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Introduction

Hemoglobin and myoglobin are among the best studied and
understood of all proteins. These globins are known to be capable
of transporting and storing oxygen, thereby sustaining oxidative
metabolism in cells. Cytoglobin (CYGB), a new member of the
globin family that was identified together with neuroglobin (NGB},
is a hexa-coordinated heme protein [1,2]. Although CYGB is
known to exhibit a high intrinsic affinity to oxygen, similar to
myoglobin, its physiological function remains to be clarified [3].
CYGB was originally characterized as a 21-kDa heme protein
with an enhanced expression level in stellate cells in fibrotic liver
and was initially named “stellate cell activation-associated protein”
[4]. A role in the cellular response to tissue fibrosis has been
suggested by a study in which the overexpression of CYGB
provided protection against chemically induced liver fibrosis [5]. A
potential role in reactive oxygen species (ROS) detoxification has
also been suggested [6-8]. A human neuroblastoma cell line
transfected with a plasmid DNA containing CYGB cDNA showed
enhanced survival after exposure to H,Oo [6] and significant
protection from oxidative DNA damage induced by a singlet
oxygen generator [7]. Furthermore, CYGB has been shown to
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protect rat kidney fibroblasts against oxidative stress under
ischemic conditions @ vive [8]. However, most functional analyses
of CYGB, including the above-mentioned characterizations, have
so far been performed using cells with ectopically expressed
CYGB.

Cells endogenously enriched in CYGB, if found, would facilitate
the functional characterization of CYGB at an endogenous level,
rather than an ectopically induced level that could result in an
overestimation of function. The distribution of CYGB in normal
tssues has been analyzed in detail. In some studies, CYGB
appears to be ubiquitously expressed in whole tissue [1,9], while
the other studies have revealed some cell-types that specifically
express CYGB |4,10]. Compared to normal tissues, tumor tissues
or cell lines have not been extensively investigated for the presence
of CYGB [11]. This lack of study can be party explained by the
absence of the chromosome region 1725 (which contains the
CYGB gene) in multiple malignancies [12]. The transcriptional
nactivation of promoters of CYGB by DNA hypermethylation has
also been shown in lung, esophageal and head and neck cancers
[13-15}. Such transcriptional suppressions, which are frequently
observed in many cancer types, suggest that CYGB might function
as a tumor suppressor gene, making it difficult to discover cancer
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cell types overexpressing CYGB. Nevertheless, 1) based on the
assumption that, similar to other globins, CYGB could have a
specific function in limited tissues or cell types, and 2) according to
our initial aim to assess the correlation between CYGB loss and
the resultant tumor malignancy, we sought to perform an
extensive screening for CYGB expression in several cancer cell
lines and found that several, but not all, melanoma cell lines highly
expressed CYGB.

Results

CYGB Is Expressed at High Levels in Some Melanoma Cell
Lines

To explore the possibility of whether some types of cancer are
enriched in CYGB, we screened for CYGB using several cancer
cell lines of diverse origins (Table S1). To our surprise, a TagMan
probe-based real-time quantitative PCR revealed that 3 melanoma
cell lines (G361, p22, and C32TG) expressed CYGB mRNA several
hundred-fold more abundandy than the other cell lines that were
tested (Iig. 1A). In 2 melanoma cell lines (A375, MEWO), on the
other hand, CYGB mRINA was detected at much lower levels. T'o
confirm the expression discrepancy among the cell lines, we
subjected RINA preparations from each cell to a northern blot
analysis (Fig. S1A). The results were in good accordance with
those of quantitative PCR analysis, with CYGB mRNA being
abundantly expressed in the G361, p22, and C32TG cell lines but
not detected in the A375 and MEWO (melanomas), A549 (lung
cancer), and T47D (breast cancer) cell lines (Fig. S1B). Hypoxic
(1% Og) or anoxic (0.1%-0.2% O,) conditions can significantly
up-regulate CYGB mRNA in several cell lines as previously
reported [11]. Among the non-melanoma cells, T98G cells
(glioblastoma) alone produced a slight mRNA signal in response
to anoxia for 6 hours (Fig. S1). We next searched a publicly
available database for gene expression profiles. The Gene
Expression Omnibus database (GEO, http://www.ncbinlm.nih.
gov/geo) provided microarray datasets for various cancer cell
lines. The relative amounts of CYGB mRNA calculated for the
representative cell lines, including 15 melanoma cell lines, are
listed in Table S2. Of these cell lines, a high amount of CYGB
mRNA was expressed exclusively in melanoma cells, including
G361 and C32. As expected, some melanoma cells including
A375, SKMEL28 and HS294T formed a group that expressed
CYGB mRNA levels that were as low as those of non-melanoma
cell lines (Tables S2 and S3).

