentage for categorical
measures in patients. The linear trends in mean values and
frequencies of risk factors across ERI levels were tested by
linear regression analysis and logistic regression analysis,
respectively. Using baseline data, the risk factors associated
with high ERI were explored by multivariate logistic
regression analysis with a backward selection procedure
(p < 0.1), with binary outcomes for high ERI vs. low or
intermediate ERI. The event-free survival probabilities for
all-cause mortality and major cardiovascular events
according to the ERI levels were depicted by the Kaplan—
Meier method and compared using a log-rank test. The
incidence rates of outcomes in each ERI level were calcu-
lated using person-years methods. The hazard ratios (HRs)
and 95 % confidence intervals (Cls) of all-cause mortality
and major cardiovascular events according to the ERI levels
were estimated by a Cox proportional hazards model. In the
multivariate-adjusted model, adjustments were made for the
following clinically or biologically plausible risk factors for
the outcomes: age; sex; dialysis duration; predialysis sys-
tolic blood pressure; antihypertensive agent use; diabetes;
history of cardiovascular disease; serum albumin; serum
calcium; serum phosphorus; serum total cholesterol; serum
CRP; serum ferritin; BMI; Kt/V. We also investigated the
effects of dialysis dosage on mortality according to ERI
subgroups (low or intermediate ERI vs. high ERI). The
cutoff points for dialysis dosage were defined according to
the median values of 1.56. All statistical analyses were
performed using PASW Statistics version 17 software (IBM
SPSS, USA). Two-sided values of p < 0.05 were consid-
ered statistically significant in all analyses.

Results
Study participants and baseline characteristics

Patients’ baseline characteristics based on the categories of
ERI levels are listed in Table 1. The patients with higher
ERI levels were older, more likely to be female and have
longer dialysis duration, and less likely to have diabetes.
The mean values for serum albumin, serum phosphorus,
serum cholesterol, and BMI, and the median values of
serum ferritin decreased with increasing ERI levels. In
contrast, there were upward trends in the mean values of
serum calcium and Kt/V, median values of serum CRP, and
frequency of history of cardiovascular disease with higher
ERI levels. Considering the definition of ERI, subjects with
higher ERI levels clearly had lower hemoglobin levels and
higher ESA dosages.

Risk factors for ESA hyporesponsiveness

We examined the risk factors associated with ESA hypo-
responsiveness defined as ERI > 9.44 U/kg/week/g/dl (i.e.
high ERI levels) at baseline (Table 2). As a consequence,
the multivariate logistic regression analysis showed that
female sex, longer dialysis duration, lower levels of serum
albumin, serum total cholesterol, serum ferritin, BMI, and
higher CRP level were significantly associated with ESA
hyporesponsiveness.

Effects of ESA responsiveness on risk of mortality
and major cardiovascular events

During the 4-year follow-up period (median 3.9 years), 482
patients (16.6 %) died of all causes and 500 patients
(17.2 %) experienced major cardiovascular events. The
survival rates according to the ERI levels are shown in
Fig. 1. The 4-year survival rate decreased with higher ERI
levels (Jog rank = 74.0, p < 0.001), being 87.5, 82.9, and
72.0 % for low, intermediate and high ERI, respectively.
Patients with high ERI levels had a 2.23 times (95 % CI,
1.76-2.81) increased risk of all-cause death than those with
low ERI levels after adjustment for age and sex (Table 3).
This relationship remained largely unchanged after
adjustment for potential confounding factors [HR 1.64
(95 % CI, 1.27-2.11)]. With regard to the major cardio-
vascular events, higher ERI levels were significantly
associated with a lower event-free survival rate for major
cardiovascular events (log-rank = 16.6, p < 0.001), being
81.2, 81.1, and 74.6 % for low, intermediate, and high ER],
respectively (Fig. 2). The multivariate-adjusted risk of
major cardiovascular events increased significantly by 1.38
times (95 % CI, 1.10-1.73) in patients with high ERI levels
compared to those with low ERI levels (Table 3).
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Table 1 Baseline
characteristics according (o
erythropoietin resistance index
levels

Values are represented as mean
(standard deviation), median
(interquartile range), or
percentage

