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Dickinson) with a small amount of RPMI-1640. These cells
were centrifuged, resuspended, and concentrated to
1 x 10° VX2 cells/ml. Then, 2 ml of the solution was
simultaneously injected into the thigh muscle of two rab-
bits; one rabbit was used for successive transplantation, and
the other rabbit was used for survival analysis. Following
this protocol, the same experimental procedure was repe-
ated three times at 3-week intervals. To compare the
morphological and biological properties of the EGFP gene-
introduced VX2 transplantation model with those of the
conventional VX2 transplantation model, we performed
conventional VX2 transplantations in parallel using the
same source of VX2 cells as shown in Fig. 1.

Macroscopic imaging of EGFP gene-introduced VX2
tissue

A light-emitting diode irradiation device for GFP
observation (LEDGFP-WCCT; Optcode; Tokyo, Japan)

Fig. 2 EGFP gene-introduced
VX2 cancer cells at day 9 in the
primary culture dish
demonstrating green fluorescent
protein (GFP) expression

(a phase contrast light
microscopy, objective 40x.

b Fluorescence microscopy,
objective 40x). EGFP gene-
introduced VX2 cancer cells at
day 4 in the secondary culture
dish demonstrating GFP
expression (¢ phase contrast
light microscopy, objective
40x. d Fluorescence
microscopy, objective 40x).
Conventional VX cancer cells at
day 9 in the primary culture dish
demonstrating no GFP
expression (e phase contrast
light microscopy, objective
40x. f Fluorescence
microscopy, objective 40x)

and an IVIS Lumina II Imaging System (Summit Phar-
maceuticals International; Tokyo, Japan) were used for
the gross observation of EGFP gene-introduced VX2
cancer tissue.

Microscopic study of EGFP gene-introduced VX2 cells

To compare EGFP gene-introduced VX2 cancer cells and
conventional VX2 cancer cells, microscopic studies were
performed as follows. For the cytological study, cells were
obtained by scratching from the cut surfaces of VX2 cancer
tissue and were then imprinted onto silane-coated glass
slides (Silane S; Muto Pure Chemicals; Tokyo, Japan) for
each successive transplantation. These glass slide samples
were immediately fixed in 98 % ethanol, and then Papa-
nicolaou stain was performed on them.

For histopathological studies, VX2 cancer tissue was
fixed in 20 % neutral buffered formalin and embedded in

paraffin. An immunohistochemical study was performed on
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VX2 cancer tissue using antibodies against Ki-67 (MIB-1; (M); Nichirei Bioscience; Tokyo, Japan), according to the
Dako Japan; Tokyo, Japan), GFP (sc-101525; Santa Cruz; manufacturer’s instructions. Hematoxylin and eosin stain
Dallas, Texas, The United States), pan-cytokeratin (AE1l/  and immunohistochemical stain were used for distin-
AE3; Dako Japan), vimentin (V9; Dako Japan) and an  guishing VX2 cells from stromal cells. The slide evaluation
antibody detection kit (Histofine Simple Stain MAX PO  was performed by independent board-certified pathologists,
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<4Fig. 3 Green fluorescent protein (GFP) expression in EGFP gene-
introduced VX2 cancer cells that were transplanted and grown in the
thigh muscles of rabbits. a The gross picture of EGFP gene-introduced
VX2 showing a solid growth. b The gross picture corresponding to
a demonstrating GFP expression (illuminated by the light-emitting
diode irradiation device and visualized with the GFP observation filter).

¢ The gross picture of EGFP gene-introduced VX2 showing cystic

degeneration. d The gross picture corresponding to ¢ demonstrating
GFP expression (captured by IVIS). e The photomicrograph of a scratch
cytological sample obtained from the cut surfaces of EGFP gene-
introduced VX2 cancer tissues (98 % ethanol-fixed, unstained sample,
under a light microscope, objective 40x). f The photomicrograph
corresponding to e demonstrating that VX2 cancer cells express green
fluorescence (98 % ethanol-fixed, unstained sample, under a fluores-
cent microscope, objective 40x). g The photomicrograph of EGFP
gene-introduced VX2 cancer tissue demonstrates that VX2 cancer cells
positive for GFP (immunohistochemistry, objective 40x). h The
photomicrograph of EGFP gene-introduced VX2 cancer tissue dem-
onstrates that VX2 cancer cells are positive for GFP, whereas non-
neoplastic stromal cells are negative for GFP (immunohistochemistry,
objective 40x, magnified 2x). i The photomicrograph of EGFP gene-
introduced VX2 cancer tissue demonstrates that VX2 cancer cells are
positive for pan-cytokeratins (AE1/AE3) (immunohistochemistry,
objective 40x). j The photomicrograph of EGFP gene-introduced
VX2 cancer tissue demonstrates that VX2 cancer cells are positive for
pan-cytokeratins (AE1/AE3), whereas non-neoplastic stromal cells are
negative for pan-cytokeratins (AE1/AE3) (1mmunohlstochemlstry,
objective 40x, maomﬁed 2x%)

and the positive rates in VX2 cells and stromal cells against

these antibodies were, respectively, calculated by counting -

approximately 1,000 cells at randomly selected high power
fields under the light microscope. In addition, specificity of
EGFP expression in VX2 cells was investigated by these
slides. '

For transmission electron microscopy, VX2 cancer tis-
sue specimens were fixed in 2.5 % glutaraldehyde at 4 °C
overnight and were then fixed with 1 % osmium tetroxide
in 0.1 M PBS (pH 7.4) for 2 h at room temperature and
washed with PBS. Following dehydration using a graded
series of ethanol solutions; the tumor samples were infil-
trated with propylene oxide and embedded in an epoxy
resin (Plain Resin Kit; Nisshin EM; Tokyo, Japan). Ultra-
thin sections were stained with uranyl acetate for 20 min
and then with lead nitrate for 10 min. The sections were
then examined by transmission electron microscopy (H-
7500; Hitachi; Tokyo, Japan). Independent board-certified
pathologists evaluated the electron microscopic images in a
blinded manner.

