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Yasushi Totokil:14, Kenji Tatsuno®!4, Kyle R Covington!4, Hiroki Ueda?, Chad J Creighton*, Mamoru Kato!,
Shingo Tsuji2, Lawrence A Donehower”, Betty L Slagle®, Hiromi Nakamura!, Shogo Yamamoto?, Eve Shinbrot3,
Natsuko Hama!, Megan Lehmkuhl?, Fumie Hosoda!, Yasuhito Arai!, Kim Walker®, Mahmoud Dahdouli’,

Kengo Gotoh?, Genta Nagae?, Marie-Claude Gingras®, Donna M Muzny?, Hidenori Ojima®, Kazuaki Shimada’,
Yutaka Midorikawa$, John A Goss?, Ronald Cotton®, Akimasa Hayashi>1?, Junji Shibaharal?, Shumpei Ishikawal?,
Jacfranz Guiteau®, Mariko Tanakal?, Tomoko Urushidate!, Shoko Ohashi!, Naoko Okadal, Harsha Doddapaneni?,
Min Wang?, Yiming Zhu?, Huyen Dinh?, Takuji Okusakall, Norihiro Kokudo!2, Tomoo Kosuge’, Tadatoshi Takayama?,

Masashi Fukayamal?, Richard A Gibbs?, David A Wheeler?, Hiroyuki Aburatani? & Tatsuhiro Shibatal:13

Diverse epidemiological factors are associated with hepatocellular carcinoma (HCC) prevalence in different populations.
However, the global landscape of the genetic changes in HCC genomes underpinning different epidemiological and ancestral
backgrounds still remains uncharted. Here a collection of data from 503 liver cancer genomes from different populations
uncovered 30 candidate driver genes and 11 core pathway modules. Furthermore, a collaboration of two large-scale cancer
genome projects comparatively analyzed the trans-ancestry substitution signatures in 608 liver cancer cases and identified
unique mutational signatures that predominantly contribute to Asian cases. This work elucidates previously unexplored
ancestry-associated mutational processes in HCC development. A combination of hotspot TERT promoter mutation, TERT focal
amplification and viral genome integration occurs in more than 68% of cases, implicating TERT as a central and ancestry-
independent node of hepatocarcinogenesis. Newly identified alterations in genes encoding metabolic enzymes, chromatin
remodelers and a high proportion of mTOR pathway activations offer potential therapeutic and diagnostic opportunities.

HCC is the third leading cause of cancer deaths worldwidel.
Epidemiologically, the incidence of HCC shows marked variance
across geographical regions and ancestry groups and between the
sexes?, HCC incidence predominates in East Asia and Africa, and
rapid increases in prevalence have occurred in Western countries®.
Multiple etiological cofactors are associated with liver cancer, and
their contributions might additionally differ according to ancestry.
Hepatitis B virus (HBV) infection is dominant in East Asia and Africa,
whereas hepatitis C virus (HCV) infection among HCC cases is fre-
quent in Japan. Aflatoxin B1 exposure is a strong risk factor of HCC
in China and Africa, whereas alcohol intake is a major etiological
factor for HCC in Western countries3>. The average male/female
ratio for HCC incidence is greater than two, which could be owing to
different environmental exposures or hormone levels®. Overlapping
but partially distinctive epidemiological backgrounds, such as liver

fluke infection, were associated with intrahepatic cholangiocarcinoma
(IHCC), another type of liver cancer®. Here we conducted the first
trans-ancestry HCC genome sequencing research under the umbrella
of the International Cancer Genome Consortium (ICGC)” and The
Cancer Genome Atlas (TCGA)®. Thus far, this study represents the
largest genomic profiling of liver cancers (608 cases) and compares
ancestry groups (Japanese, Asian and European) with distinctive
etiological cofactors. This genome data set also uncovers an extensive
landscape of driver genetic alterations in HCC.