? Values are corrected by serum
albumin

Variables (unit) Erythropoietin resistance index levels p for
Low (=5.10) Intermediate High (=9.44) trend
(5.11-9.43)
(n = 970) (n = 967) (n = 968)
Age (years) 62.3 (12.5) 64.2 (12.8) 65.9 (13.0) <0.001
Women (%) 36.2 43.3 50.1 <0.001
Dialysis duration (years) 4.8 (1.9-10.0) 5.1 (2.0-10.0) 5.8 (2.0-12.6)  <0.001
Predialysis systolic blood pressure 153.7 (22.4) 1545 (22.9) 152.3 (24.5) 0.18
(mmHg)
Predialysis diastolic blood pressure 76.8 (12.2) 76.0 (12.6) 75.8 (12.9) 0.07
(mmkHg)
Antihypertensive agent use (%) 62.0 69.3 65.5 0.11
Diabetes (%) 324 30.9 26.8 0.007
History of cardiovascular disease (%)  29.3 32.7 34.8 0.01
Hemoglobin (g/dl) 10.8 (0.9) 10.5 (0.9) 9.9 (1.2) <0.001
Serum albumin (g/dl) 3.9 (0.4) 3.8 (0.4) 3.6 (0.5) <0.001
Serum calcium® (mg/dl) 9.4 (0.7) 9.4 (0.7) 9.5 (0.8) <0.001
Serum phosphorus (mg/dl) 5.0 (1.2) 49(1.2) 4.8 (1.3) <0.001
Serum total cholesterol (mg/dl) 159.8 (37.5) 155.7 (34.2) 149.4 (38.2) <0.001
Serum c-reactive protein (mg/dl) 0.11 0.13 (0.05-0.30) 0.15 <0.001
(0.05-0.25) (0.08-0.47)
Serum ferritin (ng/mL) 193 (89-335) 163 (82-304) 163 (69-284) 0.001
Body mass index (kg/mz) 21.8 (3.1) 21.0 2.8) 20.1 (2.8) <0.001
KtV (single pool) 1.55 (0.26) 1.59 (0.27) 1.61 (0.30) <0.001
Dosage of erythropoiesis-stimulating 2,000 4,500 9,000 <0.001
agent (U/week) (1,500-2,250) (3,000-4,500) (6,000--9,000)

Subgroup analysis

Finally, we estimated the effects of high doses of dialysis
on all-cause death according to the ERI levels (Fig. 3). In
the high ERI group, patients with Kt/V >1.57 had a sig-
nificantly lower risk of death from any causes than those
with Kt/V <1.56 in both the age- and sex-adjusted model
[HR, 0.73 (95 % (1, 0.55-0.97)] and multivariate-adjusted
model [HR, 0.73 (95 % CI, 0.54-0.98)].

Discussion

In the present prospective cohort study of HD patients, we
found that hyporesponsiveness to ESA was associated with a
higher risk of all-cause mortality and of major cardiovascular
events. These associations remained largely unchanged even
after adjustment for the potential confounding factors of age,
sex, dialysis duration, predialysis systolic blood pressure,
antihypertensive agent use, diabetes, history of cardiovascu-
lar disease, serum albumin, serum calcium, serum phospho-
rus, serum total cholesterol, serum CRP, serum ferritin, BMI,
and Kt/V. In particular, the high ERI group had a higher risk
of mortality and of cardiovascular events. In addition, a higher
dose of dialysis was significantly associated with a lower risk
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of death from any causes. The results suggest that hypore-
sponsiveness to ESA could be considered as a significant
prognostic factor in HD patients, and imply that a higher dose
of dialysis could improve the prognosis in patients with ESA
hyporesponsiveness.