Statistical analysis

The weights and ages of the rabbits at the time of
transplantation, the longest diameter of the tumors
3 weeks after transplantation and the Ki-67 labeling
indices of the tumors were compared between the EGFP
gene-introduced VX2 rabbit group and the conventional
VX2 rabbit group using an unpaired Student’s ¢ test if the

normal distribution was assumed or the Mann—Whitney
U test if a normal distribution was not assumed. The
Kolmogorov—-Smirnov - test and the Shapiro-Wilk test
were used to evaluate the normality of the variables.
Levene’s test was used. to evaluate the equality of the
variance. For comparison of the survival rates between
the conventional VX2 rabbit group and the EGFP gene-
introduced VX2 rabbit group, the Kaplan—Meier method
and the log-rank test were used. All P values were cal-
culated using two-tailed tests, and those values <0.05
were considered statistically significant. These statistical
analyses were performed using the SPSS 18.0 J software
(IBM SPSS; Tokyo, Japan). :

Results

In vitro culture findings of EGFP géne-introduced
and conventional VX2 cancer cells

In the gene transfer study, EGFP expression was observed
at 70.5 % of VX2 cells in the primary culture and 95.0 %
in the secondary. culture (Fig 2a~d). However, cultured
conventional VX2 cells did not express EGFP (Fig. 2e, f).

Transplantation findings of EGFP gene-introduced
and conventional VX2 cancer cells

Serial transplantation study of EGFP gene-introduced VX2
cells and conventional VX2 cells exhibited a success rate
of 100 % (8/8) in both groups. The mock transfection
control study exhibited no tumor growth 16 weeks after
transplantation,” and the cultured VX2 transplantation
control study demonstrated tumor growth 3 weeks after
transplantation. Grossly, the tumors grown in the thigh
showed expansive growth with a varying degree of cystic
degeneration in both groups. Using a light-emitting diode
irradiation device and IVIS, expression of green fluores-
cence was observed only in the EGFP. gene-introduced
group corresponding to cancer tissues (Fig. 3a—d).
Scratch cytological samples obtained from the cut surface
of EGFP gene-introduced VX2 cancer tissues exhibited
green fluorescence under the fluorescence microscope
(Fig. 3e, f). In formalin-fixed, paraffin-embedded tissue
samples obtained from the EGFP gene-introduced VX2
group, the positive rates in VX2 cancer cells for GFP, pan-
cytokeratin and vimentin were 84.3 4 1.1 % (mean % SE;
range 78.8-88.9), 100.0 &= 0 % (mean # SE) and 1.08 %
0.20 % (mean + SE; range 0.37-2.13), respectively;
whereas fibroblasts, lymphocytes and endothelial cells in
this group were all positive for vimentin at 100 % level,
and these stromal cells were entirely negative for
GFP (Fig. 3g-i). On the other hand, in formalin-fixed,
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Fig. 4 Morphological comparison between conventional VX2 cells
(a, ¢, e, g) and EGFP gene-introduced VX2 cells (b, d, f, h) that were
transplanted and grown in rabbits. a, b Photomicrographs of scratch
cytological samples. In both groups, the cancer cells demonstrate a
feature of undifferentiated carcinoma with a moderate degree of
pleomorphism and nuclear irregularity, a high nucleus-to-cytoplasm
ratio, and enlarged nuclei with hyperchromatism. No cytological
difference is evident between the two (Papanicolaou stain, objective
60x%). ¢, d Photomicrographs of formalin-fixed, paraffin-embedded
tissue samples. In both groups, lesions demonstrate the proliferation
of undifferentiated atypical epithelial cells accompanied by mitotic
figures and apoptotic bodies (hematoxylin and eosin stain, objective

_@_ Springer

40x%). e, f Photomicrographs of cancer cells positive for Ki-67. No
immunohistochemical difference is evident between the two (immu-
nohistochemistry, objective 40%). g, h Transmission electron photo-
micrographs of cancer cells. In both groups, the cancer cells
demonstrate a feature of undifferentiated carcinoma with moderate
degree of pleomorphism and nuclear irregularity, a high nucleus-to-
cytoplasm ratio, and enlarged nucleoli (N denotes nucleus), along
with glycogen-rich cytoplasm with a small amount of intermediate
filaments and endoplasmic reticulum with sparsely distributed
desmosomes (arrows). No glandular structures are seen. No cytolog-
ical difference is evident between the two (The bar indicates 1 um)
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paraffin-embedded tissue samples obtained from the
conventional VX2 group, the positive rates in VX2 can-
cer cells for GFP, pan-cytokeratin and vimentin were 0 % 0,
100.0 £ 0 % (mean % SE) and 0.99 &£ 0.60 % (mean 3 SE;
range 0.19-2.08), respectively; whereas fibroblasts, lympho-
cytes and endothelial cells in the conventional VX2 group were
all positive for vimentin at 100 % level, and these stromal cells
were entirely negative for GFP.

