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We identified a yeast mutant with temperature-sensitive growth defects that were rescued by VCP
expression. The mutation occurred in GPI10, which encodes a mannosyl transferase for glycosyi-
phosphatidylinositol anchor formation in the endoplasmic reticulum, and caused a Gly469Glu sub-
stitution in Gpi10. The mutant exhibited increased unfolded protein response, which was partially
rescued by VCP or Cdc48, and showed sensitivity against cell-wall stressors, which were not rescued
by VCP. These results suggest a potential link between VCP/Cdc48 and Gpi10 functions in the control

© 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

VCP/p97, which is Cdc48 in yeast, is an abundant, conserved,
and essential hexameric ring-shaped AAA™ ATPase [1,2]. The activ-
ities of VCP are mainly associated with ubiquitin-dependent pro-
cesses, including proteasome-mediated protein degradation,
membrane fusion, endosomal protein trafficking, autophagy, and
genomic DNA surveillance. VCP functions in different sites within
a cell, including the cytosol, the nucleus, and the cytoplasmic sides
of organelles, such as the endoplasmic reticulum (ER), mitochon-
dria, and peroxisome. These diverse activities are thought to be
derived from the ability of VCP to bind >30 cofactors, and these
cofactors apparently specify the particular functions of VCP. Not
only VCP but also many of these VCP cofactors have ubiquitin-
binding motifs, which further support its link to ubiquitin-related
activities. In addition to its normal cellular activities, many single
missense mutations of VCP cause two autosomal dominantly

# Corresponding authors at: Department of Applied Biological Chemistry, Grad-
uate School of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan. Fax: +81
54 238 4877 (Y. Kimura), Laboratory of Functional Biology, Kyoto University
Graduate School of Biostudies, Kyoto 606-8501, Japan. Fax: +81 75 753 7676 (A.
Kakizuka).

E-mail addresses: kimura.yoko@shizucka.acjp (Y. Kimura), kakizuka®@lifkyo-
to-uacjp (A. Kakizuka).
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inherited diseases with neurodegeneration, namely, inclusion body
myopathy associated with Paget’s disease of the bone and fronto-
temporal dementia (IBMPFD) {3,4] and a rare familial form of
amyotrophic lateral sclerosis (ALS) {5].

Mammalian VCP and yeast Cdc48 have been reported to func-
tion in many similar pathways. To find novel VCP/Cdc48 functions,
we screened for mutants that had temperature sensitivities and
growth defects that were suppressed by VCP expression, and we
identified a mutation in GPI10, which encodes a mannosyl transfer-
ase in the ER.

2. Materials and methods
2.1. Media

The yeast was grown in YPAD medium (1% yeast extract, 2%
bactopeptone, 2% glucose, and 0.004% adenine) in synthetic com-
plete medium (SD; 0.67% yeast nitrogen base and 2% glucose sup-
plemented with amino acids) or synthetic casamino medium (SC;
0.67% yeast nitrogen base, 2% glucose, 0.5% casamino acids, and,
if necessary, tryptophan, uracil, or adenine). For SGal medium,
the glucose in SD was replaced with galactose. To eliminate the
URA3 plasmid, 5-fluoroorotic acid was added to the media at a
concentration of 0.5 mg/ml.

0014-5793/© 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
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2.2. Yeast strains

The wild-type yeast strain used in this study was W303 (MATa
ade2-1 canl-100 his3-12,16 leu2-3,112 trp1-1 ura3-1). During the
screening, W303 with a VCP expression plasmid was mutagenized
with ethyl methanesulfonate (EMS; Sigma-Aldrich Co. LLC, St.
Louis, MO, USA) and plated on glucose at 25 °C. The viability of
EMS-treated cells was 49% compared to that of non-treated cells.
Among approximately 40000 EMS-treated cells, colonies that grew
on galactose but not glucose at 37 °C were selected. We obtained
one strain from the screening, and the strain was crossed with
W303 three times to generate the 1-30 strain (gpi10-2) to elimi-
nate extraneous mutations. During the screening, we also tried to
generate strains that grew on glucose but not on galactose at
37 °C, but we were unable to generate such strains.

