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Figure 3 Cumulative incidence of all the metachronous gastric
cancers for patients in quartile (Q1-Q4) of methylation levels of
miR-124a-3, EMX1, and NKX6-1. The Q4 methylation had higher
incidences of a metachronous gastric cancer than the Q1 methylation
with p values of 0.17, 0.08 and 0.54 for miR-124a-3, EMX1 and
NKX6-1, respectively, by the log-rank test.

Nevertheless, several limitations of the study should be men-
tioned. First, the patient population was heterogeneous at enrol-
ment for the past history of ER or the years since the first ER.
These factors were associated with the occurrence of metachro-
nous gastric cancer (table 4). Therefore, in addition to the
multivariate analysis involving these factors, we conducted ana-
lyses stratified by these factors and found consistent results in
each stratum, although the results were not statistically signifi-
cant owing to the limited number of events (see online
supplementary table S4). Thus, it is unlikely that these factors
biased the association between the quartiles of miR-124a-3 and
metachronous gastric cancer. Second, owing to a relatively small
number of events, inevitable for a prospective study of cancer
risk, we could not conclude which pattern, dose-response or
threshold pattern, was obeyed by the relationship between
methylation level of miR-124a-3 and cancer risk. However, we
found an association of miR-124a-3 with authentic gastric
cancer risk for the Q4 (highest) using Q1 (lowest) or the com-
bination of all the other quartiles (Q1-Q3) as a reference
(table 5 and see online supplementary table S1). This finding
may support the threshold curve. Since the incidence of a meta-
chronous gastric cancer is stable long after H. pylori eradica-
tion,* 37 further long-term follow-up is expected to strengthen
the correlation and clarify an appropriate model of relationship.

From a molecular viewpoint, we tried to measure the accumu-
lation of aberrant methylation in stem cells by analysing gastric

mucosae without H. pylori infection, at least 6 months after
H. pylori eradication. It is known that the methylation level in
gastric mucosa decreases after H. pylori eradication,”’™* and
that the persistent methylation level in gastric mucosa without
H. pylori infection is correlated with gastric cancer risk.’* 1° 24
Since methylation induced in stem cells can only persist for a
long time without its inducer, the methylation level in gastric
mucosa without H. pylori infection could be considered to
reflect epigenomic damage accumulated in stem cells. However,
we do not have direct evidence to support the hypothesis,
because it is still impossible to analyse DNA methylation of spe-
cific genes in histological sections. The higher methylation level
and smaller HR in patients with H. pylori infection before the
enrolment (see online supplementary table S3) might have indi-
cated that the methylation levels had not reached baseline after
eradication and were superimposed with methylation in pro-
genitor cells.

We analysed three preselected marker genes. Ideal marker
genes should be methylated in parallel with overall methylation
levels of driver genes in stem cells, but at much higher levels for
accurate measurement. #:R-1244-3 is a tumour-suppressor gene
(driver gene) with relatively high methylation levels,®! and was
considered to have met the criteria. Two other genes (EMX1
and NKX6-1) were homeobox genes and considered to be
passenger genes. In addition to the analysis using the methyla-
tion level of a single gene, we performed an exploratory analysis
by combining methylation of three marker genes. Simple add-
ition of the methylation levels of the three genes did not
improve the prediction power (data not shown). However,
when we scored the number of genes within the Q4 (highest)
using the three marker genes, the patients with the highest
scores displayed a high HR (95% CI) (2.23 (1.12 to 4.44);
p=0.022) with a statistically significant trend p of 0.038 using
the authentic metachronous gastric cancers. The smaller p value
in this combined analysis also supports a threshold model.

In our previous study, we performed biopsies from three posi-
tions (antrum, middle body and upper body).*® It was shown
that methylation levels of the three positions were different and
that their mean had the highest association with gastric cancer
risk. However, patients with a high mean methylation level had
higher methylation levels in any of the three positions. In the
current study, we performed biopsy from one position, consider-
ing the merits (smaller risk of bleeding) and demerits (less
precise reflection of the cancer risk) of limiting the positions of
biopsy. Since the utility of epigenetic analysis of gastric tissue
was demonstrated here, an increase of biopsy positions in future
studies may be considered.

In summary, the methylation level of miR-124a-3 was asso-
ciated with an increased risk of developing metachronous gastric
cancers. Assessment of an epigenetic field defect using methyla-
tion levels in normal tissue is a promising biomarker for cancer
risk that takes account of life history.
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Field defect

A field for cancerization, or a field defect, is formed by the accumulation of genetic and epigenetic al-
terations in normal-appearing tissues, and is involved in various cancers, especially multiple cancers.
Epigenetic alterations are frequently present in chronic inflammation-exposed tissues, but information
on individual genes involved in the formation of a field defect is still fragmental. Here, using non-
cancerous gastric tissues of cancer patients, we isolated 16 aberrantly methylated genes, and identified
chromatin remodelers ACTL6B and SMARCAT as novel genes frequently methylated in non-cancerous tissues.
SMARCA1 was expressed at high levels in normal gastric tissues, but was frequently silenced by aber-
rant methylation in gastric cancer cells. Moreover, somatic mutations of additional chromatin remodelers,
such as ARID1A, SMARCA2, and SMARCA4, were found in 30% of gastric cancers. Mutant allele frequency
suggested that the majority of cancer cells harbored a mutation when present. Depletion of a chroma-
tin remodeler, SMARCAT or SMARCAZ2, in cancer cell lines promoted their growth. These results showed
that epigenetic and genetic alterations of chromatin remodelers are induced at an early stage of carci-~
nogenesis and are frequently involved in the formation of a field defect.