«Fig. 5 The biological comparison between the conventional VX2

transplantation group and the enhanced green fluorescent protein
group. a Histogram of the longitudinal length (mm) of the EGFP
gene-introduced VX2 rabbit group and the conventional VX2 rabbit
group measured 3 weeks after transplantation. No significant differ-
ence was found between the two groups (P = 0.742, unpaired
Student’s ¢ test). b Histogram of the Ki-67 labeling indices of cancer
cells for the EGFP gene-introduced VX2 rabbit group and the
conventional VX2 rabbit group. No significant difference was found
between the two groups (P = 0.878, unpaired Student’s ? test).
¢ Survival curve of the conventional VX2 rabbit group (n = 4) and
the EGFP gene-introduced VX2 rabbit group (n = 4). No significant
difference in survival was found between the two groups (P = 0.592,
log-rank test)

There were no significant differences with regard to
morphology in scratch cytological samples, formalin-fixed,
paraffin-embedded tissue samples, and electron micro-
scopic samples between the EGFP gene-introduced VX2
tumors and the conventional VX2 tumors (Fig. 4a~h). In
both groups, VX2 cancer cells were morphologically con-
sistent with undifferentiated carcinoma; they were char-
acterized by undifferentiated epithelial features with a
moderate degree of pleomorphism and nuclear irregularity,
a high nucleus-to-cytoplasm ratio, enlarged nuclei with
hyperchromatism, and a large number of mitotic figures
and apoptotic bodies, along with a varying degree of
necrosis.

The longitudinal length of the tumors was 57.5 + 5.8 mm
(mean £ SE; range 30-80) in the EGFP gene-introduced
VX2-transplanted  rabbit group and 60.0 & 4.6 mm
(mean * SE; range 40-80) in the conventional VX2-trans-
planted rabbit group. No significant difference was found in
the longitudinal tumor size between the groups (P = 0.742,
unpaired Student’s ¢ test; Fig. 5a).

The Ki-67 labeling indices of cancer cells in the hot
spots were 46.7 £ 1.2 % (mean =+ SE; range 41.0-51.4) in
the EGFP gene-introduced VX2 rabbit group and
46.9 + 0.8 % (mean % SE; range 43.9-50.4) in the con-
ventional VX2 rabbit group. Statistically, there was no

significant difference in the Ki-67 labeling index between

the two groups (P = 0.878, unpaired Student’s ¢ test;
Fig. 5b).

Autopsy findings and survival analysis

Post-mortem pathological inspection confirmed that all
VX2-transplanted rabbits died from cancer with multiple
lung metastases. The survival analysis revealed that the
median survival time of the conventional VX2 rabbit group
and the EGFP gene-introduced VX2 rabbit group was
25 days (range of 21-34 and 21-42 days, respectively). No
significant difference in survival was observed between the
two groups (P = 0.592; Fig. 5¢).
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Discussion

In the present study, we could generate successively
transplantable rabbit VX2 cancer cells that express EGFP.
To our knowledge, this type of VX2 model has not been
reported to date.

However, there are some weaknesses in the present
study to emphasize this new model as a perfect one. First,
we performed transplantation of EGFP gene-introduced
VX2 cells using a small number of rabbits at the same time,
so that biological heterogeneity in each rabbit is not pre-
cisely examined. Second, we performed successive trans-
plantation only four times, so that it is unclear how many
successions can be possible in this model. Although
answering these questions is not within the scope of the
present study, we think, in view of our primary findings
that biological heterogeneity and successive transplant-
ability in this model are largely as same as those in the
conventional VX2 model.

One can assume a possibility that EGFP gene might have
been unexpectedly introduced into stromal cells since there
is a report describing that the primary cultures of rabbit
VX2 cells are heterogeneous and contain at least two cell
types that are different: epithelial cells (originating from
cancer cells) and fibroblast-like cells (originating from the
host’s stroma) [17]. However, the possibility of such EGFP
gene contamination is entirely refuted by our finding that
green fluorescent protein expression was observed only in
VX2 cancer cells and not in fibroblasts, lymphocytes and
endothelial cells in histological samples. We therefore think
that the very high specificity (100 %) and the high sensi-
tivity (84.3 %) of EGFP expression make this new model
useful for identifying VX2 cells in certain organs or loca-
tions where neoplastic cells morphologically mimic non-
neoplastic cells and both cells share common markers. In
addition, this EGFP-expressing VX2 transplantation model
will enable the movement of cancer cells to be tracked,
making this new model valuable in studies of cancer
migration or metastasis in vivo. The methodology used in
this study may be applied to the expression analysis of other
specific proteins of interest that regulate tumor growth or
metastasis in the VX2 cancer model.

The value and need of the cancer-bearing rabbit model
should be discussed. The rabbit VX2 allograft model has
long been utilized for studies of stromal responses, meta-
static behaviors and therapeutic effects owing to their
organ size and biological resemblance to human cancers
[18-26]. However, they may represent only a part of the
value of this model. Rabbits possess a lymphatic system
closer to humans than mice or rats [27-42]. For this reason,
we think that rabbits can be an attractive cancer-bearing
model for studying in conjunction with the lymphatic
system.