2.3. Plasmid construction

A list of the plasmids used in this study is provided in Supple-
mentary Table 1. A plasmid expressing VCP under the GALI pro-
moter (M123) was created as follows: the EcoRI-BamHI fragment
of pRS316 was ligated to the EcoRI-BamHI fragment of the GALI
promoter to create V039. The pCMX-VCP-GFP plasmid was cut
with Asp718 and BamHI and blunted and ligated with a BamHI
fragment of V039, which had been blunted. The plasmids express-
ing VCP or Cdc48 under the GPD promoter have been described
previously [6]. The pRS316-GPITO(WT) and pRS316-UBI4(WT)
plasmids were constructed as described below. The DNA of GPI10
and UBI4 were amplified by polymerase chain reaction (PCR) from
wild-type genomic DNA and then cloned into pRS316. pRS316-
GPI10(gpi10-2) was constructed by cloning the amplified gpi10-2
frorn the genomic DNA of 1-30 into pRS316. The pR12-28 and
pR12-19 plasmids were obtained from the YEP13-based yeast
genomic library, which was a gift from Dr. K. Matsumoto.

The pCZY1 plasmid, which contained a lacZ reporter gene that
was driven by the CYCT core promoter and that was fused with
the unfolded protein response (UPR) element (UPRE) to monitor
UPR activity [7], was a gift from Dr. Y. Kimata.

2.4. Growth assay of yeast

For the spot assay, the cell densities were adjusted to
0ODGO0 = 1.0 and diluted serially by 10-fold dilutions. Each diluted
sample was spotted on the indicated plates and incubated for 2 or
3 days at the indicated temperatures.

2.5. p-Galactosidase assay for UPR response

The p-galactosidase activity for the UPR response was deter-
mined according to the protocol of Kimata et al. [8].

3. Results

3.1. Screening of the temperature-sensitive mutants with growth
defects that were rescued by VCP overexpression

To find novel VCP/Cdc48 functions and eventually find proteins
that are functionally related to VCP/Cdc48, we generated yeast
temperature-sensitive (ts) mutants that had growth defects that
were suppressed by the expression of human/mouse VCP
(Fig. 1A). Briefly, wild-type cells with a plasmid expressing VCP
under the control of the GALT promoter, which functions in galact-
ose media but not in glucose media, was treated with EMS and the
colonies were replicated. Each replica was plated onto glucose or
galactose media. Colonies that grew in galactose but not in glucose
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Fig. 1. Isolation of the temperature-sensitive (ts) mutant with ts growth defects
that were rescued by VCP and Cdc48. (A) Screening strategy. Wild-type cells with a
plasmid expressing VCP under a galactose-inducible promoter (GAL1p) were
mutagenized with ethyl methanesulfonate. Ts mutants were screened on glucose
and for suppressing ts on galactose at 37 °C, (B) Isolation of the ts strain 1-30. Cells
with or without exogenously expressed VCP and Cdc48 were diluted, spotted on
synthetic casamino medium (5C)-ura or SGal-ura plates, and grown at the indicated
temperatures for 3 days.

media at 37 °C were selected. From about 40000 EMS-treated cells,
we obtained one strain (referred to as 1-30), which was able to
grow only in the presence of VCP expression at 37 °C (Fig. 1B). In
addition to VCP, the overexpression of yeast Cdc48 also rescued
the growth defect of strain 1-30 at 37 °C (Fig. 1B), which suggested
that some conserved function(s) of the VCP/Cdc48 families were
responsible for the suppression.