CYGB Is Overexpressed in Melanocytes

The unexpected identification of CYGB in melanoma cells
prompted us to examine the presence of CYGB in melanocytes,
the precursor of melanoma cells. A real-time quantitative PCR
assay showed that the expression level of CIGB mRNA in
melanocytes surpassed those observed in skin and various other
normal tissues (Fig. 1B), revealing melanocyte as a prominent cell
type that overexpressed CYGB. The level of protein expression in
melanocytes was comparable to, or even higher than, the four
CYGB expression-positive melanoma cell lines (Fig. 2A). The
expression of CYGB in keratinocytes, the main cell type in the
epidermis, as well as normal human dermal fibroblasts (NHDF)
was only detectable in immunoblot with an increased exposure
time (I'ig. S2A), suggesting the predominant distribution of CYGB
in melanocytes within the skin. Paraffin-embedded sections of
normal human skin were then used to examine CYGB expression.
Immunoreactivity using an antibody against CYGB showed the
same localization at the epidermal basement membrane as that for
PNL2 protein, which is ofien used as a marker for melanocytes,
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Figure 1. Some melanoma cells and melanocytes express high
level of CYGB. Realtime quantitative PCR was performed using a
TagMan probe to detect the CYGB mRNA level in (A) different human
cancer cell lines shown in Table S1 including 5 melanoma cells (A375,
Mewo, G361, P22, C32TG) and {B) 3 normal cells in skin (NHDF,
keratinocytes, melanocytes) and 11 normal tissues (skin to cornea)
together with 2 melanoma cell lines (G361, C32TG) and their
transfectants with siRNAs (si_Control and si_CYGB). In both (A) and
(B), the expression of the CYGB transcript was normalized by each 185
rRNA level (n=3, mean = SEM) and the normalized CYGB/18S rRNA
expression ratio for normal human dermal fibroblasts (NHDF) was set
equal to 1075,

doi:10.1371/journal.pone.0094772.g001

demonstrating that CYGB is highly enriched in melanocytes
(Tig. 2B).

The intracellular localization of CYGB has been estimated
using immunohistochemistry at the tissue level [4,10,16] or using a
fluorescent signal from GFP-fused CYGB forcibly expressed in
cells [7,10]. These studies have revealed that CYGB is localized in
the cytoplasm of fibroblasts and their derivatives [10], while it is
also detected in the nucleus in neurons, various epithelial cells,
hepatocytes and connective tissue cells [16,17]. Melanocytes or
G361 cells that endogenously express high amounts of CYGB
enabled direct immunostaining for localization (Fig. S2B). These
cells expressed CYGB in both the cytoplasm and nuclei, but the
expression was rather concentrated in the nuclei of the G361 cells,
while A375 cells gave only weak signals.

Epigenetic Silencing of CYGB Gene Occurs in Some
Melanoma Cell Lines

We searched the database (GSE29359) to determine whether
fluctuations in cytoglobin expression levels, as observed between
the G361 and A375 cell lines, are common among melanoma
patients (Table S84 and Fig. S3). A relatively high expression level
of CYGB mRNA was apparent in 7 out of 8 normal melanocyte
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Figure 3. Sequencing histograms for the CpG island of the
CYGB promoter region. Of the 24 CpG sites known to be methylated
in the CYGB promoter region, 9 sites analyzed for methylation are
shown. Cytosines methylated in A375 (B) are underlined. The
corresponding cytosines are entirely unmethylated in melanocytes
(A) and G361 (C), resulting in the sequence “TpG” after bisulfite
treatment.

doi:10.1371/journal.pone.0094772.g003

B PNL2 CYGB

melanoma cell lines in which the expression of the CYGB gene is
down-regulated (Fig. S4).

