Figure 3. Distribution of genomic alterations frequently observed in acute-type ATL among ATL samples. Heatmap with rows corresponding to the indicated alterations and columns representing individual ATL cases. Gray, a heterozygous loss or gain; black, a homozygous loss. Dark gray also shows the alterations of any cell-cycle-related gene. Alterations frequently found in acute-type ATL were not mutually exclusive of the alteration of cell-cycle-related genes. Cases with losses of *ITGB1* and *CCDC7* always exhibited the alterations of cell-cycle-related genes. Most cases with loss of *CD58* or gain of 3q also exhibited the alterations of cell-cycle-related genes, but a case showing the loss of *CD58* or gain of 3q without disruption of the cell cycle existed in each type of ATL. The loss of *CD58* and gain of 3q were almost mutually exclusive, except for two cases of acute-type ATL. CD58. Homozygous loss of CD58 was observed only in acutetype ATL samples. Furthermore, expression of CD58 was reduced in acute-type ATL cases accompanied with the genomic loss (Fig. 4B). Flow cytometric analyses also suggested that genomic loss of CD58 reduced the expression on the cell surfaces (Fig. 4C). Sequence analysis of CD58 revealed a nonsense mutation in one acute-type ATL case. This mutation indicated that the 97th position of serine changed to a stop codon (p.S97X; c.290C>A; Fig. 4D). The nontumor cells of this patient showed no mutation, and we therefore regarded this mutation as a somatic mutation. One-nucleotide substitution registered as an SNP in the NCBI database (http://www.ncbi.nlm.nih.gov/gene/) was found in 7 cases (c.43A>G; rs17426456; Supplementary Table S2). Combined with the results of the genomic and mutation analyses, 29% of acute-type and 7% of chronic-type ATL had genetic alteration of CD58. These alterations were significantly specific to acute-type ATL compared with chronictype ATL (Fig. 4E, P = 0.05). In addition to the alteration of *CD58*, inactivation of *B2M* is also reported to play a pivotal role in the immune escape mechanism of DLBCLs (20). Among analyzed cases, only a chronic-type ATL case (C-2) had heterozygous loss of *B2M*, and this case also showed heterozygous loss of *CD58* (Supplementary Table S2). No somatic mutations of *B2M* were observed in ATL cases analyzed. # Genomic alterations predicting acute transformation of chronic-type ATL We investigated the associations of MCRs that were characteristic of acute-type ATL and that were commonly found in more than 20% of chronic- and acute-type ATL with cumulative acute transformation rates among chronic-type ATL cases (Supplementary Table S3). Cases exhibiting gain of RXRA and loss of ITGB1, CCDC7, or CD58 were significantly associated with early progression to acute-type ATL ($P=0.01,\,0.02,\,0.02,\,$ and 0.04, respectively; Fig. 5A). Chronic-type ATL cases having the alterations of cell-cycle-related genes also tended to show early progressions to acute-type ATL ($P=0.07;\,$ Fig. 5B), although cases having only the loss of CDKN2A were not significantly associated with the progression (Supplementary Table S3). A chronic-type ATL case with losses of ITGB1 and CCDC7 had the alterations of cell-cycle-related genes, and we therefore analyzed the chronic-type ATL cases by the presence of alterations of CD58 and/or cell-cycle-related genes. This analysis revealed that cases with these alterations were specifically associated with earlier progression to acute-type ATL ($P=0.03,\,$ Fig. 5C). #### Discussion We have studied 27 cases of chronic-type ATL and compared with 35 cases of acute-type ATL. Until now, only a few chronic-type ATL cases had been analyzed, and the molecular mechanisms of the transformation were investigated by focusing on the well-known tumor suppressor genes (*CDKN2A* and *TP53*; refs. 6–12). In contrast, our investigation comprehensively analyzed genomic profiles, and molecular aspects were analyzed using unbiased and whole-genome methods. Our study of chronic-type ATL represents the largest study to date that has analyzed the whole-genomic status of chronic-type ATL cases. We could identify characteristic molecular profile of chronic-type ATL and could demonstrate possible molecular mechanisms of acute transformation. This study suggested that alterations of cell-cycle-related genes and *CD58* are new predictive implications for chronic-type ATL (Fig. 5C). # Common genomic alterations in chronic- and acute-type ATL Genomic alteration profiles of chronic- and acute-type ATL were found to be almost identical (Fig. 1). The number of genomic alterations was found to be higher in acute-type ATL than in the chronic-type, and the frequently altered regions of chronic-type ATL were also observed in the acute-type. Thus, chronic-type ATL might be a pre-acute form of the disease. The common MCRs in chronic- and acute-type ATL included genes involving T-cell receptor signaling, such as FYN and SYK (27, 28). We also identified SYNCRIP as a common MCR in both types of ATL. SYNCRIP is a gene known to be involved in maturation of mRNA (29). RXRA, which has been reported to be implicated in colorectal carcinogenesis (30), is also frequently altered in both types of ATL. In addition, our analysis suggested that gain of RXRA is involved in acute transformation of chronic-type ATL because the chronic-type ATL possessing the gain of RXRA showed earlier progression to the acute-type. These MCRs may play important roles in the development of ATL coordinately with HTLV-1. ## Deregulation of the cell-cycle pathway: an alteration related to acute transformation Our analyses of genomic alterations revealed that no single genomic alteration seems to be responsible for the mechanism Cancer Res; 74(21) November 1, 2014 6134 Cancer Research Figure 4. Alteration of CD58 in acute transformation of chronic-type ATL. A, genomic alterations of chromosome 1p, including CD58. Heatmap analysis of 400K aCGH shows \log_2 ratios of ATL cases. White, blue, and red represent diploid, loss, and gain, respectively. Arrowhead, the CD58 locus. B, gene expression levels of CD58. Expression was analyzed in 13 chronic-type and 21 acute-type ATL cases by GEP. Average gene expressions and SDs are shown in cases grouped as indicated. CD58 expression was reduced only in acute-type ATL cases exhibiting loss of CD58. Probe A_23_P138308 (CD58) was used in experiments. C, CD58 expressions on ATL cell lines and peripheral blood mononuclear cells (PBMC). Flow cytometric analysis of PBMCs from a healthy donor and two ATL cell lines for surface CD58 expression (orange line, PBMCs; blue line, ST1; red line, Su9T01). ST1 with heterozygous loss of CD58 had the low expression. The gray lines represent the cell lines with the isotype control antibody. D, DNA sequencing chromatogram of an acute-type ATL case (A-35) showing nonsense mutation in exon 2 of CD58 (top). DNA extracted from nontumor cells (CD4-negative cells in peripheral blood of this patient) did not show the mutation (middle). Bottom, a schematic representation of the CD58 protein depicting the location of the single peptide (SP), lg-like domain, and transmembrane domain (TM). The inverted triangle indicates the position of the mutation. E, characterization of CD58 alteration in ATL. Seven percent of chronic-type ATL cases showed genomic loss of CD58, whereas 29% of acute-type ATL cases showed genomic alteration of CD58, with one case exhibiting mutation (Fisher exact test; P=0.05). of acute transformation, and various genomic alterations and combinations of alterations exist in this mechanism (Fig. 3). We found that deregulation of the cell cycle, including genomic loss of *CDKN2A*, might be an important event in the transformation. Genomic loss of *CDKN2A* was also reported to play a crucial role in the transformation of chronic lymphocytic leukemia known as Richter syndrome (31, 32). Although previous studies using Southern blot analysis revealed that 11% to 17% of acute-type ATL had the homozygous loss of CDKN2A (7, 9), our analyses using unbiased and whole-genome methods were able to reveal the frequency of the loss in greater detail. We found that approximately 30% of acute-type ATL cases showed a homozygous loss of the CDKN2A/CDKN2B locus, and 50% of acute-type ATL cases Cancer Res; 74(21) November 