© 2014 Elsevier Ireland Ltd. All rights reserved.

Introduction

A field for cancerization (field defect) refers to a non-cancerous
tissue predisposed to carcinogenesis [1,2], and is involved in the de-
velopment of various types of cancers, especially in those associated
with chronic inflammation and multiple cancers [2,3]. The forma-
tion of a field defect has been initially explained by the accumulation
of genetic alterations in non-cancerous tissues [1]. Over the past
decade, the involvement of epigenetic alterations in the forma-
tion of a field defect (epigenetic field defect) was shown by the higher
levels of aberrant DNA methylation in non-cancerous tissues of
cancer patients than in normal tissues of non-predisposed indi-
viduals [4]. The presence of an epigenetic field defect has been
suggested for various types of cancers, such as gastric [5,6], colorectal
[7], esophageal [8], liver [9], and renal cancers [10].

Abbreviations: H. pylori, Helicobacter pylori; CGl, CpG islands; 5-Aza-dC, 5-aza-
2’-deoxycytidine; TSS, transcription start site.
* Corresponding author. Tel.: +81 3 3547 5240; fax: +81 3 5565 1753.
E-mail address: tushijim@ncc.go.jp (T. Ushijima).

http://dx.doi.org/10.1016/j.canlet.2014.11.038
0304-3835/© 2014 Elsevier Ireland Ltd. All rights reserved.

Especially in gastric tissues, it is known that aberrant DNA meth-
ylation of various but specific genes is induced by exposure to chronic
inflammation triggered by Helicobacter pylori (H. pylori) infection
[5,11,12], the almost exclusive cause of gastric cancers [13]. The
degree of accumulation of aberrant methylation is highly corre-
lated with risk of gastric carcinogenesis [6]. A multicenter prospective
cohort study demonstrated that the degree of accumulation of ab-
errant methylation can be used as a risk marker for the occurrence
of metachronous multiple gastric cancers after endoscopic submu-
cosal dissection (ESD) [14]. Nevertheless, information on the tumor-
suppressor genes involved in the formation of an epigenetic field
defect is still limited, except for CDH1 (E-cadherin) and CDKN2A (p16)
[5].

Driver genes in gastric cancers include those in at least eight
cancer-related pathways [15-20]. Three growth-promoting path-
ways, the AKT/mTOR, mitogen-activated protein kinase (MAPK), and
WNT pathways, are activated not only by activating mutations (or
amplification) of oncogenes but also by methylation-silencing of their
negative regulators. Four tumor-suppressive pathways, cell adhe-
sion, cell cycle regulation, mismatch repair, and p53 pathways, are
inactivated by both genetic alterations and methylation-silencing.
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In addition to genes involved in these tumor-suppressive path-
ways, inactivation of chromatin remodelers by genetic alterations
was recently identified [21-23]. Chromatin remodelers consist of
multiple subunits, such as ARID1A (BAF250A), SMARCAZ (BRM), and
SMARCA4 (BRG1), and are involved in the regulation of transcrip-
tion by modulating chromatin accessibility [24]. However, it is mostly
unclear what genes among these pathways are involved in the for-
mation of an epigenetic field defect.

In this study, we aimed to clarify genes involved in the forma-
tion of a field defect as drivers by comprehensively analyzing
aberrant DNA methylation of genes with promoter CpG islands (CGls)
and involved in the major eight gastric cancer-related pathways in
non-cancerous tissues of gastric cancer patients. Identification of
such genes will provide a basis for establishing a novel cancer risk
diagnosis and early intervention in individuals highly at risk.

Materials and Methods
Clinical samples

One hundred and thirty-two gastric cancer samples and 89 non-cancerous samples
were collected from patients undergoing gastrectomy (123 cancer and 80 non-
cancerous samples) or endoscopic biopsy (nine cancer and nine non-cancerous
samples). Forty-three normal gastric tissue samples were endoscopically collected
from healthy volunteers. In addition, 19 non-cancerous samples were collected by
endoscopic biopsy from gastric cancer patients for an association analysis between
methylation and expression. The samples were stored in RNAlater (Life Technolo-
gies, Carlsbad, CA, USA) at 80 “C until the preparation of genomic DNA or RNA, All
samples were collected with informed consents, and the study was approved by the
Institutional Review Boards.

Cell lines

Seven human gastric cancer cell lines were purchased from the American Type
Culture Collection (Rockville, MD) (AGS and N87) and Japanese Collection of Re-
search Bioresources (Tokyo, Japan) (KATO 1Il, MKN7, MKN45, MKN74, and NUGC-
3). HGEC6B was established from non-cancerous fundic gland cells of a gastric cancer
patient by introducing CCNDT, mutant CDK4, and TERT genes using lentiviral or
retroviral vectors [25,26]. Details of cultivation and immortalization of gastric ep-
ithelial cell will be published elsewhere. Six human gastric cancer cell lines were
kindly provided by Dr. K. Yanagihara (58As9, HSC39, HSC44, and HSC57), Dr. M.
Tatematsu (GC2), and Dr. W, Yasui (TMK1). All gastric cancer cell lines were main-
tained in RPMI1640 containing 10% (v/v) FBS. HGEC6B was maintained in
Keratinocyte-SFM containing 5 ng/ml EGF, 50 pg/ml bovine pituitary extract, 10% (v/
v) FBS, 2 mM N-acetylcysteine (NAC), and 0.2 mM ascorbic acid 2-phosphate (Asc-
2P). To analyze cell growth, cells were seeded on day 0, and the cell number was
counted on days 1-5. The differences of cell numbers were evaluated by the Welch
t-test. :

Treatment with 5-aza-dC

AGS and GC2 were seeded on day 0, and were treated with freshly-prepared 5-aza-
2’-deoxycytidine (5-aza-dC) (Sigma-Aldrich, St. Louis, MO) for 24 hours on days 1,
3, and 5. Cells were cultured in fresh medium without 5-aza-dC for 24 hours on days
2 and 4. Cell numbers were counted on day 6, and the cells were harvested. This
treatment protocol efficiently inhibited growth of AGS and GC2 cells (Appendix S1:
Supplementary Fig. S1).