RESULTS

Whole-exome and oncovirome sequencing of liver cancers

As an ICGC liver cancer project, we collected 503 pairs (413 cases in
the Japanese cohort and 90 cases in the US cohort) of liver cancers
(488 HCC and 15 IHCC) and matched non-cancerous liver tissues
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Figure 1 Multiple types of TERT alterations
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as WNT pathway mutations. TERT promoter
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pathway mutation in HBV-negative cases
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hereafter; 16%) and African-American (12%) WNT pathway mutation
cases. The clinical backgrounds for this cohort —
are shown in Supplementary Table 1. 10%

The exons and surrounding noncod-
ing genomic regions of protein-coding genes were captured in 452
pairs of tumor and non-cancerous liver tissues. Oncoviral genomes,
including for HBV, human papillomavirus (HPV-16 and HPV-18)
and human T-lymphotrophic virus 1 (HTLV1) (91 kb in total;
Supplementary Table 2), were also captured in 198 cases. Whole-
genome sequencing was conducted in 22 HCC pairs, including
9 exome-sequenced cases, and targeted resequencing of liver cancer
genes was carried out for 38 cases. To minimize multicenter study
bias due to differences in exome sequencing platform or data analysis
pipeline, we optimized the somatic mutation detection algorithms
and filtering conditions for three centers using Japanese cohort
samples. High concordance (>87%) with a validation rate of >97% in
somatic mutation detection was achieved, and substitution patterns
among the three centers were consistent (Supplementary Figs. 1
and 2). We also confirmed that similar mutation spectra were
observed in the same cases in whole-genome sequence and whole-
exome sequence (Supplementary Fig. 3).

The average mutation rate was 2.8 mutations per megabase, and T>C
and C>T substitutions were dominant in this cohort (Supplementary
Fig. 4). Eight (1.7%) outlier tumors harboring more than 4.3 muta-
tions per megabase showed substitution patterns distinctive from
those of other cases and had somatic nonsense or missense muta-
tions in mismatch repair (MSH3, MSH4, MSHS5 and MSH6), DNA
polymerase (POLA1, POLK, POLE and POLL) or nucleotide excision
repair (ERCCI and ERCC2) genes (Supplementary Fig. 5).

TERT promoter mutation

Panoramic view of ploidy, copy number and virus integration

We evaluated copy number alteration (CNA) by comparing the
sequence depth for paired samples and allelic imbalance in the
captured area (Supplementary Fig. 6). This digital assessment of
CNA and allelic imbalance was consistent with SNP array data in
cases analyzed by both methods (Supplementary Fig. 7). We also
imputed deviation in the allele frequency of heterozygous single-
nucleotide variation to predict the tumor purity and ploidy for
each sample (H.U,, S.Y,, K.T. and H.A., unpublished data). A large
fraction of cases (28.9%) represented whole-genome duplication with
gross chromosomal loss (average ploidy was 3.87, and the average
number of CNAs was 11.58) (Supplementary Fig. 8), whereas the
remainder showed more stable copy number status (average ploidy
was 2.08, and the average number of CNAs was 7.56). Tetraploidy was

TERT focal amplification | [{lil]

2.0%
8.1% | Total TERT
alteration
p9% } 65.8%
36%
— v -
31% 26%" 7.4% 26% P =0.0059

more frequently observed in higher-grade tumors (P = 0.039, Fisher’s
exact test; Supplementary Fig. 9).

We observed recurrent arm-level gains (1q, 5p, 6p and 8q) and
losses (1p, 4q, 6q, 8p and 17p), as previously described for HCC?
(Supplementary Fig. 10). Recurrent focal amplifications were
detected in 25% of cases, including for TERT and CCNDI1-FGF19.
Homozygous deletions were less frequent events (detected in 17.4%
of cases). Recurrent homozygous deletion was observed for 28 genes,
including CDKN2A-CDKN2B, MAP2K3 and PTEN (Supplementary
Figs. 11 and 12).