1, 2014 Figure 5. Genomic alterations associated with acute transformation in chronic-type ATL. A, genomic loss of CD58 was significantly associated with earlier acute transformation (P = 0.04). B, chronic-type ATL cases with alterations of cell-cycle-related genes tended to exhibit earlier progression to acute-type ATL (P = 0.07). C, cases with either P = 0.07). C, cases with either P = 0.070 cases with either P = 0.070. C, cases with either P = 0.070 consists of cell-cycle-related genes showed a much shorter time to acute transformation within chronic-type ATL cases (P = 0.030). exhibited the homozygous or heterozygous loss of this locus. Yamagishi and colleagues used high-resolution aCGH analyses and found that this loss was frequently found in ATL samples (33). We also found that 5 of 27 chronic-type ATL cases had heterozygous loss of *CDKN2A*. Three of the 5 cases with *CDKN2A* loss progressed to the acute type, but 11 of the 22 cases without *CDKN2A* loss also showed acute transformation. Because of this finding, *CDKN2A* loss was not significantly associated with the earlier acute transformation in our study (Supplementary Table S3). Although previous studies revealed that approximately 5% of chronic-type had this loss (7, 9, 10), these previous studies did not show the cumulative acute transformation rate according to *CDKN2A* loss. CDKN2A expression was reduced in acute-type ATL samples exhibiting genomic loss of the *CDKN2A* locus. A portion of acute-type ATL cases without the genomic loss showed a low expression level of CDKN2A, suggesting that methylation of the gene might affect the expression in these
samples (11, 12). However, we consider that the genomic loss of *CDKN2A* has a greater influence on the expression of the gene than the methylation because the CDKN2A expression levels were remarkably reduced in accordance with the genomic loss (Fig. 2B and D). Alterations of both *CDKN2A* and *TP53* were previously reported to be mutually exclusive (34), and our results showed the same trend. In addition, loss of *TP53* and gains of *MDM4/RFWD2* tended to be mutually exclusive in our acute-type ATL samples. Because these genes are involved in the TP53 pathway, our findings indicate that the TP53 pathway may also play a pivotal role in the pathophysiology of acute-type ATL. In fact, 80% of acute-type ATL had the alterations of cell-cycle-related genes, including *CDKN2A* and *TP53*. On the basis of this finding, we found that the alterations of cell-cycle-related genes might be predictive factors for acute transformation in chronic-type ATL cases (Fig. 5B). # Disruption of the immunosurveillance system in acute transformation of chronic-type ATL The combined analyses of a CGH and sequencing revealed that 19% of ATL cases (7% of chronic-type and 29% of a cute-type ATL) exhibited the CD58 alteration. One acute-type ATL case showed somatic mutation, and the other cases showed genomic loss of the CD58 locus. The alteration of B2M was a rare event in ATL compared with DLBCL (20). CD58 is a ligand of the CD2 receptor that is expressed on CTLs and NK cells and contributes to adhesion and activation of these cells. Previous reports showed that CTLs and NK cells could not recognize and injure target cells when treated with monoclonal CD58 antibody (35, 36). It is important to note that immune escape mechanism by CD58 inactivation was proven in DLBCL by Challa-Malladi and colleagues (20). The genomic loss and nonsense mutation of CD58 were for the first time demonstrated in ATL in this study and were suggested to be a predictive marker for acute transformation in chronic-type ATL. Therefore, the immune escape mechanism by the CD58 inactivation is likely to be involved in the pathophysiology of ATL as shown in DLBCL although detailed analysis is needed in the future. Administration of immunosuppressive drugs to HTLV-1 carriers is currently considered a risk factor for early development of ATL (37, 38). It has been also suggested that immune escape from CTLs is induced by inactivation of the Tax protein derived from HTLV-1 in ATL (39–41). In addition, a report also suggested that immune escape from NK cells played an important role in ATL development (42). These findings suggest the presence of an immune escape mechanism in the pathophysiology of ATL. The present result regarding the significance of CD58 alteration as a predictive factor for acute transformation in chronic-type ATL should be validated in more number of cases in the future study. Further studies are also needed regarding the protein expressions of CD58, B2M, and human leukocyte antigen class I. In conclusion, our comparison of the molecular characteristics of chronic-type and acute-type ATL revealed that deregulation of the cell cycle and escape from the immune system are likely to be involved in acute transformation of chronic-type ATL. Development of ATL is thought to involve accumulation of several genomic alterations (43). The alterations of both pathways discovered in this study might be the late events following viral infection in the pathophysiology of ATL. These alterations could serve as biomarkers for patients with Cancer Res; 74(21) November 1, 2014 6136 Cancer Research chronic-type ATL. Furthermore, the presence of genomic alterations related to immune escape should be considered in the development of immunotherapeutic approaches for ATL. #### **Disclosure of Potential Conflicts of Interest** No potential conflicts of interest were disclosed. #### **Authors' Contributions** Conception and design: N. Yoshida, A. Utsunomiya, K. Tsukasaki, A. Umino, M. Seto Development of methodology: K. Karube Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): N. Yoshida, A. Utsunomiya, K. Tsukasaki, Y. Imaizumi, N. Taira, K. Arita, S. Tsuzuki, K. Ohshima Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): N. Yoshida, A. Utsunomiya, K. Arita, M. Suguro, S. Tsuzuki Writing, review, and/or revision of the manuscript: N. Yoshida, K. Karube, A. Utsunomiya, K. Tsukasaki, T. Kinoshita, M. Seto Administrative, technical, or material support (i.e., reporting or orga- Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. Utsunomiya, N. Uike, T. Kinoshita, M. Seto Study supervision: K. Karube, M. Seto #### References - Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 1977;50:481–92. - Ohshima K, Jaffe E, Kikuchi M. Adult T-cell leukemia/lymphoma. In: Swerdlow SH CE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. World Health Organization classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues pathology and genetics of tumours of haematopoietic and lymphoid tissues 4th ed. Lyon, France: IARC Press; 2009. p. 281-4 - Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol 1991;79:428–37. - Takasaki Y, Iwanaga M, Imaizumi Y, Tawara M, Joh T, Kohno T, et al. Long-term study of indolent adult T-cell leukemia-lymphoma. Blood 2010:115:4337–43. - Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington W Jr, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol 2009;27:453–9. - Sakashita A, Hattori T, Miller CW, Suzushima H, Asou N, Takatsuki K, et al. Mutations of the p53 gene in adult T-cell leukemia. Blood 1992;79:477–80. - Hatta Y, Hirama T, Miller CW, Yamada Y, Tomonaga M, Koeffler HP. Homozygous deletions of the p15 (MTS2) and p16 (CDKN2/MTS1) genes in adult T-cell leukemia. Blood 1995;85:2699–704. - Nishimura S, Asou N, Suzushima H, Okubo T, Fujimoto T, Osato M, et al. p53 gene mutation and loss of heterozygosity are associated with increased risk of disease progression in adult T cell leukemia. Leukemia 1995;9:598–604. - Uchida T, Kinoshita T, Watanabe T, Nagai H, Murate T, Saito H, et al. The CDKN2 gene alterations in various types of adult T-cell leukaemia. Br J Haematol 1996;94:665–70. - Yamada Y, Hatta Y, Murata K, Sugawara K, Ikeda S, Mine M, et al. Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T-cell leukemia. J Clin Oncol 1997;15:1778–85. - 11. Trovato R, Cereseto A, Takemoto S, Gessain A, Watanabe T, Waldmann T, et al. Deletion of the p16lNK4A gene in ex vivo acute adult T cell lymphoma/leukemia cells and methylation of the p16lNK4A promoter in HTLV type I-infected T cell lines. AIDS Res Hum Retroviruses 2000;16:709–13. - Nosaka K, Maeda M, Tamiya S, Sakai T, Mitsuya H, Matsuoka M. Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer Res 2000;60:1043–8. #### Acknowledgments The outstanding technical assistance of Yumiko Kasugai, Seiko Sato, and Kyoko Hirano is very much appreciated. The authors thank Drs. Takashi Miyagi, Sivasundaram Karnan, Harumi Kato, Kiyoko Yamamoto, Fang Liu, Tatsuo Kakiuchi, and Taishi Takahara for their critical discussions and constructive suggestions. N. Yoshida also thanks Drs. Akira Sakai, Yuta Katayama, Hideki Asaoku, and Tatsuo Ichinohe for their encouragement throughout this study. #### **Grant Support** This work was supported in part by a grant-in-Aid from the Ministry of Health, Labor and Welfare of Japan, the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Japan Society for the Promotion of Science (N. Yoshida, K. Karube, S. Tsuzuki, and M. Seto), a grant-in-Aid for Cancer Research from the Ministry of Health, Labor and Welfare of Japan (M. Seto), and a grant-in-Aid from the Takeda Science Foundation (M. Seto). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received March 6, 2014; revised June 30, 2014; accepted July 22, 2014; published OnlineFirst October 15, 2014. - Tsukasaki K, Krebs J, Nagai K, Tomonaga M, Koeffler HP, Bartram CR, et al. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood 2001;97: 3875–81. - Umino A, Nakagawa M, Utsunomiya A, Tsukasaki K, Taira N, Katayama N, et al. Clonal evolution of adult T-cell leukemia/lymphoma takes place in the lymph nodes. Blood 2011;117:5473–8. - 15. Karube K, Nakagawa M, Tsuzuki S, Takeuchi I, Honma K, Nakashima Y, et al. Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood 2011;118:3195–204. - Yoshida N, Nishikori M, Izumi T, Imaizumi Y, Sawayama Y, Niino D, et al. Primary peripheral T-cell lymphoma, not otherwise specified of the thyroid with autoimmune thyroiditis. Br J Haematol 2013;161: 214–23. - Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011;43:830–7. - Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545–50. - Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, et al. Recurrent mutations in epigenetic
regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 2014;46:166–70. - 20. Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G, Murty VV, et al. Combined genetic inactivation of beta2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 2011;20:728–40. - Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant 2013;48: 452-8. - Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE, et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 2008;105:13520–5. - Honma K, Tsuzuki S, Nakagawa M, Tagawa H, Nakamura S, Morishima Y, et al. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 2009;114:2467–75. - Monti S, Chapuy B, Takeyama K, Rodig SJ, Hao Y, Yeda KT, et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell 2012;22:359–72. Cancer Res; 74(21) November 1, 2014 6137 - Kanner SB, Damle NK, Blake J, Aruffo A, Ledbetter JA. CD2/LFA-3 ligation induces phospholipase-C gamma 1 tyrosine phosphorylation and regulates CD3 signaling. J Immunol 1992;148:2023–9. - Wang JH, Smolyar A, Tan K, Liu JH, Kim M, Sun ZY, et al. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 1999;97:791–803. - Martelli MP, Lin H, Zhang W, Samelson LE, Bierer BE. Signaling via LAT (linker for T-cell activation) and Syk/ZAP70 is required for ERK activation and NFAT transcriptional activation following CD2 stimulation. Blood 2000;96:2181–90. - Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009:228:9–22. - 29. Mizutani A, Fukuda M, Ibata K, Shiraishi Y, Mikoshiba K. SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. J Biol Chem 2000;275:9823–31. - 30. Egan JB, Thompson PA, Ashbeck EL, Conti DV, Duggan D, Hibler E, et al. Genetic polymorphisms in vitamin D receptor VDR/RXRA influence the likelihood of colon adenoma recurrence. Cancer Res 2010;70:1496–504. - Chigrinova E, Rinaldi A, Kwee I, Rossi D, Rancoita PM, Strefford JC, et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood 2013;122:2673–82. - Fabbri G, Khiabanian H, Holmes AB, Wang J, Messina M, Mullighan CG, et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J Exp Med 2013;210:2273– 88. - 33. Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell 2012;21:121–35. - Tawara M, Hogerzeil SJ, Yamada Y, Takasaki Y, Soda H, Hasegawa H, et al. Impact of p53 aberration on the progression of Adult T-cell Leukemia/Lymphoma. Cancer Lett 2006;234:249–55. - 35. Altomonte M, Gloghini A, Bertola G, Gasparollo A, Carbone A, Ferrone S, et al. Differential expression of cell adhesion molecules CD54/CD11a and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells. Cancer Res 1993;53:3343–8. - Gwin JL, Gercel-Taylor C, Taylor DD, Eisenberg B. Role of LFA-3, ICAM-1, and MHC class I on the sensitivity of human tumor cells to LAK cells. J Surg Res 1996;60:129–36. - Kawano N, Shimoda K, Ishikawa F, Taketomi A, Yoshizumi T, Shimoda S, et al. Adult T-cell leukemia development from a human T-cell leukemia virus type I carrier after a living-donor liver transplantation. Transplantation 2006;82:840–3. - Yoshizumi T, Shirabe K, Ikegami T, Kayashima H, Yamashita N, Morita K, et al. Impact of human T cell leukemia virus type 1 in living donor liver transplantation. Am J Transplant 2012;12:1479–85. - Kannagi M, Harashima N, Kurihara K, Ohashi T, Utsunomiya A, Tanosaki R, et al. Tumor immunity against adult T-cell leukemia. Cancer Sci 2005;96:249–55. - Matsuoka M. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology 2005;2:27. - Suzuki S, Masaki A, Ishida T, Ito A, Mori F, Sato F, et al. Tax is a potential molecular target for immunotherapy of adult T-cell leukemia/ lymphoma. Cancer Sci 2012;103:1764–73. - Stewart SA, Feuer G, Jewett A, Lee FV, Bonavida B, Chen IS. HTLV-1 gene expression in adult T-cell leukemia cells elicits an NK cell response in vitro and correlates with cell rejection in SCID mice. Virology 1996;226:167–75. - Okamoto T, Ohno Y, Tsugane S, Watanabe S, Shimoyama M, Tajima K, et al. Multi-step carcinogenesis model for adult T-cell leukemia. Jpn J Cancer Res 1989;80:191–5. # Cancer Research The Journal of Cancer Research (1916–1930) | The American Journal of Cancer (1931–1940) ### Molecular Characterization of Chronic-type Adult T-cell Leukemia/Lymphoma Noriaki Yoshida, Kennosuke Karube, Atae Utsunomiya, et al. Material Cancer Res 2014;74:6129-6138. Published OnlineFirst October 15, 2014. **Updated version** Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-14-0643 Access the most recent supplemental material at: Supplementary http://cancerres.aacrjournals.org/content/suppl/2014/09/09/0008-5472.CAN-14-0643.DC1.html **Cited Articles** This article cites by 42 articles, 20 of which you can access for free at: http://cancerres.aacrjournals.org/content/74/21/6129.full.html#ref-list-1 Sign up to receive free email-alerts related to this article or journal. E-mail alerts To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at Reprints and **Subscriptions** pubs@aacr.org. To request permission to re-use all or part of this article, contact the AACR Publications Department at **Permissions** permissions@aacr.org. # Japan Clinical Oncology Group (JCOG) prognostic index and characterization of long-term survivors of aggressive adult T-cell leukaemia-lymphoma (JCOG0902A) Takuya Fukushima, ¹ Shogo Nomura, ² Masanori Shimoyama, ³ Taro Shibata, ² Yoshitaka Imaizumi, ⁴ Yoshiyuki Moriuchi, ⁵ Takeaki Tomoyose, ⁶ Kimiharu Uozumi, ⁷ Yukio Kobayashi, ⁸ Noriyasu Fukushima, ⁹ Atae Utsunomiya, ¹⁰ Mitsutoshi Tara, ¹¹ Kisato Nosaka, ¹² Michihiro Hidaka, ¹³ Naokuni Uike, ¹⁴ Shinichiro Yoshida, ¹⁵ Kazuo Tamura, ¹⁶ Kenji Ishitsuka, ¹⁶ Mitsutoshi Kurosawa, ¹⁷ Masanobu Nakata, ¹⁸ Haruhiko Fukuda, ² Tomomitsu Hotta, ³ Kensei Tobinai ⁸ and Kunihiro Tsukasaki ¹⁹ ¹Laboratory of Haematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara-cho, ²JCOG Data Centre, Multi-institutional Clinical Trial Support Centre, National Cancer Centre, Tokyo, ³Multicentre-institutional Clinical Trial Support Centre, National Cancer Centre, Tokyo, ⁴Department of Haematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, ⁵Department of Haematology, Sasebo City General Hospital, Sasebo, ⁶Division of Endocrinology, Diabetes and Metabolism, Haematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, ⁷Department of Haematology and Immunology, Kagoshima University Hospital, Kagoshima, ⁸Department