Preparation of genomic DNA and total RNA

Genomic DNA was extracted by the standard phenol/chloroform method, and
was quantified by a Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies). Total
RNA was extracted by ISOGEN (Nippon Gene, Tokyo, Japan).

Analysis of DNA methylation

A genome-wide DNA methylation analysis was conducted using an Infinium
HumanMethylation450 BeadChip array (Illumina, San Diego, CA), as described pre-
viously [20,27]. The methylation level of an individual probe was obtained as a
value, which ranged from 0 (unmethylated) to 1 (fully methylated). A total of 482,421
probes for CpG sites were assembled into 296,494 genomic blocks, collections of
probes classified by their locations against transcription start sites (TSSs) and CGls
[27], and the methylation level of a block was defined as a mean B value of the probes

in the block. The methylation level of a block covering a CGI within 200 bp from a
TSS (185200 CGI, whose methylation is known to be critical for gene silencing, was
analyzed for 65 genes involved in the Akt/mTOR pathway (FBXW?, PHLPPI, PTEN,
and THEM4), cell adhesion (CDHT), cell eycle regulation (CHFR), the MAPK pathway
(RASSF1}, mismatch repair (MLH 1, MSH2, MSH3, and MSHE), the p53 pathway (BAX,
CASP3, CDE2, CDKNIA, CHEKZ, CYCS, DDEB2, EI24, GADDA5B, GADDA5G, GTSET IGFBP?,
MIR-34b, PERE, PMAIPL, RPRM, RRMZ, SESN1, SESN2, SIAHT, STEAP3, THBS1, TNFRSF10B,
ZMAT3), the WNT pathway (APC, AXINZ, CSNKIAL CIBP1, CTBPZ, DKK3, GSK3B, NKD1,
NKD2, SENI2, SFRP1, SFRP2, SFRPA, SFRPS, SOX17, WIFT) [20], and chromatin remod-
eling [ACTLEA (BAF53A}, ACTLGR (BAF53B), ARID2 (BAF200), ATRX, SMARCAT (SNF2L),
SMARCA4, SMARCALIL, SMARCBT (SNFS), SMARCCI (BAF155), SMARCC2 (BAF170),
SMARCDT (BAFGOA), SMARCD3 {BAFGOC), SMARCET (BA¥S7), and PBRMT (BAF180)).
The methylation level of TS5200 CGls was substituted by that of a block in the 1st
exon/5-UTR CGI for three genes involved in cell cycle regulation (CDKN2A) and
chromatin remodeling (ARIDIA and SMARCAZ) because these genes did not have
probes located in TS$200 CGis although they had promoter CGls. A gene was
defined as unmethylated (B value = 0-0.2), partially methylated (f value =0.2-0.3
for non-cancerous tissues and 0.2-0.4 for cancers), and methylated (B value = 0.3~
1.0 for non-cancerous tissues and 0.4-1,0 for cancers).

Gene-specific methylation analysis was conducted by qMSP, as described pre-
viously [28], using primers specific to methylated or unmethylated DNA (Appendix
52: Supplementary Table §1). We were able ta design primers for SMARCAT only within
the 1st exon, although its CGI spanned from its promoter region to exon 1. DNA meth-
ylation levels were calculated as the fraction of methylated molecules among the
total DNA molecules (methylated molecules + unmethylated molecules). Methyla-
tion status in a cell line was defined as unmethylated (U), partially methylated (P),
and completely methylated (C) when its methylation level was 0~20%, 20-80%, and
80-100%, respectively. A difference in methylation levels was evaluated by the Mann-
Whitney U-test. Bisulfite sequencing was conducted, as described previously [28]
using primers listed in Appendix 52: Supplementary Table S1.

Analysis of gene expression

Genome-wide analysis of gene expression was conducted by a SurePrint G3
Human Gene Expression 8x60K v2 Microarray (Agilent Technologies, Santa Clara,
CA). cRNA labeled with Cy3 was synthesized from 200 ng of total RNA by using a
Low Input Quick Amp Labeling Kit (Agilent Technologies), and 600 ng of Cy3-
labeled cRNA was fragmented and hybridized to SurePrint G3 Gene Expression
Microarray at 65 °C for 17 hours. Then, the microarray was scanned by using an Agilent
G2565BA microarray scanner (Agilent Technologies). The obtained signals were pro-
cessed by Feature Extraction Ver.9.1 (Agilent Technologies), and analyzed by
GeneSpring Ver.12.5 (Agilent Technologies). The signal intensity of each probe was
normalized so that the 75 percentile of signal intensity of all probes would be 1.0,
and the mean signal intensity of all the probes within a specific gene was used as
an expression level of the gene. Quantitative RT-PCR (qRT-PCR) was conducted by
measuring actual copy numbers, as described previously [29}, using primers listed
in Appendix 52: Supplementary Table S2. The copy number of an individual gene
was normalized to that of GAPDH.