Using paired-end reads mapped to the HBV viral and human
genomes, respectively, we detected 628 HBV virus integrations in
68 HBV-positive cases from which viral genomes were captured
(9.2 integrations per case) (Supplementary Table 3), reflecting a detec-
tion rate that was 2-4 times more sensitive than in previous whole-
genome sequencing studies!®!1. Genes close to (less than 10 kb away
from) the recurrent HBV integrations included TERT (n = 17 cases),
KMT2B (MLL4; n = 6 cases), and ALOX5, ZFPM2, SENP5, MYO19
and RGS22 (n = 2 cases each). Recurrent non-genic HBV integrations
were observed near the centromere, especially on chromosomes 1p, 8p
and 10q. A significant fraction of HBV integrations were colocalized
with (less than 500 kb away from) DNA copy number breakpoints
(10.7%; P < 1 x 107>, randomization test) (Supplementary Figs. 13
and 14). Despite intimate association between HBV genome integra-
tion and CNA breakpoints, the frequency of CNA was not different
among the viral subtypes (P = 0.29, ANOVA test; Supplementary
Fig. 15 and Supplementary Table 4).

Multiple types of TERT genetic alteration in HCC

Somatic mutations in the transcriptional regulatory region of the TERT
gene have been reported in a range of cancers, including HCC!>13, By
combining captured noncoding sequence data with capillary sequenc-
ing validation, we detected TERT promoter mutations in 254 cases of
the 469 cases analyzed (54% in total). The frequency of these muta-
tions was highest in HCV-positive cases (121/188; 64%), with lower
frequencies in non-viral cases (88/149; 59%) and HBV-positive cases
(44/120; 37%) (Supplementary Table 5). As reported!?, the muta-
tion located 124 bp upstream of the ATG start site (c.-124C>T, on
the opposite strand; 93%) was more frequent than the c¢.-146C>T
(4.3%) and c.-57A>C (1.6%) mutations (Supplementary Table 6).
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Figure 2 Significant cancer driver genes in a b
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molecular event reported (Supplementary

Table 5). In contrast, no TERT promoter mutations were detected inactivating mutation bias (Supplementary Fig. 16, Supplementary
in 13 ITHCC cases (Fig. 2). TERT promoter mutations significantly =~ Tables 7-10 and Supplementary Note). Furthermore, we eliminated
co-occurred with WNT pathway gene alterations, such as CTNNBI, mutated genes that exhibited sequencing center bias and subclone
AXINI or APC, in HCV-positive and non-virus cases, suggesting a  bias as sources of possible false discovery (Supplementary Tables 11
cooperative oncogenic activity between TERT promoter mutationand  and 12). These steps led to a final list of 30 candidate driver genes

the WNT pathway!6 in these subgroups (Fig. 1). (Fig. 2, Supplementary Fig. 17 and Supplementary Tables 13-15),
including 13 that were not recurrently mutated in previous cohorts!8-20
Significantly altered genes in HCC (Supplementary Table 16). These 13 genes included BRD7, a compo-

To identify significantly altered genes in HCC, we used a combination  nent of the SWI/SNF nucleosome-remodeling machinery, and MENI,
of MutSigCV?, an aggregated somatic alteration method thataggre-  a putative tumor suppressor somatically mutated in neuroendocrine
gates somatic substitutions, short indels, homozygous deletions and ~ tumors—neither of which has been reported in HCC. Mutations in
focal amplifications, and an inactivation bias method that calculates  TSC2, SRCAP and NCORI have been reported as singletons in other
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Figure 3 Oncogenic network in HCC. (a) Major signaling pathways involving genetic alterations in HCC. Key genes in each pathway are indicated by
rectangles, with the percentages of somatic mutations and CNAs shown in the left and right portions of each rectangle, respectively. Significantly
altered genes (SG; MutSigCV, P< 0.05 or GISTIC, g value < 0.1; percentages are underlined for alterations meeting either criterion) are bounded by
solid lines, whereas other key genes in each pathway are bounded by dashed lines. (b) Mutual exclusivity plot of genes relevant to the WNT signaling
pathway. The plot indicates that somatic mutations in WNT-related genes might contribute to the activation of WNT signaling in over half of all HCCs.
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types (Fig. 2b and Supplementary Table 17).