Figure 2. CYGB protein is overexpressed in melanocytes and
some of its malignant offspring. (A) Immunoblot analysis of CYGB CYGB Functions as a Tumor Suppressor Protein in
protein (indicated by an arrow) in NHDF, keratinocytes and melanocytes
from skin and 8 melanoma cell lines (WM35 to HS294T). The image was M?ianomg Cel.ls .
obtained using ImageQuant LAS 3000 with an exposure time of 15 sec. The epigenetic gene promoter methylation has been well
The minor band, possibly a degradation product, is observed below the documented for many tumor suppressor genes [19]. CYGB has
major band, which is prominent in melanocytes. The molecular mass been recently suggested to function as a tumor suppressor gene in
marker (kDa) is given on the l?ﬁ side. 5‘9“""‘ was used as a loading non-small cell lung cancer [18] and head and neck squamous cell
control. (B) Immunohlstochemacal‘analysns of formalin-fixed, paraffin- carcinoma [15]. To clarify whether CYGB also functions as a
embedded human normal skin using PNL2 (melanocyte marker) and R ) .

tumor suppressor gene in CYGB-positive melanoma cells, we

CYGB antibodies. Two different regions (a) and (b) stained using each . o . - . .
antibody are shown: (a) 4 x magnification, scale bar= 100 um. (b) 20x silenced the CTGB gene in G361 and C32TG cells using specific

magnification, scale bar =10 um. siRNA. Both a quantitative real-ime RT-PCR and an immuno-
doi:10.1371/journal.pone.0094772.g002 blot analyses demonstrated that the CYGB siRNA successfully
reduced expression of CYGB in both cell lines but the control

cell lines, but only 14 melanoma tumor tssues out of specimens ~ SIRNA did not (Figs. 1B and 4A). We observed a significantly
from 79 melanoma patients (17.7%) reached the same level. These increased proliferation rate as a result of CYGB knockdown in the
results suggest that most melanomas lose their CYGB expression CYGB siRNA-treated cells (Fig. 4B), providing strong evidence for
during the melanocyte-to-melanoma transition. the tumor suppressor properties of the CYGB gene in melanoma.
Recent methylation-specific PCR assays have provided evidence To check the validity of these findings in vivo, we performed
of higher levels of CYGB promoter methylation in lung and xenograft experiments. In order to maintain a long-term
esophageal tumors compared with adjacent nonmalignant tissues knockdown effect, we first established G361 cells stably expressing

[13]. We sequenced the promoter region of the CYGB gene from short hairpin RNA (shRNA) for CYGB or a nonsilencing control.
melanocytes, G361 cells and A375 cells after bisulfite-modification As expected, a reduced expression of CYGB protein (Fig. S5A)
followed by PCR. Twenty-four CpG sites are known to reside and an increased cell proliferation rate (Fig. S5B) were apparent in
within the CYGB promoter region |18}, of which 9 are shown in  cells expressing the CYGB shRNA. Equal numbers of CYGB
Fig. 3. The results revealed that all 9 CpG sites were methylated in shRNA- and control shRNA-expressing cells were injected
A375 but were totally unmethylated in melanocytes and G361,  subcutaneously into nude mice and allowed to grow, the tumor
demonstrating that the transcriptional inactivation of the promoter ~ sizes were then monitored over time. Both cell lines formed
by DNA hypermethylation occurred in A375 (Fig. 3) and in other tumors, but the CYGB shRNA xenografts grew significantly faster

(Fig. 4C) and had less apoptotic signals (Fig. S5C and D) compared
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Figure 4. CYGB-knocked down melanoma cells increase proliferation. {A) immunoblot data for C32TG and G361 cells transfected with CYGB
siRNA or control siRNA. B-actin was used as a loading control. (B) Cellular proliferation pattern for G361 and C32TG cells transfected with CYGB siRNA
(si_CYGB) and control siRNA (si_Control). The MTT analysis was performed daily (1d to 4d) post-transfection. The value represents the mean from
three independent experiments; OD value, 570 nm. bars, SEM. * P<0.05, ** P<<0.01. (C) Growth analysis of xenografted G361 tumors in nude mice.
G361 cells expressing shRNA against CYGB or control shRNA were subcutaneously implanted into the interscapular region of five female mice. Tumor

size was measured at the indicated time points. Bars, SEM. * P<<0.05.
doi:10.1371/journal.pone.0094772.g004

with the control xenografts, again confirming the role of CYGB as a
tumor suppressor gene.

CYGB Knockdown Causes an Increase in ROS Level

As CYGB has been reported to scavenge ROS when
overexpressed in tumor cells [6,7], CYGB knockdown may raise
the cellular ROS level and confer vulnerability that induces cell
death. We determined the effect of CYGB knockdown on cellular
ROS levels in G361 cells using flow cytometry and the redox-
sensitive {luorescent probe 2'-, 7'-dichloroflulorescein diacetate
(DCTF-DA). CYGB knockdown for 24 hours caused a marked
increase in the cellular ROS level. Co-reatment with N-acetyl-L-
cystein (NAC) fully reversed the CYGB knockdown-induced
increase in ROS (Fig. 5A). Exposure o 100 pM HyO, for
24 hours caused a much higher ratio of early and late apoptosis in
the CYGB siRNA-transfected G361 cells (61%) compared with
that observed for non-treated cells (5.5%) and control cells treated
with 100 uM of H,O, for 24 h (8.8%) (Iig. 3B).