Analysis of somatic mutations

A library DNA containing 672 PCR amplicons of 18 chromatin remodelers [ACTL6A,
ACTLGB, ARID1A, ARID1B (BAF250B), ARID2, ATRX, PBRM1, PHE10 (BAF45A), SMARCAT,
SMARCA2, SMARCA4, SMARCALT, SMARCB1, SMARCC1, SMARCC2, SMARCD1, SMARCD3,
and SMARCE1] was prepared from 80 ng of genomic DNA of each sample by mul-
tiplex PCR using an lon AmpliSeq™ Library Kit 2.0 (Life Technologies) and customized
primers (Appendix $2: Supplementary Table $3). The 672 PCR amplicons covered
86.5-100% of the coding regions of 18 chromatin remodelers (Appendix $2:
Supplementary Table $4). The library DNA prepared was uniquely barcoded with an
fon Xpress Barcode Adaptors 1-96 Kit (Life Technologies), and libraries from 58
samples were pooled. The pooled library was mixed with lon Spheres, and emul-
sion PCR was conducted using the lon OneTouch 2 (Life Technologies) with an lon
Pl Template OT2 200 Kit v2 (Life Technologies). Then, the complexes of lon Spheres
with amplified DNA were washed, concentrated using lon OneTouch ES (Life Tech-
nologies), and loaded onto an lon Pl Chip (Life Technologies). Sequencing was
conducted using an lon Proton Sequencer (Life Technologies) with an lon PI Se-
quencing 200 Kit v2 (Life Technologies), and the obtained sequences were mapped,
as described previously [27].

Somatic mutations in an individual gastric cancer sample were identified by ex-
cluding sequence variations also present in a corresponding non-cancerous sample.
Reading depths of individual regions are shown in Appendix S2: Supplementary
Table S5. Identified somatic mutations were confirmed by dideoxy sequencing, as
described previously [27] using primers listed in Appendix S2: Supplementary
Table S6.

Estimation of cancer cell content in a primary cancer sample

The cancer cell content of a primary gastric cancer sample was estimated by the profile
of DNA methylation levels of 40,333 genomic blocks with CGls unmethylated in normal
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Fig. 1. Aberrant DNA methylation of genes involved in gastric cancer-related pathways in non-cancerous gastric tissues. (A) Comprehensive analysis of DNA methylation in
non-cancerous tissues of male gastric cancer patients. Methylation levels of 296,494 genomic blocks analyzed by a BeadChip array were compared with those in normal
gastric tissues of healthy volunteers without H. pylori infection. 3.2-5.7% of genomic blocks were aberrantly methylated in four non-cancerous gastric tissues. (B) Aberrant
DNA methylation of genes involved in gastric cancer-related pathways in non-cancerous gastric tissues. Among the 68 genes in eight pathways, 16 genes in five pathways,
including chromatin remodelers, ACTL6B and SMARCA1, were frequently methylated. (C) Gene expression levels of SMARCAT and ACTL6B in normal gastric tissues without
H. pylori infection analyzed by a microarray. SMARCAT was expressed at high levels while ACTL6B was not. Box plots represent expression levels of all the genes analyzed by
a microarray. (D) Genomic structure around the SMARCAT promoter region. Positions of CpG sites are shown by vertical lines. Open box, 1st exon; arrow, TSS; arrowheads,
primers for gMSP; and closed box, a region analyzed by bisulfite sequencing. (E) The SMARCAT methylation level in gastric tissues {mucosae) of male healthy volunteers
(n=18) and gastric cancer patients (n = 18) analyzed by qMSP. It was higher in individuals with H. pylori infection, and also in cancer patients. (F) The SMARCAT methyla-
tion level in gastric tissues (mucosae) of female healthy volunteers (n=18) and gastric cancer patients (n = 21). It was higher in individuals with H. pylori infection although
there was a fluctuation in the methylation level even in healthy volunteers without H. pylori infection.

gastric tissues without H. pylori infection. A fraction (0.1-25.8%) of the blocks are spe-
cifically methylated in cancer cells, and their methylation levels are known to reflect cancer
cell content [30]. Based on a histogram of distribution of methylation levels of the 40,333
blocks in a cancer tissue, a peak of methylation level was determined, and the level was
used as the cancer cell content (Appendix S1: Supplementary Fig. S2).

Depletion of chromatin remodelers by shRNA
SMARCAT or SMARCA2 was depleted in gastric cancer cell lines using three in-

dependent shRNAs (Appendix S2: Supplementary Table S7) designed by using siDirect
version 2.0 [31], as described previously [32]. shRNA for firefly luciferase (shLuc)

was used as the control. The depletion of SMARCAT or SMARCA?2 proteins was con-
firmed by western blotting, as described previously [33] using anti-SMARCA1 antibody
(1:1000; MABE366; Millipore, Billerica, MA) and anti-SMARCA?2 antibody (1:1000;
ab15597; Abcam, Cambridge, UK), respectively. Protein bands were quantified by
using Image] 1.47v software.