AXINI was more frequently mutated in HBV- 0 Amﬂt.:—._i_A_m‘__A_
positive cases in comparison with HCV- 0.1

positive and non-virus HCC (P = 0.0055,

US-Asian male «—CTG>CAG
Fisher’s exact test), indicating that different 0 M-L————AU—A-LM—

viral etiologies might activate WN'T signaling 01
in distinct ways. ARID1A was more frequently
altered in non-virus cases (P = 0.009). 0!
Alterations of drug target kinases were
rarely found in HCC; low-level recurrent
mutations of FGFR2 (mutated in 1.8% of cases), KIT (1.3%), FGFR3
(0.9%), FGFR1 (0.9%), JAK1 (0.9%) and EGFR (0.4%) and focal ampli-
fication of MET (0.5%) were detected. The specific mutations in these
receptor tyrosine kinases were not generally observed in other can-
cers, with the exception of two JAKI mutations (encoding p.Ser7031Ile
and p.Leu910Pro substitutions), which were previously observed
in a liver cancer sequencing study®’. The liver has a central role in
many metabolic processes. Our study identified recurrent mutations
of metabolic enzyme genes in HCC (Fig. 2b and Supplementary
Tables 7 and 13). These included CYP2EI (2.0%); ADHIB (1.8%),
encoding alcohol dehydrogenase 1B; and G6PC (1.8%), encoding a
glucose-6-phophatase catalytic subunit, whose aberrations could be
linked to metabolomic changes in HCC.

US-Asian female

Significant oncogenic pathways in HCC
Oncogenic pathways were further explored by aggregating the
alterations of each gene within a particular pathway (Fig. 3a).

TP53-RB pathway. Inactivation of the tumor-suppressor TP53-
RB pathway was a consistent theme in HCC. TP53 mutations were
observed in 31% of tumors, and two genes encoding p53-activating
kinases, ATM and RPS6KA3, were also recurrently mutated. The RBI
gene was mutated in 4.4% of cases. The CDKN2A gene encoding the
RB regulator p16™K4A was subject to frequent focal homozygous
deletion, and the p53 target and RB regulator CDKNIA (encoding
p21CP1) was significantly mutated. Overall, 72% of cases had altera-
tions in component genes of one or both of these pathways.

WNT pathway. In addition to activating CTNNBI mutations,
inactivating mutations were frequently observed in WNT regulators,
including AXINI and APC. CCND1 is a key downstream target of
WNT signaling?!, and FGFI9 has been shown to activate CTNNBI
transcriptional functions®2. Mutual exclusivity of CTNNBI, AXIN1

and APC mutations and CCNDI1-FGF19 amplification supports the
functional role of these genes in altering WNT signaling (Fig. 3b).
Overall, 66% of HCCs showed WNT pathway-related alterations.

Chromatin and transcription modulators. A large proportion
of the genes on the list of significantly mutated genes encoded
chromatin modulators or transcriptional regulators. Frequent
alterations in NFE2L2, encoding a transcriptional regulator that
activates antioxidant and cytoprotective target genes®3, and its
negative regulators KEAPI and CUL3 (ref. 24) were noted. Also
mutated were the nucleosome remodelers ARIDIA, ARID2 and
BRD7, with CNAs and mutations in six additional members of
the SWI/SNF complex (Fig. 3a), SRCAP and the transcriptional
corepressor NCOR1, both of which have roles in steroid receptor-
mediated transcription. These genes displayed primarily
inactivating frameshift and nonsense mutations that suggest a
tumor-suppressor gene function in HCC (Supplementary Fig. 18
and Supplementary Table 9). NCOR1I has been shown to directly
suppress CTNNBI function?> and exhibits mutual exclusivity
for mutations with other WNT pathway genes (Fig. 3b).
SRCAP encodes an Snf2-related CREBBP activator in several
pathways, including NOTCH?% and steroid receptors?’. Truncating
SRCAP mutations cause a rare hereditary disease with developmen-
tal defects and early-onset tumor formation?®2%, highlighting its
potential function as a tumor-suppressor gene.