Several epidemiological studies have examined the
association between ESA responsiveness and mortality [[—
3]. Lépez-Gomez et al. [2] showed that hyporesponsive-
ness to ESA estimated by the same indicator used in our
study was associated with comorbidities and 1-year sur-
vival: the mean ERI was 10.2 + 7.3 U/kg/week/g/dl and
ERI >15 U/kg/week/g/dl was related to poor outcomes.
These findings are in accord with our results, although the
ERI levels in their study were much higher than our levels.
Higher levels of ERI have also been reported in another
study from the United States, in which the mean ERI was
15.0 £ 14.1 U/kg/week/g/dl [20]. On the contrary, a study
conducted in Japanese HD patients demonstrated that
patients with ESA dosage of >6,000 U/week, even with a
lower dose defined as ESA hyporesponsiveness in the
guidelines [10, 11], had significantly higher 1-year mor-
tality from any causes and cardiovascular events among
those with hemoglobin levels of <10 g/dl [3]. Furthermore,
the results from the Trial to Reduce Cardiovascular Events
with Aranesp Therapy (TREAT) conducted in patients with
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Table 2 Risk factors associated with high levels of erythropoietin resistance index

Variables (Unit) Unadjusted Multivariate-adjusted

OR (95 % CI) p value OR (95 % CI) p value
Age (per 10 year increment) 1.19 (1.11-1.26) <0.001 ns
Women (vs. men) 1.52 (1.30-1.78) <0.001 1.77 (1.46-2.14) <0.001
Dialysis duration (per 1 year increment) 1.02 (1.01-1.03) <0.001 1.02 (1.01-1.03) 0.003
Predialysis systolic blood pressure (per 10 mmHg decrement) 1.04 (1.00-1.07) 0.04 ns
Antihypertensive agent use (vs. no) 0.99 (0.85-1.17) 0.94 ns
Diabetes (vs. no) 0.79 (0.66-0.94) 0.007 ns
History of cardiovascular disease (vs. no) 1.19 (1.01-1.40) 0.04 ns
Serum albumin (per 0.1 g/dl decrement) 1.15 (1.13-1.18) <0.001 1.13 (1.11-1.16) <0.001
Serum calcium (per 0.1 g/dl increment) 1.02 (1.01-1.03) <0.001 ns
Serum phosphorus (per 0.1 g/dl decrement) 1.01 (1.00-1.02) 0.001 ns
Serum total cholesterol (per 10 mg/dl decrement) 1.07 (1.04-1.09) <0.001 1.07 (1.04-1.10) <0.001
Log-transformed serum C-reactive protein (per 1 log [mg/dl] increment) 1.37 (1.23-1.52) <0.001 1.24 (1.10-1.39) <0.001
Log-transformed serum ferritin (per 1 log [mg/dl] decrement) 1.10 (1.03-1.18) 0.005 1.18 (1.09-1.28) <0.001
Body mass index (per 1 kg/m2 decrement) 1.18 (1.14-1.21) <0.001 1.17 (1.13-1.21) <0.001
Kt/V (single pool) (<1.56) (vs. Kt/V >1.57) 0.96 (0.82-1.12) 0.60 1.20 (1.00-1.45) 0.055

The risk estimates were computed using a multivariate logistic regression model with a-backward selection procedure (p < 0.1), with binary
outcomes for high level vs. low or intermediate level of erythropoietin resistance index

ns not selected, OR odds ratio, CI confidence interval

type 2 diabetes and chronic kidney disease who were not
receiving dialysis showed that the patients who poorly
responded to high doses of darbepoetin alfa had the highest
risk of cardiovascular events and death [21]. These findings
suggest that ESA hyporesponsiveness is associated with a
greater risk of mortality and cardiovascular events.

Considering the mechanism underlying the association
between ESA responsiveness and mortality, one potential
notion is that ESA responsiveness is affected by diverse
comorbidity factors [2] and malnutrition-inflammation-
atherosclerosis syndrome [16, 17] which is linked to
prognosis among HD patients. Malnutrition is closely
related to inflammation and arteriosclerosis [22], and
through common mediators such as interleukin-6 or tumor
necrosis factor-o it may play an important role in ESA
resistance [23]. In addition, various clinical factors are
considered to influence ESA responsiveness [15, 20, 24].
We found that female sex, longer duration of dialysis,
lower serum albumin level, lower serum total cholesterol,
lower BMI, higher CRP level, and lower serum ferritin
level were significantly associated with hyporesponsive-
ness to ESA. Lower levels of serum total cholesterol, BMI,
and serum albumin may well reflect some aspects of a
patient’s nutritional status. The serum CRP level is a bio-
marker of inflammation. Serum ferritin is a2 marker of both
iron stores and inflammation. Therefore, it may be rea-
sonable to suppose that optimal management of nutritional
status, chronic inflammation, and iron metabolism would
improve hyporesponsiveness to ESA.