@ Springer

In conclusion, the major accomplishment of the present
study is that VX2 cells can be genetically altered, visual-
ized by EGFP, and successively transplanted without sig-
nificant alteration of morphological and biological
properties compared to those of the conventional model.
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Abstract Cyclic adenosine monophosphate (cAMP) and
Ca®" levels may oscillate in harmony within excitable
cells; a mathematical oscillation loop model, the Cooper
model, of these oscillations was developed two decades
ago. However, in that model all adenylyl cyclase (AC)
isoforms were assumed to be inhibited by Ca*, and it is
now known that the heart expresses multiple AC isoforms,
among which the type 5/6 isoforms are Ca?*-inhibitable
whereas the other five (AC2, 3, 4, 7, and 9) are not. We
used a computational systems biology approach with
CellDesigner simulation software to develop a compre-
hensive graphical map and oscillation loop model for
cAMP and Ca**. This model indicated that Ca**-mediated
inhibition of AC is essential to create oscillations of Ca*"
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and cAMP, and the oscillations were not altered by
incorporation of phosphodiesterase-mediated cAMP
hydrolysis or PKA-mediated inhibition of AC into the
model. More importantly, they were created but faded out
immediately in the co-presence of Ca>"-noninhibitable AC
isoforms. Because the subcellular locations of AC isoforms
are different, spontaneous cAMP and Ca®* oscillations
may occur within microdomains containing only Ca**
inhibitable isoforms in cardiac myocytes, which might
be necessary for fine tuning of excitation—contraction
coupling.
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Introduction

B-Adrenergic receptor (B-AR) signaling is of crucial
importance in regulating normal cardiac function, and
abnormality of B-AR signaling contributes to the devel-
opment of heart failure via altered cyclic AMP (cAMP) and
calcium (Ca*™) signaling [1-3]. Cardiac excitation—con-
traction coupling (E-C coupling) is the process that links
electrical excitation of cardiac myocytes to contraction of
heart muscle. Ca®* is essential for cardiac electrical
activity and is a direct activator of myofilaments, causing
both contraction and relaxation [4-6]. Dysregulation of
cAMP and the subsequent Ca** oscillation are funda-
mental causes of both contractile and diastolic dysfunction,
and arrhythmia among heart failure patients [1, 3, 5, 7-10].

Adenylyl cyclase (AC) is a membrane-bound enzyme
that catalyzes the conversion of ATP to cAMP [1, 11].
cAMP, an intracellular second messenger, activates protein
kinase A (PKA), leading to phosphorylation of multiple
molecules involved in cardiac contraction, including the
L-type Ca®"-channel [1]. Phosphorylation of the L-type
Ca®*-channel is known to increase the influx of Ca®™,
resulting in increased intracellular levels of Ca®*". In the
1990s, AC isoforms directly inhibited by Ca** were
identified, i.e., types 5 and 6 AC isoforms (ACS and AC6)
[11-14]. Because these isoforms are dominantly expressed
in the heart, it was proposed that cAMP levels may oscil-
late in harmony with Ca%* levels; an increase in cAMP, as
generated by AC5/6, phosphorylates L-type Ca>" channels,
and induces influx of Ca** into the cytosol [11]. An
increase of cytosolic Ca®* inhibits AC5/6 and reduces
phosphorylation of the L-type Ca?* channel. Thus, the
activity of AC5/6 and the L-type Ca*" channel may work
synergistically to generate an oscillation loop of cAMP and
Ca®" in cardiac myocytes [11].

It is now well known that the heart expresses not only
ACS5 and AC6, but also many other AC isoforms (AC2, 3, 4,
5, 6,7, and 9) [2]. Although these isoforms are all expressed
in the heart, recent studies have indicated they may have
different subcellular locations [15, 16]. AC5 is a major
cardiac isoform in adults, and AC6 is a fetal or neonatal
cardiac AC isoform [1, 17-19]. ACS and AC6 share most, if
not all, of their biochemical properties, and are inhibited not
only by Ca2+, but also by Gi and PKA [2, 11, 13,20-22].In
contrast, the other AC isoforms (AC2, 3, 4, 7, and 9), which
are ubiquitously expressed throughout the body, are not
inhibited by Ca*, Gi, or PKA [13], and their involvement
in cCAMP and Ca®" oscillations is poorly understood.

We therefore examined the involvement of AC isoforms
in cAMP and Ca** oscillations [1, 12]. Because it is diffi-
cult to examine these issues by means of traditional in vitro
or in vivo biochemical approaches, we used a computa-
tional systems biology approach with CellDesigner
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software, a recently developed, structure diagram editor
for drawing gene-regulatory and biochemical networks
[23-25].

Materials and methods

CellDesigner version 4.2 (http://www.celldesigner.org/)
enables users to describe molecular interactions by using
well-defined and consistent graphical notions and to create
a comprehensive model incorporating positive feedforward
or negative feedback loops among AC, cAMP, Ca2+,
phosphodiesterase (PDE), and PKA within the 3-AR sig-
naling pathway [23-25].