mTOR-PIK3CA pathway. Recurrent inactivating mutations in
TSCI-TSC2 and activating mutations and copy gain in PIK3CA were
observed (Fig. 3a). Other modulators involved with this pathway, such
as NF1, PTEN, INPP4B and STK11, were also affected, and, in total,
45% of cases had alterations in the mTOR-PIK3CA pathway. Somatic
TSCI mutation was reported as a potential predictive biomarker of
an mTOR inhibitor3?, and TSCI-mutated HCC cell lines showed
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Figure 5 Ancestry-specific mutational a C>A C>G C>T T>A TsC T>G b
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genic pathways in HCC, we developed a

pathway compression algorithm and applied

it to the significantly altered genes. We identified 11 core oncogenic
network modules in HCC (Supplementary Table 18). To visualize
these modules in the context of a biological network, we constructed
a schematic view of the modules and the additional nodes that can
connect them (Supplementary Fig. 20). The nodes were typically
classified into two types; one type was closely connected to neighbor-
ing nodes (with higher value for centrality; Supplementary Table 19)
and the other type had long-range edges that reached distant nodes,
which can be used to measure the effect of each module alteration
on the total network. Further comparison of the association between
these module alterations and background clinical factors showed that
the mTOR module was significantly different (P < 0.05, Cochran-
Mantel-Haenszel test) in Asian and European-ancestry populations
with respect to mutational frequencies (Supplementary Fig. 21).

Ancestry-dependent diversity in HCC mutation signatures
Somatic mutation patterns in human cancer are closely associated
with epidemiological factors3-3%; however, their association with
ancestry remains unexplored. We integrated genomic data from
an additional 105 HCC cases sequenced by TCGA along with the
503 cases sequenced by us (Supplementary Table 1) and compared
somatic substitution patterns according to epidemiological data and
ancestry group. Because mutation patterns in hypermutated cases and
THCC were distinctive (Supplementary Figs. 4 and 22), these two
groups were excluded from further mutation pattern analysis.
Principal-component analysis of the 96 possible nucleotide triplets,
dependent on the bases immediately 5" and 3’ to each substitution,
showed that the constitution of substitution patterns with these triplets
was significantly different by ancestry group (Japanese, US Asian and
European ancestry; P=2.2 x 10716, Wilks’ test) and by sex (P=9.5x 1078)
(Fig. 4a). Notably, substitution patterns were not significantly asso-
ciated with viral status (HBV, HCV and non-viral, P = 0.35; Fig. 4a
and Supplementary Fig. 23). T>C substitutions, particularly in an

ATA context, were specifically increased in Japanese male samples,
and T>A substitutions (most frequently in a CTG context) were
specifically increased in US-Asian male and female samples. The
distributions of the frequencies for the 96 substitution types were
similar among Japanese female samples and European-ancestry male
and female samples (Fig. 4b).