of Haematology, National Cancer Centre Hospital, Tokyo, ⁹Division of Haematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, ¹⁰Department of Haematology, Imamura Bun-in Hospital, Kagoshima, ¹¹Department of Haematology, Kagoshima City Hospital, Kagoshima, 12 Department of Haematology, Kumamoto University of Medicine, Kumamoto, 13 Department of Internal Medicine, National Hospital Organization Kumamoto Medical Centre, Kumamoto, 14Department of #### Summary This study evaluated the clinical features of 276 patients with aggressive adult T-cell leukaemia-lymphoma (ATL) in 3 Japan Clinical Oncology Group (JCOG) trials. We assessed the long-term survivors who survived >5 years and constructed a prognostic index (PI), named the JCOG-PI, based on covariates obtained by Cox regression analysis. The median survival time (MST) of the entire cohort was 11 months. In 37 patients who survived >5 years, no disease-related deaths in 10 patients with lymphomatype were observed in contrast to the 10 ATL-related deaths in other types. In multivariate analysis of 193 patients, the JCOG-PI based on corrected calcium levels and performance status identified moderate and high risk groups with an MST of 14 and 8 months respectively (hazard ratio, 1.926). The JCOG-PI was reproducible in an external validation. Patients with lymphoma-type who survived >5 years might have been cured. The JCOG-PI is valuable for identifying patients with extremely poor prognosis and will be useful for the design of future trials combining new drugs or investigational treatment strategies. Keywords: adult T-cell leukaemia-lymphoma, Japan Clinical Oncology Group trials, long-term survivors, prognostic index. © 2014 John Wiley & Sons Ltd British Journal of Haematology, 2014, **166,** 739–748 First published online 14 June 2014 doi:10.1111/bjh.12962 Haematology, National Hospital Organization Kyushu Cancer Centre, Fukuoka, ¹⁵Department of Haematology, National Hospital Organization Nagasaki Medical Centre, Omura, ¹⁶Department of Medicine, Division of Medical Oncology, Haematology and Infectious Diseases, Fukuoka University, Fukuoka, ¹⁷Department of Haematology, National Hospital Organization Hokkaido Cancer Centre, Sapporo, ¹⁸Department of Haematology, Sapporo Hokuyu Hospital, Sapporo, and ¹⁹Department of Haematology National Cancer Centre Hospital East,
Kashiwa, Japan Received 14 January 2014; accepted for publication 10 April 2014 Correspondence: Takuya Fukushima, MD, Laboratory of Haematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan. E-mail: fukutaku@med.u-ryukyu.ac.jp Adult T-cell leukaemia-lymphoma (ATL) is a distinct peripheral T-lymphocytic malignancy associated with human T-cell lymphotropic virus type I (HTLV-1) (Uchiyama et al, 1977; Poiesz et al, 1980; Hinuma et al, 1981; Miyoshi et al, 1981; Yoshida et al, 1982). Classification of clinical subtypes into acute, lymphoma, chronic and smouldering was proposed based on prognostic factors, clinical features and the natural history of the disease (Shimoyama, 1991). Patients with aggressive ATL (i.e., acute, lymphoma and unfavourable chronic types) have frequently been treated as a subtype of aggressive non-Hodgkin lymphoma (NHL), whereas those with indolent ATL (i.e., favourable chronic and smouldering types) have been managed as a subtype of chronic lymphoid leukaemia (Shimoyama, 1994; Tobinai & Watanabe, 2004). Aggressive ATL typically has a very poor prognosis compared with aggressive B-cell lymphomas, such as diffuse large B-cell lymphoma and peripheral T-cell lymphoma excluding ATL (The International Non-Hodgkin's Lymphoma Prognostic Factor Project's, 1993; Shimoyama, 1994; Gallamini et al, 2004; Watanabe et al, 2010). In the 1980's, patients with aggressive ATL were reported to have a median survival time (MST) of approximately 8 months, with a 2-year survival rate of <5% because of the multidrug-resistant phenotype of their malignant tumour cells, rapid proliferation of the tumour cells, a large tumour burden with multi-organ failure, hypercalcaemia, and/or frequent opportunistic infections (Lymphoma Study Group, 1991; Shimoyama, 1991, 1994; Tobinai & Watanabe, 2004). The Japan Clinical Oncology Group (JCOG)-Lymphoma Study Group (LSG) has conducted consecutive clinical trials to improve the survival of patients with ATL. Earlier trials (JCOG7801, JCOG8101, and JCOG8701) revealed poor prognosis of ATL compared with other aggressive NHLs (Shimovama et al, 1988; Tobinai et al, 1994). Furthermore, the disappointing results with conventional chemotherapies in the 1980s and the proposal for a subtype classification of ATL led us to conduct clinical trials with new agents that exclusively targeted aggressive ATL. The first phase II trial, JCOG9109 (1991-1993), evaluated combination chemotherapy with deoxycoformycin, an inhibitor of adenosine deaminase, which had been effective as a single agent against relapsed or refractory ATL (Tobinai et al, 1992). However, the results were disappointing with an MST of 7 months, similar to the findings of previous JCOG-LSG trials (Tsukasaki et al, 2003). The next phase II trial, JCOG9303 (1994-1996), evaluated the chemotherapy regimen VCAP-AMP-VECP (LSG15) against aggressive ATL. This dose-intensified multi-agent chemotherapy consisted of vincristine, cyclophosphamide, doxorubicin (DXR) and prednisone (PSL) for VCAP, DXR, ranimustine and PSL for AMP, and vindesine, etopside, carboplatin and PSL for VECP, supported by granulocyte colony-stimulating factor and intrathecal (IT) prophylaxis with methotrexate (MTX) and PSL. This phase II trial showed promising results, with complete remission (CR) and overall response rates of 36% and 81%, respectively, and an MST of 13 months at the expense of haematological and other toxicities (Yamada et al, 2001). Based on these results, we proceeded to the phase III trial JCOG9801 (1998-2003), which compared a modified VCAP-AMP-VECP regimen (shortened from 7 to 6 courses), to which cytarabine was added to the IT prophylaxis, versus CHOP (cyclophosphamide, DXR, vincristine and PSL)-14 supported by granulocyte © 2014 John Wiley & Sons Ltd British Journal of Haematology, 2014, **166,** 739–748 colony-stimulating factor and IT prophylaxis identical to the former regimen. The CR and 3-year overall survival (OS) were higher in the modified VCAP-AMP-VECP arm than in the CHOP-14 arm (40% vs. 25% and 24% vs. 13% respectively), suggesting that the former is a more effective regimen at the expense of greater toxicity for patients with newly diagnosed aggressive ATL (Tsukasaki *et al*, 2007). Through these 3 JCOG trials for patients with aggressive ATL, the 5-year OS was improved, from 5% in the 1980's to 15% in the 1990s. To characterize the long-term survivors of aggressive ATL and to develop a new prognostic index (PI) for the disease, we performed a combined analysis (JCOG0902A) of all the patients enrolled in the 3 JCOG trials. #### Methods #### Study population A total of 276 patients who were registered in the 3 JCOG trials described above were enrolled in this study (Yamada et al, 2001; Tsukasaki et al, 2003, 2007). Some patients did not receive anti-viral therapy using interferon-alpha and zidovudine because these drugs for ATL was not covered by the National Health Insurance in Japan. The eligibility criteria for the 3 JCOG trials were detailed in previous reports (Yamada et al, 2001; Tsukasaki et al, 2003, 2007). Briefly, patients were eligible to participate if they had aggressive ATL (i.e., acute, lymphoma, or unfavourable chronic type) with no prior chemotherapy, were aged 15-69 years and had preserved organ functions, no proven central nervous system (CNS) involvement and a performance status (PS) of 0-3 or 4 due to hypercalcaemia caused by ATL. The diagnosis of ATL was made based on seropositivity for HTLV-1 antibody and histologically and/or cytologically proven peripheral T-cell malignancy. Monoclonal integration of HTLV-1 provirus was analysed in 104 of 276 patients studied. Among these 104 patients, integration was detected in 100 patients and not detected in four patients. The PI for the JCOG trials, which we refer to as the JCOG-PI, was constructed from the data of patients who participated in these trials (training set) and was then applied to an external validation set. The