The CellDesigner notation used in this paper is briefly
illustrated for a simple reaction scheme in Supplemental
Fig. 1. Protein A is transformed to protein B and protein C
promotes this transition (Supplemental Fig. 1a). Supple-
mental Fig. 1b shows the notation for degradation (upper)
or production (lower) of protein A; their balance deter-
mines the concentration of protein A in cells under phys-
iological conditions.

In this study, most of the variables were the same as in
Cooper’s original model [12]; in future work, it would be
desirable to optimize the variables used in the oscillation
loop model to match physiological conditions.

The formulas and values used to generate the oscillation
models shown in the figures can be found in the online
Supplemental methods and - Supplemental Tables 1-3,
available on http://www link.springer.com/journal/12576.

Results
Cooper’s model mimicked by CellDesigner

We first mimicked Cooper’s original model by using
CellDesigner to create a graphical comprehensive map
(Fig. 1a) and oscillation loop model of cAMP and Ca®*
(Fig. 1b). We also incorporated the activity of PKA and
AC. For AC, we used AC5/6 because they are the major
cardiac isoforms and are directly inhibited by Ca®* [2, 13].
We obtained stable and spontaneous oscillation curves for
cAMP and Ca2+, as demonstrated in the original model
[12]. The activity of AC and PKA also oscillated (Fig. 1b).

The formulas and values used to generate this oscillation
model are shown in online Supplemental methods and
Supplemental Table 1.

Incorporation of the PDE-mediated cAMP hydrolysis

Intracellular cAMP concentration is determined by the
balance between its production via AC and its hydrolysis
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Fig. 1 Cooper’s model mimicked by CellDesigner. a Graphical
notations used in CellDesigner to depict Cooper’s model. b Compu-
tational oscillation loop of B-AR signaling molecules. cAMP, Ca*",
AC, and PKA formed a stable and persistent negative feedback loop.
The intracellular concentration of cAMP at baseline (0 min) was
taken as 1 (arbitrary units)

via PDE in the heart under physiological and patholog-
ical conditions [26]. Because PDE is activated by cAMP,
we incorporated its activity into the model (Supple-
mental Fig. 2a). We found that oscillations of the mol-
ecules involved in the B-AR signaling pathway were
maintained, even though their amplitudes were increased
by approximately 1.6-fold, compared with those of
Cooper’s original model (Supplemental Fig. 2b). Thus,
PDE-mediated cAMP hydrolysis did not appear to
change the behavior of the oscillation, but exaggerated
its amplitude.

The formulas and values used to generate this oscillation
model are shown in online Supplemental methods and
Supplemental Table 2.

Effect of Ca**-mediated inhibition of AC

The heart expresses multiple AC isoforms (AC2, 3, 4, 5, 6,
7, and 9) [2], of which ACS and AC6 are directly inhibited
by submicromolar Ca** [2, 13]. Thus, to examine the
effect of Ca®>"-mediated inhibition of AC, we modeled the
situation in which all AC isoforms in the heart are not
Ca’"-inhibitable in the heart (Fig. 2a). As shown in
Fig. 2b, we found that no oscillation appeared. This result

Fig. 2 Effects of Ca**-mediated inhibition of AC. a Graphical
notation used in CellDesigner to depict B-AR signaling molecules
AC, cAMP, Ca**, and PKA. Ca*"-mediated inhibition of AC was
deleted from Cooper’s original model. b Computational oscillation
loop of B-AR signaling molecules. cAMP, Ca®*, AC, and PKA did
not form a negative feedback loop. The intracellular concentration of
cAMP at baseline (0 min) was taken as 1 (arbitrary units)

indicates that the presence of Ca®*-inhibitable AC iso-
forms is essential for stable and spontaneous cAMP and
Ca*™ oscillations to occur.

The formulas and values used to generate this oscillation
model are shown in online supplemental methods and
supplemental Table 1.

Incorporation of PKA-mediated inhibition of cardiac
AC isoforms into the model

Recent studies have indicated that ACS5 and AC6 are
inhibited not only by Ca?*, but also by PKA [13, 20-22].
Therefore, we next incorporated PKA-mediated inhibition
into Cooper’s model (Fig. 3a). Oscillations of cAMP and
Ca2", as well as AC and PKA, were observed, but the
amplitudes were reduced by approximately 13 %, com-
pared with those in Cooper’s original model (Fig. 3b).
Thus, PKA-mediated inhibition of cardiac AC isoforms did
not seem to change the behavior of the oscillation, but
reduced its amplitude.

The formulas and values used to generate this oscillation
model are shown in online Supplemental methods and
Supplemental Table 1.
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Fig. 3 Effects of PKA-mediated inhibition of AC. a Graphical
notation used in CellDesigner to depict B-AR signaling molecules
AC, cAMP, Ca?*, and PKA. PKA-mediated inhibition of AC was
incorporated into Cooper’s original model. b Computational oscilla-
tion loop of B-AR signaling molecules. cAMP, Caz"', AC, and PKA
formed a stable and spontaneous negative feedback loop. The
intracellular concentration of cAMP at baseline (0 min) was taken
as 1 (arbitrary units)

Incorporation of Ca®*-mediated inhibition of type 5/6
AC isoforms into the model

We then examined the model incorporating both Ca**-
inhibitable (AC5/6) and non-inhibitable AC isoforms
(AC2, 3, 4, 7, and 9) (Fig. 4a). Studies with transgenic
mouse models in vivo have demonstrated that AC2, 3, 4, 7,
and 9 contribute significantly to the total AC activity in the
heart [2, 27], but, unlike AC5/6, are not subjected to PKA-
mediated inhibition [13]. Oscillations of cAMP, Ca*t,
PKA, PDE, and AC5/6 were observed, and then faded.
However, essentially, no oscillation of AC4/7 occurred
(Fig. 4b). Thus, when both Ca**-inhibitable and Ca®*-non-
inhibitable AC isoforms coexist, continuous oscillation is
not usually observed for cellular cAMP and Ca**.