To identify the mutated gene in the 1-30 strain, we screened
yeast genomic multicopy libraries for plasmids that would comple-
ment its ts phenotype. One plasmid (pR12-28) allowed the 1-30
strain to grow at 37 °C (data not shown). A deletion analysis of
PR12-28 identified the suppression activity in a region containing
the entire GPI10 open reading frame and its flanking regions
(Fig. 2A). Another plasmid pR12-19 rescued the ts phenotype of
1-30 but not as efficiently as pR12-28 did (data not shown). A
deletion analysis of pR12-19 identified a region containing UBH,
which is a polyubiquitin gene, and its flanking region for the partial
ts-suppressing activity. Moreover, we found that the expression of
UBI4 by a multicopy plasmid [pRS426-UBI4(WT)] but not by a sin-
gle-copy plasmid [pRS316-UBI4(WT)] was required for the efficient
suppression of the temperature sensitivity of the 1-30 mutant
(Fig. ZB).

3.2. Identification of the mutation in GPI10 in the 1-30 strain

The efficient suppressive activity that occurred by the introduc-
tion of GPI10 in a single-copy plasmid suggested that the mutated
gene in strain 1-30 was GPI10. Therefore, we amplified GPI10 and
its flanking region by polymerase chain reaction (PCR) from 1-30
genomic DNA and then tested for ts suppression in a single-copy
plasmid. Indeed, it failed to rescue the growth defect of strain
1-30 at 37 °C (Fig. 2A, bottom). In contrast, UB/4 and its flanking
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Fig. 2. ldentification of the mutation in GPI10 in strain 1--30. (A) Mapping of the suppressing gene for the 1-30 ts mutant to identify GPI10. Plasmids were checked for their
ability to suppress the ts growth of 1-30. pRS316-GPI10(WT) and pRS426-GPI10(WT) contained GPI10 DNA fragments that were obtained by polymerase chain reaction (PCR)
as wild-type genomic DNA, and pRS316-GPI10 (gpi10-2) contained a PCR-amplified GPI10 DNA fragment from 1-30 cells. Cells with a plasmid were diluted, spotted on YPD
plates, and grown at the indicated temperatures for 3 days. Two independent transformed cells are shown in two columns. (B) Mapping of the suppressing gene to identify
UBI4. Plasmids pRS316-UBI4(WT) and pRS426-UBI4(WT) contained UBI4 DNA that was obtained by PCR with wild-type genomic DNA, and pRS426-UBI4 (gpi10-2) contained
PCR-amplified UBI4 DNA fragment from 1-30 cells. (C) Localization of the G469E point mutation in the Gpil0 protein. SP indicates a predicted signal peptide, and TM

indicates a predicted transmembrane region.

region, which were obtained from 1-30 genomic DNA, rescued the
growth defect of strain 1-30 at 37 °C in a multi-copy plasmid
[Fig. 2B, pRS426-UBl4(gpi10-2)]. These results indicated that strain
1-30 contained the responsible mutation in GPI10 but not in UBI4.

Glycosylphosphatidylinositol (GPI) anchor proteins are mem-
brane integral proteins that function at the cell surface {3,10]. GP1
anchors are glycolipids that consist of phosphatidylinositol, gluco-~
samine, mannose, and ethanolaminephosphate, and they are made
through many successive enzymatic steps in the ER. After the final
step, the resultant GPl-anchor is added to substrate proteins to
make GPl-anchor proteins. During the process of GPl-anchor syn-
thesis in yeast, Gpi10, which is a mannosyl transferase, transfers
the third mannose to a GPI intermediate containing already two
mannoses linked to glucosamine-phosphatidyl inositol, which is
an intermediate of the GPI anchor {8]. GPIT10 is essential and
encodes a protein with nine transmembrane domains in the ER
membrane with a C-terminus region toward the cytosol [11].