external validation set consisted of 136 patients who had not participated in prior JCOG studies but had received anthracycline-containing regimens as initial chemotherapy at three sites (Nagasaki University Hospital, Nagasaki Medical Centre, and Sasebo City General Hospital) under the remit of the JCOG-LSG. These patients were a subset of those from a previous retrospective study (Katsuya *et al*, 2012) and their OS and corrected calcium levels were reviewed. #### Data and analysis sets The endpoint of this study was OS, defined as the duration between registration to each JCOG trial and death from any cause or censored at the last follow up in living patients. For the validation data set, we substituted the date of treatment initiation for the date of registration. Candidate covariates were sex, age, Eastern Cooperative Oncology Group (ECOG) PS, B symptoms, clinical stage, liver involvement, lactate dehydrogenase, blood urea nitrogen (BUN), corrected calcium levels, serum total protein, serum albumin, white blood cell count, total (normal and abnormal) lymphocyte count, neutrophil count and platelet count. We excluded the treatment regimen from the covariates because our aim was to create an index that could stratify the patients' prognosis and be applicable to future clinical trials evaluating various promising regimens. Cut-off values were determined clinically by dividing the continuous biological and laboratory test variables into no more than three categories. The data of 193 patients with a complete set of candidate covariates were used for the training set (Fig 1). The protocol of this study was reviewed and approved by the JCOG Protocol Review Committee. #### Statistical analysis Patients who survived >5 years were categorized according to ATL subtype (acute, lymphoma or unfavourable chronic types). In addition, to evaluate the ATL-related death events for each subtype, a disease-specific mortality curve was estimated, for only those patients who survived >2 years, by means of a competing risks framework (Kalbfleisch & Prentice, 2002). The proportion of patients who survived >5 and >10 years was calculated to evaluate the association between long-term survival and CR (including CR unconfirmed) for initial treatment. The proportion of cases with Fig 1. Patient disposition of the training set. © 2014 John Wiley & Sons Ltd British Journal of Haematology, 2014, **166,** 739–748 741 #### T. Fukushima et al CNS involvement was compared among the JCOG trial regimens in an exploratory evaluation of the efficacy of prophylactic IT treatment. The prophylactic IT treatments against CNS involvement were: none in JCOG9109, MTX and PSL in JCOG9303, and MTX, cytarabine and PSL in both regimens in JCOG9801. Confidence intervals (CIs) for all the above proportions were computed using the Clopper–Pearson method (Clopper & Pearson, 1934). Analyses for the development and validation of the JCOG-PI were performed according to a pre-specified analysis plan. The JCOG-PI consisted of risk groups that were developed using Cox's proportional hazards model. Before constructing the JCOG-PI, covariates with several definitions were selected for those with the smallest Akaike's Information Criteria (Akaike, 1973) on univariate analysis. Next, we verified the correlations between covariates to avoid multi-colinearity. Stepwise Cox regression analysis was then performed to identify unfavourable prognostic factors for constructing the JCOG-PI. The entry criterion was P < 0.20 and the removal criterion was P > 0.15. The maximum number of risk group strata was set at three, based on the opinions of JCOG-LSG members who commented that too many strata were impractical for evaluating risk. The risk group was divided with patients equally distributed. The log-rank test was used to assess the discrepancy between the risk groups and the Kaplan–Meier method was applied to estimate OS. All
statistical analysis was performed using SAS Release 9·1 (SAS Institute, Inc, Cary, NC, USA). All reported P values are two-sided and P < 0.05 was considered statistically significant. #### Results #### Patient characteristics A total of 276 patients were registered in the 3 trials (JCOG9109, n = 62; JCOG9303, n = 96; and JCOG9801, n = 118) from 58 institutions in Japan. The MST and the 5-year OS of all patients were 11 months and 14% respectively (Fig 2A). The OS of each treatment regimen during the long follow up reconfirmed the findings of each original report (Fig 2B) (Yamada *et al*, 2001; Tsukasaki *et al*, 2003, 2007). Clinical characteristics are shown in Table I. # Long-term survivors according to subtype and initial response The disease-specific mortality curve of patients who survived >2 years according to subtype is presented in Fig 3. Among the 37 patients (acute, n = 22; lymphoma, n = 8; unfavourable chronic, n = 7) who survived >5 years, there were no ATL-related deaths in lymphoma type, which was in contrast to the 10 ATL-related deaths in the acute and unfavourable chronic types after 5 years. Fig 2. Overall survival (OS) of all registered patients in 3 Japan Clinical Oncology Group (JCOG) trials and according to treatment regimens. (A) OS of all 276 registered patients. Median survival time (MST) and the 5-year OS were 11 months and 14%, respectively.(B) OS according to different treatment regimens. MST was 7 months in JCOG9109, 13 months in JCOG9303, 13 months in VCAP-AMP-VECP of JCOG9801 and 11 months in CHOP-14 of JCOG9801. Of the 276 patients, 88 (32%) achieved CR with initial treatment. Of these 88 patients, 24 (27%) patients had survived >5 years and 11 (13%) patients had survived >10 years. Of the remaining 188 patients who did not achieve CR, 13 (17%) patients who survived >5 years and only 1 (0.5%) patient survived >10 years. #### CNS involvement by treatment regimen CNS involvement was 1.6% (95% CI, 0.04-8.7) in JCOG9109, 6.3% (95% CI, 2.3-13.1) in JCOG9303, and 3.5% (95% CI, 0.4-12.1) in the VCAP-AMP-VECP arm and 8.2% (95% CI, 2.7-18.1) in the CHOP-14 arm of JCOG9801. No significant differences in the proportion of CNS involvement were observed among the regimens. #### Development of the PI In univariate analyses, three covariates showed significant associations with OS, namely PS, corrected calcium level and serum total protein (all P < 0.05; Table II). Stepwise Cox regression analysis returned three unfavourable prognostic © 2014 John Wiley & Sons Ltd British Journal of Haematology, 2014, **166,** 739–748 Table I. Clinical characteristics of 15 covariates in all 276 registered patients. | | | JCOG9109 (n = 62) | JCOG9303 (n = 96) | JCOG9801 (n = 118) | Total $(n = 276)$ | |------------------------------------|-----------------------|--------------------|--------------------|---------------------|-------------------| | Initial date of registration | | November 1991 | January 1994 | July 1998 | | | Final date of registration | | July 1993 | December 1996 | October 2003 | | | Number of sites | | 30 | 20 | 27 | 49 | | Sex | Male/female | 38/24 | 54/42 | 61/57 | 153/123 | | Age, years | ≥20, <30 | 0 | 1 | 0 | 1 | | | ≥30, <40 | 2 | 7 | 6 | 15 | | | ≥40, <50 | 14 | 29 | 20 | 63 | | | ≥50,<60 | 27 | 24 | 44 | 95 | | | ≥60, <70 | 19 | 35 | 48 | 102 | | PS | 0/1 | 23/22 | 19/25 | 49/46 | 91/93 | | | 2/3/4/NE | 7/9/1/0 | 17/9/8/18 | 18/4/1/0 | 42/22/10/18 | | B symptoms | +//NE | 22/36/4 | 39/57/0 | 45/73/0 | 106/166/4 | | Stage | I/II/III/IV | 1/4/8/49 | 2/6/14/74 | 0/4/8/106 | 3/14/30/229 | | Liver invasion | +/ | 10/52 | 20/76 | 25/93 | 55/221 | | LDH, iu/l | $<-1 \times ULN/>$ | 9/53 | 10/86 | 20/98 | 39/237 | | BUN, mmol/l | $<-1 \times ULN/>/NE$ | 47/14/1 | 80/15/1 | 107/11/0 | 234/40/2 | | Corrected Ca, mmol/l | <2.75/≥/NE | 49/9/4 | 75/16/5 | 93/25/0 | 217/50/9 | | Serum protein, g/l | <60/≥/NE | 18/44/0 | 27/69/0 | 30/87/1 | 75/200/1 | | Albumin g/l | <35/35-40/≥40/NE | 18/26/15/3 | 35/39/18/4 | 28/64/26/0 | 81/129/59/1 | | WBC $(\times 10^9/l)$ | <3/≥ | 48/14 | 77/19 | 104/14 | 229/47 | | Lymphocytes (×10 ⁹ /l)* | <4/4-15/≥15/NE | 28/16/14/4 | 54/19/23/0 | 64/33/20/1 | 146/68/57/5 | | Neutrophils (×10 ⁹ /l) | <8/≥/NE | 49/12/1 | 75/21/0 | 94/24/0 | 218/57/1 | | Platelets ($\times 10^9/l$) | <150/≥ | 16/46 | 19/77 | 19/99 | 54/222 | B symptoms: fever, night sweats, and weight loss. JCOG, Japan Clinical