Gene expression changes by SMARCAT or SMARCAZ2 depletion were analyzed using
a SurePrint G3 Human Gene Expression 8x60K v2 Microarray. Genes whose signal
intensities were decreased by two fold or more and had signal intensities of 1.0 or
more in cells with control shRNA and normal gastric mucosae without H. pylori in-
fection (n=3) were defined as down-regulated genes. Genes whose signal intensities
were increased by two fold or more and had signal intensities of 1.0 or more in
SMARCA1-depleted or SMARCA2-depleted cells were defined as up-regulated genes.
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Fig. 2. Methylation-silencing of SMARCA1 in gastric cancers. (A) SMARCAT methylation levels in 14 gastric cancer cell lines and one normal epithelial cell line analyzed by
qMSP. SMARCAT was completely methylated in five of 14 gastric cancer cell lines. M, a male-derived gastric cancer cell line; and F, a female-derived gastric cancer cell line.
M-DNA, completely methylated DNA; and U-DNA, completely unmethylated DNA. (B) The association between DNA methylation and loss of SMARCATMRNA expression.
The expression levels were analyzed by qRT-PCR in the 14 gastric cancer cell lines and one normal gastric epithelial cell line. SMARCAT mRNA was not detected in any of the
five cell lines with complete methylation of SMARCAT, but was detected in five of 10 cell lines without complete methylation. C, completely methylated; P, partially meth-
ylated; and U, unmethylated. (C) SMARCA1 protein expression in gastric cancer and normal cell lines analyzed by western blotting. SMARCA1 protein was not expressed in
gastric cancer cell lines with complete SMARCAT methylation. (D) Re-expression of SMARCAT by 5-aza-dC treatment. After 5-aza-dC treatment, unmethylated DNA mol-
ecules were detected, and SMARCAT mRNA was re-expressed. (E) Confirmation of SMARCA1 demethylation by bisulfite sequencing. Some DNA molecules showed demethylation
of all the CpG sites analyzed. Due to unavailability of primers for the promoter CGl, an exonic CGI whose methylation status is likely to be the same as that of the promoter
CGl was analyzed. (F) SMARCAT methylation levels in the initial set of 50 gastric cancers (42 male and 8 female cancers) analyzed by a BeadChip array. SMARCAT was meth-
ylated in 11.9% of male gastric cancers. A cut-off value of 0.4 was adopted for methylation in primary cancer samples, as used previously {20,27]. (G) Validation of SMARCA1
methylation in another set of 82 gastric cancers (50 male and 32 female cancers) by qMSP. SMARCA1 was methylated in 8% of male gastric cancers with a cut-off value of
6%, as used previously [37].
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Gene ontology analysis

Enrichment of specific biological processes in gene ontology criteria among genes
whose expression levels were changed by SMARCAT or SMARCA2 depletion was ana-
lyzed by using DAVID bioinformatics resources [34,35].

Results

Aberrant DNA methylation of genes involved in various
cancer-related pathways in
non-cancerous gastric tissues

From the genes involved in the eight major gastric cancer-
related pathways (the Akt/mTOR, cell adhesion, cell cycle regulation,
MAPK, mismatch repair, p53, WNT, and chromatin remodeling path-
ways), 68 genes with promoter CGls were identified. DNA
methylation statuses of these genes were analyzed by a BeadChip
array in six non-cancerous tissues of male gastric cancer patients
(Fig. 1A and Appendix S1: Supplementary Fig. S3). Among the 68
genes, a total of 16 genes involved in cell adhesion (CDH1), cell cycle
regulation (CDKN2A and CHFR), the p53 pathway (DDB2, IGFBP7, MIR-
34b, RPRM, and THBS1), the WNT pathway (DKK3, SFRP1, SFRP2, SFRP4,
S0X17, and WIF1), and chromatin remodeling (ACTL6B and SMARCAT)
were frequently methylated in non-cancerous gastric tissues (Fig. 1B).

Methylation-silencing of most of the 16 genes in non-cancerous
tissues was novel, and, especially, that of two genes encoding chro-
matin remodelers, ACTL6B and SMARCA1, has not been reported, even
in cancers. Therefore, we then analyzed the expression levels of the

A
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two genes in normal gastric tissues. By a microarray analysis of three
normal gastric tissues of healthy volunteers without H. pylori in-
fection, SMARCA1 showed a higher expression level than most of
the genes on the microarray, but ACTL6B did not (Fig. 1C). Since a
gene with high expression in normal cells but with aberrant DNA
methylation in cancer cells is known to have a high chance of being
a driver gene [32], it was suggested that SMARCAT was a potential
driver gene involved in the formation of an epigenetic field defect.

High SMARCA1 methylation levels in normal gastric tissues with
H. pylori infection

SMARCA1 was located on chromosome X, and H. pylori infec-
tion has been established as an inducer of an epigenetic field defect
in the stomach [12,36]. Therefore, the SMARCAT methylation level
was analyzed in gastric tissues (mucosae) of male healthy volun-
teers (non-predisposed mucosae) and gastric cancer patients
(predisposed mucosae) classified by H. pylori infection status using
quantitative methylation-specific PCR (qMSP) (Fig. 1D). Both among
the healthy volunteers (P=2.8 x 10-%) and cancer patients (P=0.28),
the SMARCAT methylation level was higher in individuals with
H. pylori infection (Fig. 1E). Also, both among individuals with H. pylori
infection (P =0.81) and among those without (P=9.2 x 10-), the DNA
methylation levels were higher in cancer patients. In female healthy
volunteers and gastric cancer patients, the methylation level was
also higher in individuals with H. pylori infection although there was
a variation in the methylation level even in volunteers without
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Fig. 3. Frequent mutations of genes encoding chromatin remodelers in gastric cancers. (A) Mutations were analyzed in the initial set of 50 gastric cancers by an lon Proton
Sequencer. Among the 18 genes analyzed, nine genes, ARIDIA, ARID1B, ARID2, SMARCAT, SMARCAZ2, SMARCA4, SMARCBI, PBRM1, and PHF10, were mutated in one or more
gastric cancers. As reported previously [21,23], ARID1A (10%) was most frequently mutated in the 50 gastric cancers. In addition, SMARCA4 (10%) was also frequently mutated.
The presence of somatic mutations is shown by a filled box. (B) Localization of somatic mutations of the three genes that encode ATPase subunits of chromatin remodelers.
Mutations were detected at various positions of the coding regions. QLQ, glutamine-leucine-glutamine domain; and HSA, small helicase/SANT-associated domain.
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H. pylori infection (Fig. 1F). These results suggested that aberrant
methylation of chromatin remodeler was induced by H. pylori in-
fection and that its accumulation was involved in the formation of
a field defect.