By sequencing the GPI10 gene from the 1-30 mutant, we iden-
tified a single nucleotide change from the 1406th guanine to ade-
nine in the GPI10 gene. This mutation changed the 469th amino
acid in Gpi10 from Gly to Glu at and was predicted to be located
in the C-terminal cytoplasmic tail of Gpil0 (Fig. 2C) [12]. Introduc-
ing the mutation into the GPI10 gene of wild-type cells conferred a
ts phenotype (data not shown). Therefore, we concluded that the

mutated gene in strain 1-30 was GPI10. The mutated allele in
GPI10 is referred to as gpi10-2 hereafter because a mutant for
GPI10 (gpi10-1) has been previously reported {13].

3.3. Sensitivities of cell-wall stressors in gpi10-2 mutant

Because defects in GPI-anchor proteins lead to a loss of integrity
of the cell wall [14,15], we examined the effects of cell-wall
stressors on the growth of the gpil0-2 mutant. As expected, the
gpil0-2 mutant showed enhanced sensitivities to the two cell-wall
stressors that were tested, sodium dodecy! sulfate and caffeine,

) SDS

caffeine

Fig. 3. Sensitivities against cell-wall stressors in the gpi10-2 mutant. The effect of
cell-wall stressors. Wild-type and gpi70-2 cells with or without exogenously
expressed VCP or Cdc48 were diluted, spotted on SD-uracil(~) and SD uracil(-)
containing 0.006% SDS or 3 mM caffeine, and incubated at 33 °C for 2 days.
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Fig. 4. Increased unfolded protein response (UPR) in the gpil10-2 mutant. (A) B-gal activities at 25 °C. Cells with or without exogenously expressed VCP or Cdc48 were
measured for B-galactosidase activity. Tunicamycin (TM) was added at 2 pg/mL for 2 h. The data are presented as the mean * standard error of the mean (S.E.) values of four

independent experiments. “P < 0.05. (B) The p-gal activities after 2 h at 37 °C.

compared to those of wild-type cells, which suggested that GPI
anchoring was defective in the gpi10-2 mutant (Fig. 3).

We examined whether VCP or Cdc48 expression rescued the
cell wall-related sensitivities of gpi710-2. Unexpectedly, we did
not see the recovery of growth defects against the cell-wall stress-
ors by VCP overexpression and saw a very small, if any, rescue by
Cdc48 overexpression in the gpi10-2 mutant (Fig. 3).

3.4. Increased UPR in the gpil10-2 mutant

The UPR is induced by the accumulation of unfolded proteins in
the ER [16]. Because the induction of the UPR was reported in dele-
tion mutants of BST1 and LAS21, which are both involved in GPI-
anchor production {17], we tested whether the gpi10-2 mutation
would cause the UPR. In the UPR, Irel, which is a transmembrane
protein with endoribonuclease activity, is one of the core media-
tors of the intracellular UPR signal. Irel functions in the splicing
of HACT mRNA to produce the translatable mRNA for Hac1, which
is a transcription factor that induces ER chaperones. Hac1 directly
binds to the UPRE for the expression of ER chaperones. Therefore,
we checked the activation of UPR by the induction of a lacZ repor-
ter under the control of UPRE (Fig. 4). Treatment with tunicamycin,
which is a well-known inducer of UPR, clearly induced the p-galac-
tosidase activity up to 12.8-fold in wild-type cells at 25 °C (Fig. 4A).
We observed that, without any inducer, p-galactosidase activity
was constitutively activated in the gpil10-2 mutant even at the per-
missive temperature of 25 °C; the activity was about 13-fold higher
in the gpi10-2 mutant compared to that in the wild type. Shifting to
a high temperature induced UPR in both the wild-type and gpi10-2
mutant, B-galactosidase activity reached much higher levels in the
gpi10-2 mutant than in wild-type cells (Fig. 4B). We observed that
exogenous VCP and Cdc48 overexpression decreased the B-galacto-
sidase activity partly but not completely. These results suggested
that the gpi10-2 mutation induced UPR and that the overexpres-
sion of VCP/Cdc48 partially reduced the increased levels of UPR.