Oncology Group; ECOG PS, Eastern Cooperative Oncology Group performance status; Ca, calcium level; WBC, white blood cell count; ULN, upper limit of normal; NE, not evaluated. factors associated with OS, namely a high, corrected calcium level, high PS (2–4), and the existence of B symptoms, although the third factor was not statistically significant (Table II). Table II also presents the results of the model when the two significant factors of corrected calcium and ECOG PS were included. The hazard ratios (HRs) estimated by this model were 1·574 (95% CI, 1·088–2·277; P = 0.016) for corrected calcium and 1·554 (95% CI, 1·120–2·157; P = 0.008) for ECOG PS. The four categories consisting of the two prognostic factors (corrected calcium level and PS) were combined into a dichotomous PI, named the JCOG-PI, by considering its potential for clinical use. Similarly, we constructed a dichotomous PI including B symptoms with two prognostic factors. We excluded B symptoms from further assessment because the Akaike Information Criteria of JCOG-PI (1537-8) was smaller than that of PI (1545-6). According to the JCOG-PI, the MST and 5-year OS were 14 months and 18% in patients with both corrected calcium <2.75 mmol/l and a PS of 0 or 1 (moderate-risk group) and were 8 months and 4% in patients with corrected calcium ≥2.75 mmol/l and/or a PS of 2–4 (high-risk group) respectively (Fig 4A). The HR and 95% CI were 1.926 and 1.423-2.606 respectively (P < 0.0001). © 2014 John Wiley & Sons Ltd British Journal of Haematology, 2014, **166,** 739–748 #### External validation Nine patients in the validation set of 136 patients had missing corrected calcium or PS data, resulting in 127 evaluable patients (Fig 5). The median and longest follow-up periods were 9 months and 97 months, respectively. The HR was $2\cdot138$ (95% CI, $1\cdot414-3\cdot233$, $P=0\cdot0003$) with an MST of 18 months and 6 months in the moderate- and high-risk groups respectively and JCOG-PI showed good reproducibility (Fig 4B). #### Discussion In this first prospective analysis of a large cohort of aggressive ATL patients from prospective clinical trials conducted after the clinical subtype classification of ATL was introduced, we constructed the JCOG-PI based on corrected calcium level and PS and validated it with external data. The ascertained discrepancy was stronger among the external validation set. In addition, OS of high-risk patients was worse in the external validation set than in the training set, probably reflecting poor organ functions and other unfavourable prognostic factors in patients not participating in clinical trials. The OS of the moderate-risk patients was better in the ^{*}total (normal + abnormal) lymphocyte count. #### T. Fukushima et al Fig 3. ATL-related deaths of patients who survived >2 years according to subtype. Among the 37 patients who survived >5 years, there were no ATL-related deaths in lymphoma type in contrast to the 10 ATL-related deaths in other types after 5 years. external validation set than in the training set, possibly reflecting recent advances in treatment, including chemotherapy and allogeneic haematopoietic stem cell transplantation (allo-HSCT). In our analysis of patients who survived >5 years, no ATL-related deaths occurred in those with lymphoma type, which is in contrast to the ATL-related deaths seen among patients with acute or unfavourable chronic type (Fig 3). This suggests that about 10% of patients with lymphoma type survived >5 years, most of whom might have been cured. Although abnormalities of comparative genomic hybridization might differ between acute and lymphoma types (Oshiro *et al*, 2006), the difference in clinical course between lymphoma type and acute or unfavourable chronic type remains unclear, and further analyses on the molecular and biological features of these types are needed. Of the 276 patients studied, 20 received an allo-HSCT. The 5-year OS rate of these patients was 40%, compared with 12% in patients who did not undergo transplantation Table II. Results of univariate and multivariate analyses in the training set (n = 193). | Factor | | Univariate analysis
HR (95%CI) | P value | Pre-planned
multivariate analysis
(AIC = 1545·6)
HR (95%CI) | P value | Model used for
constructing JCOG-PI
(AIC = 1537·8)
HR (95%CI) | P value | |----------------------------------|-----------------|-----------------------------------|---------|--|---------|--|---------| | Ca, mmol/l | <2.75 | Ref | | Ref | | Ref | | | | ≥2.75 | 1.742 (1.214-2.498) | 0.002 | 1.688 (1.156-2.466) | 0.007 | 1.574 (1.088-2.277) | 0.016 | | ECOG PS | 0-1 | Ref | | Ref | | Ref | | | | 2-4 | 1.680 (1.219-2.314) | 0.001 | 1.493 (1.073-2.078) | 0.018 | 1.554 (1.120-2.157) | 0.008 | | B symptoms | _ | Ref | | Ref | | | | | | + | 1.249 (0.926-1.685) | 0.145 | 1.288 (0.945-1.755) | 0.109 | | | | Sex | Male | Ref | | | | | | | | Female | 0.999 (0.743-1.342) | 0.994 | | | | | | Age, years | <60 | Ref | | | | | | | | ≥60 | 1.108 (0.818-1.502) | 0.504 | | | | | | Stage | I–II | Ref | | | | | | | | III–IV | 1.293 (0.682-2.451) | 0.429 | | | | | | Liver invasion | _ | Ref | | | | | | | | + | 1.238 (0.867-1.768) | 0.241 | | | | | | LDH, iu/l | ≤ULN | Ref | | | | | | | | >1 × ULN | 1.325 (0.840-2.091) | 0.226 | | | | | | BUN, mmol/l | ≤ULN | Ref | | | | | | | | >1 × ULN | 1.332 (0.871-2.036) | 0.184 | | | | | | Serum protein, g/l | <60 | Ref | | | | |
| | | ≥60 | 0.642 (0.457-0.901) | 0.010 | | | | | | Lymphocytes, ×10 ⁹ /l | <4 | Ref | | | | | | | | 4-14-9 (vs. <4) | 1.110 (0.785-1.570) | 0.553 | | | | | | | ≥15 (vs. <4) | 1.102 (0.747-1.626) | 0.626 | | | | | | Neutrophils, $\times 10^9/l$ | <8 | Ref | | | | | | | | ≥8 | 1.271 (0.888-1.817) | 0.189 | | | | | | Platelets, ×10 ⁹ /l | <150 | Ref | | | | | | | | ≥150 | 0.900 (0.626–1.294) | 0.569 | | | | | AIC, Akaike's Information Criteria; JCOG, Japan Clinical Oncology Group; PI, Prognostic index; HR, hazard ratio; CI, confidence interval; Ref, reference; ECOG PS, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; BUN, blood urea nitrogen. Fig 4. Overall survival of the patients in the training set and in the external validation set according to the JCOG-PI. (A) OS in the training set. The median survival time (MST) and 5-year OS were 14 months and 18% in moderate-risk group (blue line) and were 8 months and 4% in high-risk group (yellow line), respectively (B) OS in the validation set. The MST of 18 months and 6 months in the moderate- (blue line) and high-risk (yellow line) groups, respectively, and JCOG-PI showed good reproducibility. Fig 5. Patient disposition of the external validation set. (data not shown). However, it was too difficult to evaluate the efficacy of allo-HSCT in our cohort because the disease status at transplantation and the duration from registration to transplantation were rather heterogeneous and the transition to allo-HSCT was time-dependent. To adjust this time- dependent causality, periodical data collection of, for example, indicators of treatment and time-dependent confounders, is necessary. The causal relationship between allo-HSCT and OS should be evaluated in a future prospective trial. Several reports have revealed risk factors for ATL. In a prospective randomized trial against NHL parsimonious conducted between 1981 and 1983, Shimoyama et al (1988) demonstrated that poor PS and high lactate dehydrogenase levels were poor prognostic factors in patients with advanced T-cell lymphoma/leukaemia, including ATL. In a Japanese nationwide survey of 854 patients, a multivariate analysis identified major prognostic indicators of ATL as poor PS, high lactate dehydrogenase levels, age ≥40 years, >3 involved lesions and hypercalcaemia (Lymphoma Study Group, 1991). These factors were then used to construct a risk model. Additional factors reportedly associated with poor prognosis, as determined by multivariate analyses, include thrombocytopenia (Yamada et al, 1997), eosinophilia (Utsunomiya et al, 2007), bone marrow involvement (Takasaki et al, 2007), high interleukin (IL)5 and IL10 serum levels (Inagaki et al, 2006), C-C chemokine receptor 4 (CCR4) expression (Ishida et al, 2003), lung resistance-related protein (Ohno et al., 2001), TP53 mutation (Tawara et al, 2006) and CDKN2A deletion (Yamada et al, 1997). Specific to chronic-type ATL, multivariate