Discussion

In the present study, we found that melanocytes are a major cell
type that is rich in cytoglobin, similar to how erythrocytes are rich
in hemoglobin and myocytes are rich in myoglobin, although the
function of CYGB is likely to differ from the latter two globins.
Several melanoma cells that escaped from epigenetic regulation
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were shown to have considerable expression levels of CYGB,
retaining their melanocytic character. Their high expression level
of CYGB might be attributable to the gene amplification, a
process by which the subchromosomal portions of the genome
increase in copy number, which has been frequently observed in
many human cancers [20] but not in normal cells [21]. The high
expression level of cytoglobin in melanocytes is, therefore, unlikely
to be due to gene amplification. Rather, some cell-type-specific
factors may activate CYGB expression in melanocytes and a part
of its malignant offspring, including G361. Microphthalmia-
associated transcription factor (MITT) is a protein known to be
responsible for the transcripuon of melanocyte-specific genes.
MITF binds to the “CATGTG” consensus sequence found in the
promoter region and activates the transcription of melanocyte—
specific proteins such as tyrosinase, a melanin-synthesizing enzyme
[22]. This motif was not present in the CYGB promoter region.
Some unknown motifs, through which melanocyte-specific gene
promoters are alternatively transactivated, may exist.

In early studies, the distribution of CYGB has been analyzed in
normal tissues and CYGB has been found to be uniformly
expressed in broad range of tssues [1,9]. Since these studies
analyzed the expression in whole tissue levels, cell-type specific
expression within tssues may have been underestimated in whole
tissue extracts. In an independent study, Kawada et al [4] had
shown enhanced expression of the rat homologue of CYGB in the
stellate cells of the fibrotic liver, thus describing it as “stellate cell
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activation-associated protein” or STAP. CYGB has been also
found in distinct cell populations in several tissues such as
fibroblasts in connective tissue, chondroblasts in cartilage,
osteoblasts in bone and neurons in colon (myenteric plexus) and
in brain [10]. The CYGB levels in these cells may be as high as in
melanocytes. Indeed, the overexpression of CYGB is detected in
some cell lines of neuronal origin (neuroblastomas) (Table S3).
Melanocytes are similar to neurons in that they are derived from
pluripotent neural crest cells that differentiate into numerous cell
lineages [23]. The development of melanocytes and neurons is
thought to be controlled by common signaling molecules. 'The
same signaling molecules may also promote the overexpression of
CYGB in both cell types.

The nuclear localization of CYGB appears to be rather specific
to melanoma cells, compared with melanocytes (Fig. S2B). CYGB
has been speculated to play a role in the protection of genomic
DNA from oxidative DNA damage; however, as CYGB contains
no known nuclear localization signals, the mechanism of nuclear
transport and its function in the nucleus remain to be determined.

Within melanocytes, melanins are formed from the successive
oxidation of tyrosine, which results in the generation of hydrogen
peroxide [24]. This oxidative byproduct, also generated by UV
irradiation, is efficiently scavenged within the melanosomes by
melanin, which in turn acts as an ant-oxidant [25]. CYGB has
also been suggested to play a defensive role against oxidative stress.
Human neuroblastoma cells with overexpressed CYGB showed
significant protection from oxidative damage induced by HyO, [6]
or a singlet oxygen generator [7]. Treatment with CYGB siRNA
enhanced the cellular ROS levels in fibroblasts from CYGB
transgenic rat kidney [8]. In melanocytes, highly enriched CYGB
may act as a ROS scavenger, similar to melanin.

On the other hand, melanosomes in melanoma cells not only
show a dramatically reduced ability to neutralize ROS, but also
actively produce excessive amounts of ROS [26]. Thus, the
function of the melanosome changes from a ROS scavenger (anti-
oxidant) in melanocytes to a ROS producer (pro-oxidant) in
melanomas. Melanoma cells produce larger amounts of ROS and
exhibit significantly higher levels of oxidative stress, compared
with squamous cell carcinoma and basal cell carcinoma in the skin
[27] as well as colon, pancreatic, and breast cancer cells [28]. In
view of these unique melanoma properties, the elevated produc-
tion of ROS seems to be a melanoma-specific defect [29], which
could be caused by the heavy oxidation of melanin [24] and
possibly by CYGB down-regulation for some cell types, as has
been shown in the present study.