4. Discussion

In this study, we isolated a ts mutant with a mutation of GPI10,
gpil0-2, which had temperature-sensitive growth defects that
were rescued by VCP or Cdc48 overexpression. The gpil0-2 mutant
contained a single nucleotide change that resulted in a single
amino-acid change of Gly469Glu in Gpil0 and that was located
in the C-terminus region of Gpi10. The function of the C-terminus
region of Gpil0 is unknown.

Currently, the mechanism of how VCP/Cdc48 expression
rescued the ts phenotype of gpi10-2, is not clear. It is noteworthy
that ubiquitin overexpression has been shown to rescue the ts
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mutant of LCB1, which encodes a serine palmitoyltransferase, the
first enzyme in ceramide biosynthesis; this restores protein degra-
dation, and reduces aggregates of the Ich1 mutant {18]. Moreover,
the maturation of GPl-anchored proteins is delayed in the Ich1
mutant [19]. Given that VCP/Cdc48, together with some of its
cofactors, functions in ubiquitin-proteasome-mediated degrada-
tion, such as ER-associated protein degradation (ERAD), it is possi-
ble that ERAD might be induced by the overexpression of VCP/
Cdc48 to degrade misfolded proteins due to the lack of GPI anchors
in ER, which might be the underlying cause of the ts phenotype.
Consistent with this notion, UBI4 expression also rescued the ts
phenotype of gpil0-2, albeit partially. However, this hypothesis
may be oversimplistic. We have not observed any apparent exacer-
bation of the growth defects, at both 25°C and 33 °C, in double
mutants of gpi10-2 combined with either cdc48-3, Ahrd1, Adoal0,
Aubx2, Aubx3, Aubx4, Aubx5, Aubx6, Aubx7, Anpl4, Ashp1, ufd1-2,
or Aufd3 (data not shown). At the least, these observations appear
to preclude the involvement of ERAD in the ts phenotypes of gpi10-
2. Therefore, we do not know, at present, where and how VCP/
Cdc48 works to rescue the ts phenotype of gpi10-2.

Even with the full recovery of the growth ability of gpi10-2 by
the expression of VCP or Cdc48, this condition could only partially
reduce the increased UPR, and it was not able to rescue its
increased sensitivities to cell-wall stressors. Both defective pheno-
types were probably due to the defective formation of GPI-anchor
proteins, which was expected from the defectiveness of the man-
nosyl transferase activity in the gpi10-2 mutant. These observa-
tions suggested that the mannosyl transferase activity was
defective in the gpi10-2 mutant at 37 °C and that VCP expression
did not rescue this defect at 37 °C. Notwithstanding, VCP expres-
sion rescued the growth defects of the gpi10-2 mutant at 37 °C,
indicating the possibilities that Gpi10 has uncovered cell growth-
related functions that differ from mannosyl transferase activity
and that these functions are rescued by VCP expression. These
possibilities remain to be clarified.
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plasmid namgvector/gene Source/Reference
p002 pRS316-GPD Takata et al
p003 pRS316-GPD-VCP Takata et al
p004 pRS316-GPD-CDC48 Takata et al
p005 pRS316-UBI4(WT) This study
p006 pRS316-GPI110(gpi10-2) This study
p007 pRS316-GPI(WT) This study
p008 pRS316-GPI10(gpi10-2) This study
M123 pRS316-Gal-VCP This study
p28-1 YEp13-MRF1 This study
p19-2 YEp13-YLLO33W,RIX7,GRC3 This study
p19-3 YEp13-YLLO37W,ENT4,UBI4 This study
p19-4 YEp13-YLLO33W,RIX7,GRC3 PRP19,YLLO37W,UBI4 This study
p19-5 YEp13-GRC3,PRP19,YLLO37W This study
p010 pRS314-GPD Takata et al
pO11 pRS314-GPD-VCP Takata et al
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