The formulas and values used to generate this oscillation
model are shown in online Supplemental methods and
Supplemental Table 3.

Discussion

Control systems in vivo are dynamic and complex, and it is
very difficult to predict systems behavior on the basis of
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Fig. 4 Incorporation of Ca>*-mediated inhibition of type 5/6 AC into
the model. a Graphical notation used by CellDesigner to depict B-AR
signaling molecules: cardiac AC subtypes (AC5/6), non-cardiac AC
subtypes (AC4/7), cAMP, Ca®", and PKA. A negative feedback loop
was not observed. b Computational oscillation loop of B-AR signaling
molecules: cAMP, Ca®*, AC5/6, PDE, and PKA did not form a
continuous negative feedback loop, and then faded. However,
essentially no oscillation occurred. The intracellular concentration
of cAMP at baseline (0 min) was taken as 1 (arbitrary units)

biochemical studies of individual molecules. However, use of
systems biology tools, for example CellDesigner, makes it
feasible to simulate complex biochemical networks flexibly
[28-30]. In this study, this software enabled us to study Ca>*
and cAMP oscillations under different conditions, e.g., in the
presence or absence of Ca’T-inhibitable and Ca®*-non-
inhibitable AC isoforms and other regulatory molecules, in
silico, without the need for experimental assays [25].

First, we confirmed that the original oscillation model of
cAMP and Ca®" developed by Cooper in 1995 [12] can be
effectively simulated by use of CellDesigner [23-25].
When the signaling pathway contained only Ca*"-inhibit-
able AC isoforms (ACS5/6), we found that stable and
spontaneous oscillations occurred.

Inclusion of PDE-mediated cAMP hydrolysis or PKA-
mediated inhibition of AC5/6 into Cooper’s model did not
seem to change the oscillation behavior, but altered the
amplitude to a greater or lesser extent [13, 20-22, 26].
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Inclusion of PKA-mediated inhibition of AC5/6 induced
a decrease of the amplitude by approximately 13 %
(Fig. 3), whereas inclusion of PDE-mediated cAMP
hydrolysis increased the amplitude by approximately 1.6-
fold (Supplemental Fig. 2), compared with those of Coo-
per’s original model (Fig. 1).

Phosphorylation of the L-type Ca**-channel increases
the Ca®* concentration, and might form an ascending loop.
In turn, cardiac AC isoforms (ACS5/6) are inhibited by Cat
and this might form a descending loop. Importantly, AC5/6
are inhibited by PKA, which might reduce the amplitude of
the oscillation loop [13, 22]. Conversely, PDE, in associ-
ation with Ca®*"-mediated inhibition, forms the descending
phase of cAMP and Ca®" oscillation in cardiac myocytes
[31, 32]. These data, together with our current findings,
indicate that PKA may have both positive and negative
regulatory effects on the amplitude of the cAMP and Ca®*
oscillation loop, whereas PDE may have a positive regu-
latory effect on the amplitude [31, 32].

In contrast, when AC isoforms were not Ca>*-inhibita-
ble, no oscillation occurred. Interestingly, when both Ca?*-
non-inhibitable and Ca**-inhibitable AC isoforms were
included in the model, oscillation occurred, but decayed
very rapidly. Inclusion of PDE-mediated cAMP hydrolysis
did not change this behavior. Therefore, our simulations
indicate that for stable and spontaneous oscillation, the
presence of Ca>*-inhibitable AC isoforms and the absence
of Ca*"-non-inhibitable AC isoforms are both required.

Further studies will be required to incorporate the effects
of newly identified ACS5/6-associated proteins, including
Snapin, a SNAP25-binding protein, and PAM, a protein
associated with Myc, on the cAMP and Ca*" oscillations,
because the findings of this study show that Ca®"-inhibit-
able AC isoforms (AC5/6) are essential for the oscillations
of cAMP and Ca®* [2, 13, 15].

Because the heart expresses seven AC isoforms [1, 7],
including both Ca®*-inhibitable and Ca®*-non-inhibitable
isoforms, continuous cAMP and Ca** oscillation in cardiac
myocytes may not always occur, on the basis of the above
findings (Fig. 4). Studies using ACS5-deficient mice from
our laboratory have shown that nearly half of the AC
activity within the heart may be because of Ca®>™-non-
inhibitable AC isoforms [1, 2, 7, 9, 33, 34]. However,
microenvironments in which only Ca®*-inhibitable AC5/6
are accumulated, such as lipid rafts or caveolae, are
believed to exist [15, 16]. Indeed, it has been reported that
Ca**-sensitive AC isoforms (AC1, 5, 6, and 8) and their
associated proteins, such as PKA, A-kinase anchoring
proteins (AKAPs), anchored PDEs, non-anchored PDE,
and transient receptor potential (TRP) 1/3, are present in
lipid rafts in many cell types, including cardiac myocytes,
whereas the Ca’"-insensitive AC 2, 4, and 7 are excluded
from the rafts [15]. Because intracellular cAMP and Ca®*

mediate a diverse array of cellular functions, oscillation of
cAMP and Ca®" concentration might be involved in
receptor-mediated signal transduction, not only in excitable
cells, for example cardiac myocytes, but also in non-
excitable cells [35]. Further, the occurrence or disturbance
of cAMP and Ca®*" oscillations might contribute to the
development of cardiac dysfunction or arrhythmia.
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1. Introduction