The amount of ROS produced by melanoma cells, which is
within the cellular antioxidant capacity, is rather important for
cellular-signaling pathways that induce apoptosis-resistance and
cell proliferation [30]. ROS are thought to constitutively activate
nuclear factor-kappa B (NF-xB), a wanscription factor that is
critically involved m cell survival. The activation of NF-xB has
been proposed as an event that promotes melanoma tumor
progression [31]. On the other hand, high levels of ROS
exceeding the cellular antoxidant capacity may have a damaging
impact on cells. If CYGB acts as a ROS scavenger in melanoma
cells, it may alleviate the high levels of oxidative stress. Several
cellular defense mechanisms have also evolved to protect cells from
ROS. These mechanisms include repair systems, detoxifying
enzymes such as superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPX) and small molecule scavengers such
as glutathione (GSH). However, these antioxidant systems appear
to be weakened in melanoma patients, leading to the accumulation
of ROS, which may promote the cancer process [32]. Recently,
Yamaura et al. [33] reported that treatment with siRNA or an
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inhibitor of NADPH oxidase 4 (Nox 4) decreased ROS
production, thereby blocking melanoma cell proliferation. Nox 4
is known to produce superoxide anion (Oy~), which is readily
converted into hydrogen peroxide (HoOo). Yamaura et al. also
showed that the overexpression of CAT, a scavenger of ROS
(H50,), caused a similar effect on melanoma cells. More recendy,
another group has shown that the scavenging of Oy~ by a specific
compound inhibited cell growth, reduced viability, and induced
apoptosis in melanoma cells, indicating that Oy is important for
melanoma survival [34]. CYGB, like other hexacoordinated
globins, may scavenge ROS utilizing heme and thiol residues
[35] and could well be a target for gene silencing in melanoma.
Whether or not CYGB is lost during the melanocyte-to-melanoma
transition may affect tumor malignancy. Indeed, tumors without
CYGB were more proliferative (Iig. 4B) under oxidative stress
(Fig. 5A), a state that is vulnerable to ROS (Iig. 5B).

In conclusion, we have identified melanocyte as the prominent
site of CYGB expression that greatly expands our understanding
about the evolutionary diversity of the globin family. In addition,
present study indicates that CYGB could be a possible candidate
biomarker to predict the malignant potential of melanomas.
Knowledge of the role of ROS in melanomagenesis and the
mechanisms by which CYGB regulates oxidative stress can aid in
the development of better antimelanoma therapies. For example,
pro-oxidant compounds that target the cellular antoxidant
capacity are expected to selectively kill melanoma cells.

Materials and Methods

Cell Lines

All cell lines established from human cancers as listed in Table
S1 were purchased from ATCC (Manassas, VA) or Japanese
Collection of Research Bioresources (Osaka, Japan). These cell
lines, together with normal human dermal fibroblasts (NHDF)
(Promocell, Heidelberg, Germany) were cultured in DMEM or
RPMI medium (Sigma, St Louis, MO) supplemented with 10%
heat-inactivated fetal bovine serum (Invitrogen, Carlsbad, CA),
and the cell lines were maintained in a 5% COy-humidified
atmosphere at 37°C. Human epidermal melanocytes (HEMa-LP)
isolated from lightly pigment adult skin were purchased from
Invitrogen. The cells were cultured in Medium 254 (Invitrogen)
and were maintained in a 5% COg-humidified atmosphere at
37°C.

RNA Isolation and Quantitative Real-Time RT-PCR

Cells were washed once in ice-cold PBS and RNA was extracted
from each sample using the Trizol method (Invitrogen, Carlshad,
CA). Normal human epidermal keratinocytes (NHEK) purchased
as a pellet from Promocell (Heidelberg, Germany) were used to
isolate the total RNA and protein. Total RNAs from normal
tissues were the product of Takara (Ohtsu, Japan), except for the
tongue, throat, csophagus and skin tissues, which were obtained
from Biochain (San Francisco, CA). One microgram of the total
RNA was reverse-transcribed with AMV reverse transcriptase
using random primers and oligo (dT) primer. Real-time quant-
tative PCR was performed using the fluorescent TagMan
methodology and the ABI PRISM 7700 Sequence Detection
System (Applied Biosystem, Foster City, CA). Ready to use,
predesigned primer and probe sets (Applied Biosystems) for
human CYGB (Hs00370478_ml) and housckeeping gene 18S
rRINA (Hs99999901_s1) were used according to the manufactur-
er’s guidelines. The relative expression of mRNA was calculated
using the comparative Gt method.
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