analysis has identified high lactate dehydrogenase levels, high blood urea nitrogen levels and low albumin levels as poor prognostic factors in several retrospective analyses (Shimoyama, 1994). Recently, an ATL-PI consisting of Ann Arbour clinical stage, PS, age, serum albumin level and soluble IL2 receptor level was used to identify three risk groups for patients with acute and lymphoma types of ATL (Katsuya *et al*, 2012). However, in that study, both the ATL-PI and the risk grouping in the 1980's were constructed based on the results of questionnaires collected retrospectively; hence the treatments used were diverse and the prognostic factors might not have been evaluated homogeneously, in contrast to present study based on the three prospective trials (Lymphoma Study Group, 1991; Katsuya *et al*, 2012). In the present study, monoclonal integration of HTLV-1 was not detected in four of 104 patients analysed. It was previously demonstrated that about 20% of patients with lymphoma-type ATL did not have monoclonal integration of HTLV-1, by Southern blot analysis, when investigating lymph node specimens (Ohshima *et al*, 1998). From this aspect, the possibility that a fraction of patients with the lymphoma type in the present study had non-ATL-peripheral T-cell lymphoma cannot be completely excluded. Further studies are required to differentiate lymphoma-type ATL from non-ATL-peripheral T-cell lymphoma by analysing monoclonal integration of the HTLV-1 provirus by Southern blot analysis or integration site-specific polymerase chain reaction. In this study, the median age of 56 years in the training set was notably younger than that in other recent reports and that of the average population of patients with ATL. The © 2014 John Wiley & Sons Ltd British Journal of Haematology, 2014, **166,** 739–748 745 population investigated in the present study represents a selection of fairly young and physically fit patients with preserved organ functions. Although we expected to define a favourable prognosis group in the international PI for aggressive NHL, which consists mostly of diffuse large B-cell lymphoma, the difference in the OS between the two risk groups was small. This finding was similar to a recent retrospective nationwide survey in Japan of all patients with acute or lymphoma type at each institute (Katsuya et al, 2012). Therefore, the JCOG-PI could not be used to identify patients with aggressive ATL who could be treated with intensive chemotherapy alone and spared from more intensive therapy, such as allo-HSCT, as is the case with the ATL-PI (Katsuya et al, 2012). However, we did manage to identify patients with extremely poor prognosis despite undergoing intensive chemotherapy in clinical trials. These patients might be candidates for future trials that combine new agents or investigational strategies. Recently, the results of several phase I and II trials using a defucosylated anti-CCR4 antibody for relapsed patients with aggressive ATL have demonstrated clinically meaningful antitumour activity and an acceptable toxicity profile (Yamamoto et al, 2010; Ishida et al, 2012a). Moreover, allo-HSCT with myeloablative and reduced intensity conditioning for patients with aggressive ATL has been reported to cure diseases associated with the graft-versus-ATL effect, despite the high transplant-related mortality (Hishizawa et al, 2010; Ishida et al, 2012b; Kanda et al, 2012). To further improve patient outcomes, two trials are ongoing in Japan: a phase II trial of VCAP-AMP-VECP followed by allo-HSCT with myeloablative conditioning for patients aged <55 years with aggressive ATL (JCOG 0907), and a randomized phase II trial of VCAP-AMP-VECP with or without anti-CCR4 antibody (Jo et al, 2013). In conclusion, patients with lymphoma-type ATL who survived >5 years might have been cured, which is in contrast to long-term survivors with acute or unfavourable chronic type. The JCOG-PI, based on corrected calcium levels and PS, is a simple and valuable tool for identifying patients with aggressive ATL having extremely poor prognosis in clinical trials, and it will be useful for the design of future studies combining new drugs or investigational strategies. #### **Acknowledgements** The authors are grateful to all the physicians and data managers at the institutions of Japan Clinical Oncology Group (JCOG) – Lymphoma Study Group (LSG). The authors thank all the members of the JCOG Data Centre. This work was supported by the National Cancer Centre Research and Development Fund Nos. 23-A-16 and 23-A-17, Grants-in-Aid Nos. 2S-1, 5S-1, 8S-1, 11S-1, 14S-1, 17S-1, 20S-1, 20S-6, 1-1, 4-5, 7-29, 9-10, 15-11, 16-12, 19-8 and 21-6-3 and a grant (H23-gan rinsho-ippan-022) for the Cancer Research from the Ministry of Health, Labour and Welfare of Japan (1990 to present), for the Second-Term Ten-Year Strategy for Cancer Control from the Ministry of Health and Welfare (1994 to 2004) and for Basic Research from the Science and Technology Agency (1991 to 1993). #### **Authorship** T.F., M.S, H.F., K. T. and K.T. designed the study and wrote the paper. T.H. designed the study. S.N. and T.S. designed the study, analysed data and wrote the paper. Y.I., Y.M., T.T., K.U., Y.K., N.F., A.U., M.T., K.N., M.H., N.U., S.Y., K.T., K.I., M.K. and M.N. collected data and reviewed the paper. #### **Disclosure** The authors report no potential conflict of interest. #### References Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In: Proceedings of the 2nd International Symposium on Information theory (ed. by B.N. Petrov & F. Caski), pp. 267–281. Akademinai, Budapet Clopper, C.J. & Pearson, E.S. (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. *Biometrika*, **26**, 404-413 Gallamini, A., Stelitano, C., Calvi, R., Bellei, M., Mattei, D., Vitolo, U., Martelli, M., Brusamolino, E., Iannitto, E., Zaja, F., Cortelozzo, S., Rigacci, L., Devizzi, L., Todeschini, G., Santini, G., Brugiatelli, M., Federico, M. & Linfomi, I.I. (2004) Peripheral T-cell lymphoma unspecified (PTCL-U): a new prognostic model from a retrospective multicentric clinical study. *Blood*, **103**, 2474–2479. Hinuma, Y., Nagata, K., Hanaoka, M., Nakai, M., Matsumoto, T., Kinoshita, K.I., Shirakawa, S. & Miyoshi, I. (1981) Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proceedings of the National Academy of Sciences of the United States of America, 78, 6476–6480. Hishizawa, M., Kanda, J., Utsunomiya, A., Taniguchi, S., Eto, T., Moriuchi, Y., Tanosaki, R., Kawano, F., Miyazaki, Y., Masuda, M., Nagafuji, K., Hara, M., Takanoshi, M., Kai, S., Suzuki, R., Kawase, T., Matsuo, K., Nagamura-Inoue, T., Kato, S., Sakamaki, H., Morishima, Y., Okamura, J., Ichinohe, T. & Uchiyama, T. (2010) Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nation-wide retrospective study. *Blood*, 116, 1369–1376. Inagaki, A., Ishida, T., Ishii,
T., Komatsu, H., Iida, S., Ding, J., Yonekura, K., Takeuchi, S., Takatsuka, Y., Utsunomiya, A. & Ueda, R. (2006) Clinical significance of serum Th1-, Th2- and regulatory T cells-associated cytokines in adult T-cell leukemia/lymphoma: high interleukin-5 and -10 levels are significant unfavorable prognostic factors. *International Journal of Cancer*, 118, 3054–3061. Ishida, T., Utsunomiya, A., Iida, S., Inagaki, H., Takatsuka, Y., Kusumoto, S., Takeuchi, G., Shimizu, S., Ito, M., Komatsu, H., Wakita, A., Eimoto, T., Matsushima, K. & Ueda, R. (2003) Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clinical Cancer Research, 9, 3625–3634. Ishida, T., Joh, T., Uike, N., Yamamoto, K., Utsunomiya, A., Yoshida, S., Saburi, Y., Miyamoto, 746 © 2014 John Wiley & Sons Ltd British Journal of Haematology, 2014, **166,** 739–748 - T., Takemoto, S., Suzushima, H., Tsukasaki, K., Nosaka, K., Fujiwara, H., Ishitsuka, K., Inagaki, H., Ogura, M., Akinaga, S., Tomonaga, M., Tobinai, K. & Ueda, R. (2012a) Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. *Journal of Clinical Oncology*, 30, 837–842. - Ishida, T., Hishizawa, M., Kato, K., Tanosaki, R., Fukuda, T., Taniguchi, S., Eto, T., Takatsuka, Y., Miyazaki, Y., Moriuchi, Y., Hidaka, M., Akashi, K., Uike, N., Sakamaki, H., Morishima, Y., Kato, K., Suzuki, R., Nishiyama, T. & Utsunomiya, A. (2012b) Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia-lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood, 