Myocardial B-adrenergic receptors
tally specific subtype expression: for n rats, B1-AR is the
predominant adult isoforms (B vs. By 59% vs.41%), whereas f$,-AR
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innervation, and in failing/aged hearts, in which B1-AR is selectively
down-regulated. More importantly, chronic stimulation of B;-AR
and B,-AR elicits opposing effects on cardiac myocytes {2]. Chronic
B1-AR stimulation by elevated plasma catecholamines and subse-
quent activation of the Gso-AC-cyclic AMP (cAMP)-dependent
signal transduction pathway play a crucial role in the development
of heart failure [1,3]. Conversely, f2-AR couples concurrently to Gsa
and Gie, and activates cell survival pathways. Over the past decade,
compelling evidence has accumulated that B,-AR-Gio mediates a
powerful cell survival pathway through activation of phosphati-
dylinositol 3-kinase (PI3-K)/Akt signaling in the heart [2,4—6].
However, the role of By-AR-Gsa in cell survival remains poorly
understood.

AC is a membrane-bound enzyme that catalyzes the conversion
of ATP to cAMP [7,8]. At least 10 isoforms are known [7,9,10], of
which 7 are expressed in the heart, although type 5 (AC5) and type
6 (AC6) are the major AC isoforms in the heart [8,11]. Both are
calcium (Ca?*)- and Gi-inhibitable and share most, if not all, of their
biochemical properties [7,9,12]. AC5 was shown to be an adult
isoform, whereas AC6 is more highly expressed in the neonate in
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rats [1,8,13,14]. We have previously demonstrated that disruption of
AC5 did not alter the expression of B-AR/Gsa/AC/protein kinase A,
but significantly inhibited both myocyte apoptosis and develop-
ment of heart failure in response to chronic catecholamine or
pressure-overload stress [11,15]. Conversely, disruption of AC6
promoted the development of myocyte apoptosis and heart failure
in response to chronic catecholamine or pressure-overload stress
[16—18].

Considering these findings, together with the facts that chronic
B1-AR stimulation plays an important role in the pathogenesis of
heart failure, while chronic B, stimulation promotes cell survival, in
addition to activating PI3-K/Akt signaling via Gi [5,6,19], we hy-
pothesized that B1-AR couples preferentially to AC5. Here, we
examined this idea by means of both pharmacological and genetic
studies in cardiac myocytes.

2. Materials and methods
2.1. Reagents

All chemicals were purchased from Sigma-—Aldrich, except
trypsin 1:250 (Difco), ITS (insulin-transferrin-selenium; GIBCO),
[3H]adenine (GE Healthcare), trichloroacetic acid (Wako) and 4/,6-
diamidino-2-phenylindole,dihydrochloride ~ (DAPI;  Molecular
Probes).

2.2. Myocyte preparation

Primary cultures of neonatal mouse cardiomyocytes were
pared from the heart of a 1-day-old mouse, as described previously
with some modifications [20,21]. Briefly, cardiomyocytes:
obtamed by trypsxmzatlon and Collagemzatlon and maint.

preplated on 100-mm culture dlshes in mmlmum
dium with 10% fetal bovine serum (FBS) containin,

Assay of CAMP accumulation ass
performed with [*H]adenine as de
modifications [21,22]. Briefly, the ce
adenine (3 pCifwell) for 24 h in
Cells were washed three times with 20 mM HEPES-balanced
serum-free minimum essential ium.and incubated for 20 min
at 37 °C, then pretreated with the's. medium containing 0.5 mM
IBMX withjwithout 10~7 . 18.551/10~7 M CGP20712A for
15 min at room temperat ‘RT). Reactions were started by the
addition of isoproterenol (ISO) with/without dd-Ado (5 uM) for
5 min at RT and terminated by the addition of 12% (w/v) tri-
chloroacetic acid, 0.25 mM:A nd 0.25 mM cAMP. [*HJATP and
[PH]cAMP were separated on acidic alumina as described previ-
ously [23]. The cAMP production was calculated as [>H]cAMP/([>H]
CAMP+[3H]ATP) x 104

2.4. Terminal transferase dUTP nick endlabeling (TUNEL) staining

In situ labeling of fragmented DNA in cardiomyocytes was per-
formed with a TACS 2-Tdt Blue Apotosis Detection kit (Trevigen,
Inc.) according to the manufacturer's instructions, as described
previously by us and other groups [21,24,25].

2.5. Statistical analysis

Data were expressed as means + SEM. The statistical signifi-
cances of differences in cAMP accumulation in cardiac myocytes
(Figs. 1 and 3A) and TUNNEL-positive cardiac myocytes (Figs. 2 and
3B) was determined by one-way ANOVA with Tukey's test. The
criterion of significance was taken as P < 0.05.