Methylation-silencing of SMARCA1

To examine methylation-silencing of SMARCAT in gastric cancers,
its DNA methylation was first analyzed in 14 gastric cancer cell lines
by qMSP. SMARCAT was completely methylated in one of eight male-
derived gastric cancer cell lines and in four of six female-derived
cell lines (Fig. 2A). Then, an association between the complete meth-
ylation of SMARCAT and its loss of mRNA expression was analyzed
in the 14 gastric cancer cell lines and one normal epithelial cell line.
SMARCAT mRNA was not detected in any of the five cell lines (44As3,
AGS, GC2, HSC44, and KATO [1l) with complete methylation while
its high expression was detected in five (58As9, MKN7, MKN45, N87,
and HGEC6B) of the 10 cell lines without complete methylation
(Fig. 2B). SMARCA1 protein was also not detected in the cell lines
with complete methylation of SMARCAT (Fig, 2C). In contrast, such
association was unclear by analysis of 19 non-cancerous samples
(Appendix S1: Supplementary Fig. S4).

Thirdly, re-expression of SMARCAT after treatment with a DNA
demethylating agent, 5-aza-dC, was analyzed in two gastric cancer
cell lines with complete methylation, AGS and GC2, After treat-
ment with 0.3 uM of 5-aza-dC, unmethylated (demethylated) DNA
was detected by MSP (Fig. 2D), and complete demethylation of mul-
tiple CpG sites (+56 to +111 from the TSS) was confirmed by bisulfite
sequencing (Fig. 2E and Appendix S1: Supplementary Fig. S5). Ac-
cordingly, SMARCA1 was re-expressed in both cell lines, and more
re-expression was induced by higher doses of 5-aza-dC (Fig. 2D).
These results showed that SMARCA1 was silenced by aberrant DNA
methylation in gastric cancers.

The presence of SMARCAT methylation in primary gastric cancers

To examine the presence of SMARCAT methylation in primary
gastric cancers, SMARCAT methylation was analyzed in an initial set
of 50 primary gastric cancers by a BeadChip array (CpG site at -13
from the TSS). It was methylated in five of 42 male gastric cancers,
but an increase was unclear in eight female gastric cancers (Fig. 2F).
The presence of SMARCAT methylation was further validated in
another set of 82 primary gastric cancers by qMSP. In male gastric
cancers, SMARCAT was methylated (DNA methylation level > 6%) in
four of 50 cancers (Fig. 2G). In female gastric cancers, detecting an
increase was difficult due to the fluctuation of basal methylation
levels, but at least one of 32 cancers had a clearly increased level.

Frequent mutations of chromatin remodelers in gastric cancers

To further support the importance of disruption of chromatin
remodelers in gastric cancers, somatic mutations of 18 genes en-
coding chromatin remodelers were analyzed in the initial set of the
50 gastric cancers by target sequencing using a next-generation se-
quencer. Among the 18 genes, nine (ARID1A, ARID1B, ARID2, SMARCA1,
SMARCA2, SMARCA4, SMARCB1, PBRM1, and PHF10) were mutated
in one or more of the 50 gastric cancers (Table 1 and Fig. 3A). In total,
15 (30%) of the 50 gastric cancers had at least one somatic muta-
tion of a chromatin remodeler (s). Among the 14 gastric cancer cell
lines, potential somatic mutations were detected in nine of them
(Appendix S1: Supplementary Fig.S6 and Appendix S2:
Supplementary Table S8).

Mutations of ATPase subunits of SWI/SNF complex, SMARCA2
and SMARCA4, were detected in 4 and 5, respectively, of the 50 gastric
cancers, and two mutations of an ATPase subunit of ISWI complex,
SMARCAT1, were detected in one of the 50 gastric cancers. The

mutations of SMARCAZ2, SMARCA4, and SMARCA1 were distributed
at various positions of their coding regions (Fig. 3B). Among the nine
mutated genes, SMARCAT and SMARCAZ were also aberrantly
methylated in the initial set of the 50 gastric cancers (Fig. 2F and
Appendix S1: Supplementary Fig. S7).

The presence of the somatic mutations in the majority of cancer cells
of individual cases

To assess the timing of occurrence of the somatic mutations, a
fraction of cancer cells with a specific mutation of a chromatin
remodeler was analyzed in individual gastric cancer samples. For
each of the 15 gastric cancer samples with a somatic mutation (s},
its cancer cell content was estimated by the profile of cancer-
specific DNA methylation [30] (Appendix S1: Supplementary Fig. S2
and Appendix $2: Supplementary Table $9), and the mutant allele
frequency was obtained using the read numbers of the mutant and
wild-type sequences (Table 1). For most cancers, the mutant allele
frequency was close to the cancer cell content, and the correlation
between these two values was 0,64 (P =7 x 10-1) (Fig. 4). This result
showed that mutations of the chromatin remodelers were present
in the majority of cancer cells of individual cases, when present,
and it was suggested that they were induced at an early stage of
gastric carcinogenesis.