120, 1734–1741. - Jo, T., Ishida, T., Takemoto, S., Suzushima, H., Uozumi, K., Yamamoto, K., Uike, N., Saburi, Y., Nosaka, K., Utsunomiya, A., Tobinai, K., Fujiwara, H., Ishitsuka, K., Yoshida, S., Taira, N., Moriuchi, Y., Imada, K., Miyamoto, T., Tomonaga, M. & Ueda, R. (2013) Randomized phase II study of mogamulizumab (KW-0761) plus VCAP-AMP-VECP (mLSG15) versus mLSG15 alone for newly diagnosed aggressive adult T-cell leukemia-lymphoma (ATL). Journal of Clinical Oncology, 31, 519s, abstract 8506. - Kalbfleisch, J.D. & Prentice, R.L. (2002) The Statistical Analysis of Failure Time Data, 2nd edn. John Wiley & Sons Inc, New York, NY. - Kanda, J., Hishizawa, M., Utsunomiya, A., Taniguchi, S., Eto, T., Moriuchi, Y., Tanosaki, R., Kawano, F., Miyazaki, Y., Masuda, M., Nagafuji, K., Hara, M., Takanashi, M., Kai, S., Atsuta, Y., Suzuki, R., Kawase, T., Matsuo, K., NagamuraInoue, T., Kato, S., Sakamaki, H., Morishima, Y., Okamura, J., Ichinohe, T. & Uchiyama, T. (2012) Impact of graft-versus-host disease on outcome after allogeneic hematopoietic cell transplantation for adult T-cell leukemia: a retrospective cohort study. Blood, 119, 2141–2148. - Katsuya, H., Yamanaka, T., Ishitsuka, K., Utsunomiya, A., Sasaki, H., Hanada, S., Eto, T., Moriuchi, Y., Saburi, Y., Miyahara, M., Sueoka, E., Uike, N., Yoshida, S., Yamashita, K., Tsukasaki, K., Suzushima, H., Ohno, Y., Matsuoka, H., Jo, T., Suzumiya, J. & Tamura, K. (2012) Prognostic index for acute- and lymphoma-type adult T-cell leukemia/lymphoma. *Journal of Clinical Oncology*, 30, 1635–1640. - Lymphoma Study Group (1991) Major prognostic factors of patients with adult T-cell leukemia-lymphoma: a cooperative study-Lymphoma Study Group (1984-1987). Leukemia Research, 15, 81–90. - Miyoshi, I., Kubonishi, I., Yoshimoto, S., Akagi, T., Ohtsuki, Y., Shiraishi, Y., Nagata, K. & Hinuma, Y. (1981) Type C virus particles in a cord T-cell line derived by co-cultivating normal cord leukocytes and human leukaemic T cells. *Nature*, 294, 770–771. - Ohno, N., Tani, A., Uozumi, K., Hanada, S., Furukawa, T., Akiba, S., Sumizawa, T., Uts- - unomiya, A., Arima, T. & Akiyama, S. (2001) Expression of functional lung resistance-related protein predicts poor outcome in adult T-cell leukemia. *Blood.* **98**, 1160–1165. - Ohshima, K., Suzumiya, J., Sato, K., Kanda, M., Sugihara, M., Haraoka, S., Takeshita, M. & Kikuchi, M. (1998) Nodal T-cell lymphoma in an HTLV-1-endemic area: proviral HTLV-1 DNA, histological classification and clinical evaluation. *British Journal of Haematology*, **101**, 703–711. - Oshiro, A., Tagawa, H., Ohshima, K., Karube, K., Uike, N., Tashiro, Y., Utsunomiya, A., Masuda, M., Takasu, N., Nakamura, S., Morishima, Y. & Seto, M. (2006) Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. *Blood*, 107, 4500–4507. - Poiesz, B.J., Ruscetti, F.W., Gazdar, A.F., Bunn, P.A., Minna, J.D. & Gallo, R.C. (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 77, 7415–7419. - Shimoyama, M. (1991) Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma: a report from the Lymphoma Study Group (1984-87). British Journal of Haematology, 79, 428–437. - Shimoyama, M. (1994) Chemotherpy of ATL. In: Adult T-Cell Leukemia (ed. by Takatsuki, K.), pp. 221–237. Oxford University Press, Oxford, United Kingdom. - Shimoyama, M., Ota, K., Kikuchi, M., Yunoki, K., Konda, S., Takatsuki, K., Ichimaru, M., Ogawa, M., Kimura, I. & Tominaga, S. (1988) Chemotherapeutic results and prognostic factors of patients with advanced non-Hodgkin's lymphoma treated with VEPA or VEPA-M. *Journal* of Clinical Oncology, 6, 128–141. - Takasaki, Y., Iwanaga, M., Tsukasaki, K., Kusano, M., Sugahara, K., Yamada, Y., Kamihira, S., Ikeda, S. & Tomonaga, M. (2007) Impact of visceral involvement and blood cell count abnormalities on survival in adult T-cell leukemia/lymphoma (ATLL). Leukemia Research, 31, 751–757. - Tawara, M., Hogerzeil, S.J., Yamada, Y., Yakasaki, Y., Soda, H., Hasegawa, H., Murata, K., Ikeda, S., Imaizumi, Y., Sugahara, K., Tsuruda, K., Tsukasaki, K., Tomonaga, M., Hirakata, Y. & Kamihira, S. (2006) Impact of p53 aberration on the progression of adult T-cell leukemia/lymphoma. Cancer Letters, 234, 249–255. - The International Non-Hodgkin's Lymphoma Prognostic Factor Project (1993) A predictive model for aggressive non-Hodgkin's lymphoma: the International Non-Hodgkin's Lymphoma Prognostic Factors Project. New England Journal of Medicine, 329, 987–994. - Tobinai, K. & Watanabe, T. (2004) Adult T-cell leukemia-lymphoma. In: *Clinical Oncology* (ed. by M.D. Abeloff, J.O. Armitage, J.E. Niederhuber & M.C.B. Kastan), 3rd edn, pp. 3109–3130. Elsevier Churchill Livingstone, Philadelphia, PA - Tobinai, K., Shimoyama, M., Inoue, S., Takayasu, S., Kikuni, C., Kozuru, M., Oda, S. & Nakajima, - H. (1992) Phase I study of YK-176 (2'-deoxycoformycin) in patients with adult T-cell leukemialymphoma. The DCF Study Group. *Japanese Journal of Clinical Oncology*, 22, 164-171. - Tobinai, K., Shimoyama, M., Minato, K., Shirakawa, S., Kobayashi, T. & Hotta, T. (1994) Japan Clinical Oncology Group phase II trial of second-generation "LSG4 protocol" in aggressive T- and B-lymphoma: a new predictive model for T- and B-lymphoma. *Proceedings, American Society of Clinical Oncology*, 13, 378a. - Tsukasaki, K., Tobinai, K., Shimoyama, M., Kozuru, M., Uike, N., Yamada, Y., Tomonaga, M., Araki, K., Kasai, M., Takatsuki, K., Tara, M., Mikuni, C. & Hotta, T.; Lymphoma Study Group of the Japan Clinical Oncology Group (2003) Deoxycoformycin-containing combination chemotherapy for adult T-cell leukemiallymphoma: Japan Clinical Oncology Group Study (JCOG9109). International Journal of Hematology, 77, 164–170. - Tsukasaki, K., Utsunomiya, A., Fukuda, H., Shibata, T., Fukushima, T., Takatsuka, Y., Ikeda, S., Masuda, M., Nagoshi, H., Ueda, R., Tamura, K., Sano, M., Momita, S., Yamaguchi, K., Kawano, F., Hanada, S., Tobinai, K., Shimoyama, M., Hotta, T. & Tomonaga, M.; Japan Clinical Oncology Group Study JCOG9801 (2007) VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. *Journal of Clinical Oncology*, 25, 5458–5464. - Uchiyama, T., Yodoi, J., Sagawa, K., Takatsuki, K. & Uchino, H. (1977) Adult T-cell leukemia: clinical and hematologic features of 16 cases. *Blood*, 50, 481–492. - Utsunomiya, A., Ishida, T., Inagaki, A., Ishii, T., Yano, H., Komatsu, H., Iida, S., Yonekura, K., Takeuchi, S., Takatsuka, Y. & Ueda, R. (2007) Clinical significance of a blood eoshinophilia in adult T-cell leukemia/lymphoma: a blood eosinophilia is a significant unfavorable prognostic factor. Leukemia Research, 31, 915–920. - Watanabe, T., Kinoshita, T., Itoh, K., Yoshimura, K., Ogura, M., Kagami, Y., Yamaguchi, M., Kurosawa, M., Tsukasaki, K., Kasai, M., Tobinai, K., Kaba, H., Mukai, K., Nakamura, S., Ohshima, K., Hotta, T. & Shimoyama, M. (2010) Pretreatment total serum protein is a significant prognostic factor for the outcome of patients with peripheral T/natural killer-cell lymphomas. Leukaemia & Lymphoma, 51, 813–821. - Yamada, Y., Hatta, Y., Murata, K., Sugawara, K., Ikeda, S., Mine, M., Maeda, T., Hirakata, Y., Kamihira, S., Tsukasaki, K., Ogawa, S., Hirai, H., Koeffler, H.P. & Tomonaga, M. (1997) Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T-cell leukemia. *Journal of Clinical Oncology*, 15, 1778–1785. - Yamada, Y., Tomonaga, M., Fukuda, H., Hanada, S., Utsunomiya, A., Tara, M., Sano, M., Ikeda, S., Takatsuki, K., Kozuru, M., Araki, K., Kawano, F., Niimi, M., Tobinai, K., Hotta, T. & Shimoyama, M. (2001) A new G-CSF supported combination chemotherapy, LSG15, for adult T- #### T. Fukushima et al cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303. *British Journal of Haematology*, 113, 375–382. Yamamoto, K., Utsunomiya, A., Tobinai, K., Tsukasaki, K., Uike, N., Uozumi, K., Yamaguchi, K., Yamada, Y., Hanada, S., Tamura, K., Nakamura, S., Inagaki, H., Ohshima, K., Kiyoi, H., Ishida, T., Matsushima, K., Akinaga, S., Ogura, M.,
Tomonaga, M. & Ueda, R. (2010) Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. *Journal of Clinical Oncology*, **28**, 1591–1598. Yoshida, M., Miyoshi, I. & Hinuma, Y. (1982) Isolation and characterization of retrovirus from cell lines of human adult T cell leukemia and its implication in the disease. Proceedings of the National Academy of Sciences of the United States of America, 79, 2031–2035.