In this study, we demonstrated that a higher dose of
dialysis was significantly associated with lower mortality in
the high ERI group, even after correction for differences in
the underlying conditions at baseline. Recent reports
described that Kt/V >1.6 was associated with a survival
advantage in HD patients [25], due to improved medium
molecule clearance, rather than only small molecule clear-
ance [26]. In addition, longer HD treatment time could more
effectively remove larger molecules, such as beta-2 micro-
globulin, the accumulation of which is implicated as a cause
of adverse outcomes in dialysis patients [27]. Therefore, it
may be reasonable to suppose that a higher dose of dialysis
could be effective in improving the prognosis of HD patients
with hyporesponsiveness to ESA. Nevertheless, we cannot
exclude the possibility that this finding from our observa-
tional study is affected by residual confounding. An ongoing
randomized control trial addressing the effect of intensive
dialysis on the prognosis of HD patients, A Clinical Trial of
IntensiVE dialysis (ACTIVE) (Clinical Trials gov number,
NCTO00649298), may elucidate this issue, if relevant sub-
group analyses are performed.

The strength of this study is that it is a prospective
cohort study with a longer duration of follow-up than
previous reports. Several limitations of the present study
should be noted. First, the generalizability of our findings
may be limited. Although most (97 %) of the patients at the
participating facilities were recruited for this study, the
participating facilities may not be representative of all
Japanese HD centers. On the contrary, as the participating

@ Springer

— 473 —



J Nephrol

Fig. 1 Survival rates according
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Follow-up period (years)
Number at risk
ERI<5.10 970 896 837 673 611
ERI 5.11~9.43967 865 790 595 542
ERI=9.44 968 806 707 5380 480
Table 3 Associations between erythropoietin resistance index levels and risks of all-cause mortality and cardiovascular events
ERI levels Median No. of events/ Incidence  Age- and sex-adjusted Multivariate-adjusted”
ERI patients rate
HR 95%Cl p p for HR 95%Cl p p for
trend trend
All-cause death
ERI (per 1 8.68 482/2,905 0.053 1.06 1.05-1.07 <0.001 103 1.01-1.04 <0.001
increment)
Low (<5.10) 335 106/970 0.033 1.00  reference <0.001  1.00 reference <0.001
Intermediate 7.07 141/967 0.046 1.29 1.00-1.67  0.047 .21 0.94-1.56  0.15
(5.11-9.43)
High (=9.44) 14.4 235/968 0.084 223 1.76~ <0.001 1.64 1.27-2.11 <0.001
2.81
Major cardiovascular event
ERI (per 1 8.68 500/2,905 0.059 1.03  1.01-1.04 <0.001 1.03 1.01-1.04  0.001
increment)
Low (<5.10) 3.35 157/970 0.051 1.00 reference 0.001  1.00 reference 0.002
Intermediate 7.07 151/967 0.052 098 0.79-1.23  0.89 095 0.76-1.20  0.67
(5.11-9.43)
High (>9.44) 144 192/968 0.075 141 1.14-1.75  0.002 1.38 1.10-1.73  0.006

ERI erythropoietin resistance index, HR hazard ratio, CI confidence interval

* Adjusted for age, sex, dialysis duration, predialysis systolic blood pressure, antihypertensive agent use, diabetes, history of cardiovascular
disease, serum albumin, serum calcium, serum phosphorus, serum total cholesterol, log-transformed serum C-reactive protein, log-transformed

serum ferritin, body mass index, and Kt/V

facilities share similar treatment strategies for HD patients,
the management of patients (e.g. blood pressure lowering,
condition of HD) would be less heterogeneous than that of
other reports. Second, the ERI data were obtained at a
single time point (baseline examination). This may have
caused misclassification of study participants into different
categories. Such misclassification, if present, would
weaken the association found in this study, biasing the
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results toward the null hypothesis. Finally, we were unable
to obtain information about the risk factors and medical
treatments prescribed during the follow-up period. The lack
of this information may have reduced the accuracy of our
findings to some extent. However, we believe that our
findings provide useful information toward a better
understanding of the association between ESA hypore-
sponsiveness and mortality.
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