Tumor-suppressive function of chromatin remodelers in
gastric cancers

The tumor-suppressive function of chromatin remodelers in
gastric cancers was analyzed. SMARCAT or SMARCAZ2 was depleted
by two independent short hairpin RNAs (shRNAs) in gastric cancer
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Fig. 4. The cancer cell content and the mutant allele frequency in individual cancers.
The cancer cell content was estimated by a profile of cancer-specific DNA methyla-
tion, and the mutant allele frequency was calculated using read numbers of the
mutated and wild-type sequences. For most cancers, the mutant allele frequency
was close to the cancer cell content,
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Table 1
List of somatic mutations of genes encoding chromatin remodelers in the 50 GCs.
Sample Gene Coverage Mutant allele Nucleotide Amino acid
number frequencies (%) change change
1 No mutation
2 No mutation
3 No mutation
4 No mutation
5 SMARCB1 88 43.2 c1130G>A p.Arg377His
SMARCA4 477 396 c.3460C>T p.Leu1154Phe
6 SMARCA4 897 363 c.2573C>T p-Thr858Met
9 No mutation
10 No mutation
11 No mutation
12 SMARCA2 512 36.1 c.548G>A p.Arg183GIn
SMARCA4 1334 40.6 €.1631_1633delAGA p-GIn544_Lys545delinsGln
SMARCA1 1067 59 c.2127delA p.Lys709fs
SMARCA1 1107 19.3 ¢.538_539insA p.Gly180fs
13 PHF10 2144 16.9 c.937C>T p.Arg313Trp
SMARCA2 778 172 €.2455C>T p.Arg819Trp
14 No mutation
15 No mutation
16 No mutation
17 No mutation
18 No mutation
19 No mutation
20 No mutation )
21 SMARCA4 324 14.5 c3727C>T p.Arg1243Trp
22 No mutation
23 No mutation
24 ARID1A 1901 20.7 €.2757_2758insC p.GIn920fs
ARIDIA 373 44 c.3458delC p.Ser1153fs
25 No mutation
26 No mutation
31 No mutation
32 ARID1A 61 36.1 c.1619C>T p.Thr540Met
33 ARIDIA 497 328 c4000C>T p.GIn1334*
34 SMARCA2 159 10.1 c1199T> A p.Met400Lys
35 ARID2 940 54.7 c1311_1312delAA p.Ala437fs
36 No mutation
37 ARID1A 2048 58.5 c.3196C>T p.Gln1066*
SMARCA2 185 34.6 ¢.579_588delCCGAGGCCAG p.Ala193fs
SMARCA2 877 227 c.590C>T p.Pro197Leu
39 No mutation
40 No mutation
42 No mutation
43 No mutation
44 SMARCA4 304 201 c.2654G>T p.Arg885Leu
45 No mutation
47 PBRM1 522 49 c436C>T p.Arg146*
51 No mutation
53 No mutation
54 No mutation
124 No mutation
131 No mutation
137 No mutation
141 No mutation
150 ARID1A 905 53 c.3688delA p.Lys1230fs
ARID1B 1094 277 ¢c.5695G>T p.Glu1899*
151 No mutation
152 No mutation
154 No mutation
162 ARID1B 388 113 cA4726C>T p.Pro1576Ser

* Termination codon.

cell lines with their expression (Fig. 2C and Appendix S1:
Supplementary Fig. S8), and changes of cell growth were ana-
lyzed. For SMARCAY1, its protein levels were reduced to 6-63% (44~
63% by shRNA#1 and 6-7% by shRNA#2) of those in cell lines with
a control shRNA. All the three SMARCA1-depleted cell lines showed
significant increases of cell growth rates (1.2- to 1.7-fold), com-
pared with those with a control shRNA (Fig. 5A).

For SMARCAZ2, protein levels were reduced to 8-49% (8-20% by
shRNA#1 and 12-49% by shRNA#3) of those in cell lines with a
control shRNA. Two of three SMARCA2-depleted cell lines, GC2 and

HSC57, showed significant increases of cell growth rates (1.1- to
1.4-fold) compared with those with control shRNA (Fig. 5B). These
results confirmed that chromatin remodelers, SMARCA1 and
SMARCAZ2, were tumor-suppressor genes in gastric cancers.

Downstream genes affected by depletion of chromatin remodelers
Finally, gene expression profiles were compared between

cell lines with depletion of chromatin remodelers and control
cells. In SMARCA1-depleted cells (58As9), 63 genes were
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Fig. 5. Growth inhibitory function of chromatin remodelers in gastric cancers, SMARCAT (A) or SMARCAZ (B) was depleted by two independent shRNAs in three gastric
cancer cell lines, and their cell growth was analyzed. All the three SMARCAT-depleted cell lines and two of three SMARCAZ-depleted cell lines showed significant increases

of cell growth rates.

down-regulated and 41 genes were up-regulated (Fig. 6A and C).
Among the down-regulated genes, genes related to cellular homeo-
stasis and response to stimulus were enriched (Fig. 6C). No specific
enrichment was observed among the up-regulated genes. In
SMARCA2-depleted cells (GC2), 26 genes were down-regulated and
165 genes were up-regulated (Fig. 6B and D). Among the up-
regulated genes, genes related to development of epithelial cells were
enriched (Fig. 6D). No specific enrichment was observed among the
down-regulated genes. These results suggested that alterations of
genes encoding chromatin remodelers are involved in gastric car-
cinogenesis by affecting various cellular functions.