3. Results

3.1. Effect of ICI118.551
accumulation

P20712A on ISO-promoted cAMP

We first examined the effects of ISO (1078 to 10~® M) on cAMP
accumulation i atal cardiac myocytes in the presence and
absence of 25'-dideoxyadenosine (dd-Ado; 5 uM), a specific AC5
inhibitor [21 ~cumulation was significantly increased from
baseline b} r 10~% M), but the magnitude of the increase
suppressed (by approximately 29%) by dd-Ado

We also examined the effect of pretreatment of CGP20712A
(1077 M), a PBi-selective antagonist, on the ISO-promote cAMP
accumulation (Fig. 1C). Under these conditions (B,-selective stim-
ulation), cAMP accumulation was significantly increased from-
baseline by ISO (10~8 M), but the increase after CGP20712A pre-
treatment was only approximately one-third of that in the absence
of CGP20712A (compare Fig. 1A). In this case, dd-Ado had no effect
on the magnitude of the increase.

These data indicates that ISO-promoted cAMP accumulation is
predominantly mediated by B;-AR.

3.2. Effect of ICI118.551 or CGP20712A on ISO-mediated apoptosis
of cardiac myocytes

ISO is known to induce cardiac apoptosis through the activation
of B-AR, but the downstream regulatory mechanisms remains
poorly understood [5,8,11,21,25]. We thus examined the mecha-
nism of ISO-mediated cardiac apoptosis.

We first examined the effect of subtype-specific stimulation of
B-AR on ISO-mediated cardiac apoptosis (Fig. 2). Cardiac apoptosis
was significantly increased by approximately 1.5-fold from baseline
by ISO (Baseline vs. ISO 14 + 0.9 vs. 23 + 0.2%, P < 0.01, n = 4).
Pretreatment with 1C1118.551 (10~7 M) did not significantly reduce
[SO-mediated cardiac apoptosis (21 + 0.8%, n = 4), whereas pre-
treatment with CGP20712A (10~7 M) completely suppressed it
(11 £ 1.3%, P < 0.01 vs. ISO, n = 4). These data indicated that ISO-
mediated cardiac apoptosis is mediated by activation of B1-AR.

3.3. B1-AR preferentially associates with AC5

We previously demonstrated that knockout of AC5 (AC5KO)
decreased total AC activity by 30—40% in the mouse heart, but
AC5KO was less susceptible to stresses, such as chronic ISO infusion
or chronic pressure overload [8,11,12,21]. To confirm the results of
pharmacological inhibition of AC5 with dd-Ado in cardiac myocytes
(Fig. 1), we employed cardiac myocytes prepared from AC5KO.
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Fig. 2. Apoptosis induced by subtype-selective B-AR stimulation. Induction of TUNEL-
positive cardiomyocytes in response to subtype-selective B-AR stimulation: ISO (non-
selective B-AR subtype stimulation), ISO (10~% M) -+ ICI118.551 (10~7 M) (B;-AR sub-
type selective stimulation) or ISO (10~® M) + CGP20712A (10~7 M) (B.-AR subtype
selective stimulation) (*P < 0.05, **P < 0.01, NS, not significant, n = 4).

ve AC5 inhibitor. cAMP accumulation induced by ISO (10~7 or 10~% M) or ISO
t was observed in the case of ISO + CGP20712A (n = 5-6, P < 0.01).

ositive cardiac myocytes was increased by 1.6-fold from baseline
in WT myocytes, but this increase was blocked in AC5KO myocytes,
in the presence or absence of ICI118.551 or CGP20712A (Fig. 3B).

Since AC5 is known to play an important role in cardiac
apoptosis [8,11,21], these data support the idea that B1-AR is
coupled preferentially to AC5.

4. Discussion

In order to examine the mechanism underlying the opposing
effects of B1-AR and B,-AR on cardiac myocytes [2], we adopted two
approaches. Firstly, we examined the effects of dd-Ado, a specific
AC5 inhibitor {21] on cAMP accumulation and cardiac apoptosis
induced by ISO under conditions of selective B1-AR or B2-AR stim-
ulation. Secondly, we examined cAMP accumulation and cardiac
apoptosis using cardiac myocytes from AC5KO under conditions of
selective §1-AR or B-AR stimulation. Both approaches indicated
that cAMP accumulation and cardiac apoptosis in response to se-
lective B1-AR stimulation were significantly suppressed by inhibi-
tion or knockout of AC5, whereas no decrease was observed in the
case of selective Pp-AR stimulation. These results are consistent
with our hypothesis that §;1-AR associates preferentially with AC5.

Caveolin-3, a major subtype in the heart, acts as a scaffolding
protein by direct interaction with and modulation of the activity of
G-protein-coupled receptor signaling components [26]. We and
other groups have reported colocalization of caveolin-3 with G-
protein-coupled receptor signaling components including B1-AR,
B2-AR, and AC5/6 in cardiac myocytes [27—28]. However, caveolin-3
is distributed in both surface sarcolemma and long membrane in-
vaginations known as transverse tubules (t-tubules) in cardiac
myocytes [30]. More recently, subtype-specific subcellular distri-
bution of B-AR and cardiac AC isoforms (AC5/6) within the plasma
membrane was demonstrated by means of electrophysiological
techniques: AC5 is localized mainly at t-tubules and AC6 is localized
at surface sarcolemma, whereas B1-AR is localized at t-tubules and
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