Discussion

A chromatin remodeler, SMARCA1, was frequently methylated in
non-cancerous tissues of gastric cancer patients, and was
methylation-silenced in gastric cancers. In addition, chromatin
remodelers, such as ARID1A, SMARCA1, SMARCAZ2, and SMARCA4, were
frequently mutated in gastric cancers. Since cancer cell content
ranged from 20% to 70% depending upon samples, target sequenc-
ing using a next-generation sequencer was effective to detect
mutations in a relatively small fraction of DNA samples. When de-
tected, mutations of chromatin remodelers were present in the
majority of cancer cells of individual cases. Depletion of SMARCA1

or SMARCA2 in gastric cancer cell lines promoted their growth. This
suggested for the first time that disruption of chromatin remodelers
occurs at an early stage of gastric carcinogenesis, and is involved
in the formation of a field defect as a driver.

An early onset of mutations of chromatin remodelers, includ-
ing ARID1A and SMARCA4, in esophageal cancers was observed in
never-dysplastic Barrett's esophagus [38]. In addition, early onset
of mutations of a DNA demethylating enzyme TET2 is known to be
involved in the development of hematological malignancies [39].
TETZ2 mutations can be induced in hematopoietic stem/progenitor
cells, and are involved in the generation of pre-malignant clones,
and acquirement of additional alterations leads to development of
myeloid malignancies. As epigenetic modifiers, mutations of chro-
matin remodelers may be induced at an early stage of carcinogenesis,
and involved in the generation of pre-malignant clones, some of
which will eventually evolve into a cancer cell.

Depletion of SMARCAT1 in cancer cell lines promoted their growth,
indicating that SMARCA1 functions as a tumor-suppressor gene.
SMARCA1 is located on chromosome X and can be potentially inac-
tivated by a single hit. Therefore, SMARCAT is considered to be a “risky”
gene compared to other tumor-suppressor genes located on auto-
somes. So far, only a small number of such genes have been reported.
FHLT is inactivated by aberrant DNA methylation in gastric cancers
and colon cancers [28]. WTX, FOXP3, and PHFG are inactivated by
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Fig. 6. Downstream genes affected by depletion of chromatin remodelers. (A) and (B) Analysis of gene expression changes by depletion of chromatin remodelers. Expres-
sion changes of 32,078 genes by the depletion of SMARCA1 or SMARCA2 were analyzed. In SMARCA1-depleted 58As9 cells, 63 genes were down-regulated and 41 genes
were up-regulated (A). In SMARCA2-depleted GC2 cells, 26 genes were down-regulated and 165 genes were up-regulated (B). (C) and {D) Ontology of genes whose expres-
sion levels were changed by depletion of chromatin remodelers. Among the genes down-regulated by SMARCA1 depletion, genes related to cellular homeostasis and response
to stimulus were enriched. Among the genes up-regulated by SMARCA2 depletion, genes related to development of epithelial cells were enriched. The top 10 significantly

enriched biological processes are shown.

genetic alterations in Wilms tumors, breast and prostate cancers, and
T-cell acute lymphoblastic leukemia, respectively [40-43].

SMARCA1 protein was undetected not only in gastric cancer cell
lines with complete methylation of SMARCAI, but also in those
without, namely HSC39, HSC57, and NUGC-3. Among these cell lines,
NUGC-3 had a SMARCA1 mutation. Since, in general, a misfolded
protein generated by a gene mutation can be rapidly degraded by
proteasome [44], it was possible that SMARCA1 was misfolded by
a mutation and degraded by proteasome. As for HSC39 and HSC57,
the absence of transcription factors that regulate SMARCAT expres-
sion was considered as a possible mechanism.

Despite its abundant expression in normal gastric tissues, SMARCA1T
was aberrantly methylated in non-cancerous gastric tissues and gastric
cancers. Generally, genes with abundant expression in normal cells
are resistant to aberrant DNA methylation induction [29,45-52]. As
a possible mechanism of how aberrant methylation is induced in a

gene with abundant expression, its expression may be temporarily
suppressed by exposure to carcinogenic factors, such as H. pylori in-
fection, and such decreased expression can lead to increased
susceptibility to aberrant methylation induction.

Chromatin remodelers, SMARCA1 and SMARCA2, showed a
growth-suppressive function in gastric cancers, but the effect of their
knockdown on enhancement of cell growth was moderate. Chro-
matin remodelers are known to regulate transcription of genes
involved in a variety of biological functions, such as cell cycle, DNA
repair, and apoptosis [53]. Indeed, expression of genes involved in
various biological processes, such as cellular homeostasis, re-
sponse to stimulus, and development of epithelial cells, was changed
by depletion of chromatin remodelers. Therefore, it is considered
that disruption of chromatin remodelers by genetic and epigen-
etic alterations can be involved in cancer development by affecting
not only cell growth but also multiple biological functions.
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The association in non-cancerous tissues between SMARCA]
methylation and its expression levels was unclear. Since non-
cancerous tissues contain not only cells with SMARCAT methylation
but also a large number of cells without, it might have been diffi-
cult to observe a clear association in non-cancerous tissues.

In conclusion, chromatin remodelers are disrupted by both genetic
and epigenetic alterations, and such alterations are likely to be
induced at an early stage of gastric carcinogenesis and involved in
the formation of a field defect as drivers,
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