We applied non-negative matrix factorization (NMF) analysis to
the 96-substitution pattern®? and identified 3 mutation signatures
(HCC signatures A-C; Fig. 5a and Supplementary Fig. 24). Each
signature was composed of context-specific substitutions: HCC
signature A was characterized by dominant T>C mutations, espe-
cially in an AT(A/G/T) context, whereas HCC signature B contained
dominant T>A mutations, with a sharp increase in frequency for
a CTG context. HCC signature C contained dominant C>T muta-
tions, especially in an (A/C/G)CG context. The distribution of these
signatures was associated with ancestry and sex but not with the
virus status (Supplementary Table 20). Among the different ances-
try groups, HCC signatures A and B more frequently contributed to
Japanese male (odds ratio (OR) = 2.2; P = 0.0025, Fisher’s exact test)
and US-Asian (OR = 2.5; P = 0.00036) cases, respectively, whereas
HCC signature C was common across all ancestry groups and in both
sexes (Fig. 5b,c and Supplementary Fig. 25). Remarkable differ-
ences in mutation prevalence between the transcribed and untran-
scribed strands were observed for T>C substitutions, especially in an
AT(A/G/T) context (P ="7.4 x 107152, y2 test), in HCC signaturé A and
for T>A substitutions, especially in a CTG context (P =3.3 x 1078),
in HCC signature B (Fig. 5d). These significant strand biases imply
the involvement of transcription-coupled repair, which is tightly
associated with known carcinogens in other tumor types®'=34, There
was no significant association between the signature distribution
and the ALDH2 SNP rs671, which is associated with alcohol metab-
olism and is a more frequent genotype in the Asian population3?
(Supplementary Table 21).
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To collect large amounts of cancer genome data from different
ancestry groups and epidemiological backgrounds, we currently
need to combine data from multiple institutes that apply individual
analytical platforms. An important caveat in multicenter trans-
ancestry analysis has been the possibility that ancestry-specific sig-
natures can be biased by experimental or analytical differences. To
avoid this potential bias, we processed the DNA from 99 Japanese
HCC cases using the sequencing and analysis pipeline at the United
States-based Baylor College of Medicine. Using this data set from a
single center, we replicated exactly the same signatures in each pop-
ulation (Supplementary Fig. 26). We also examined the distribu-
tion of signatures among three centers using Japanese male samples
and confirmed that similar distributions were seen among the three
centers (Supplementary Fig. 27). Furthermore, we analyzed whole-
genome sequencing data for 88 Chinese HCC samples!? and success-
fully identified HCC signatures B and C in this independent data set
(Supplementary Fig. 28).

Outcome analysis from mutational signatures

We analyzed the derived NMF signatures to determine whether any
signature or signature component was associated with differences
in outcome in the HCC cohort. NMF signature values were merged
with annotated clinical data. We performed calculations using
standardized signature values to control for differences in the mutation
rate between the subjects. Multivariate analysis with the Cox propor-
tional hazards model (Supplementary Fig. 29 and Supplementary
Tables 22-26) indicated that histological grade, HCC signature B
and the interaction with HCC signature A (but not with HCC
signature C) were significant predictors of outcome.

DISCUSSION

The present trans-ancestry liver cancer genome study first identified
mutational signatures that are independent of hepatitis virus infec-
tion and contribute more to the Asian cases than to ones of European
ancestry (Supplementary Tables 27). One signature, characterized by
AT>AC mutations, was predominant in Japanese males, whereas the
other, featuring CTG>CAG mutations, was found more frequently
in tumors from Asians living in the United States. These correlations
may highlight deeper intra-ancestry diversity and/or environmental
contributions, and sex bias might further affect downstream target
genes and molecular features in HCC. As several genetic loci are
associated with individual HCC risk together with HBV and/or HCV
infection7:38, somatic and germline genome interaction might also
be important to consider. Notably, these signatures were not evident
in IHCC for Japanese cases (data not shown), suggesting that they
are unique properties of HCC. The causes of these signatures remain
unknown, but skewed transcriptional strand biases in characteristic
sequence contexts strongly imply the presence of specific, previously
unexplored mutational processes, which profoundly influence tumor
genome constitution and behavior.

With 503 cases, this study is the largest liver cancer genome analysis
thus far, enabling the formation of a more thorough picture of the
mutational landscape of HCC than ever before. In addition to iden-
tifying a large number of significantly mutated genes, we have also
identified recurrent alterations of 9 of the 14 core genes making up the
SWI/SNF complex. We also find a combination of hotspot TERT pro-
moter and ATRX mutations, along with focal amplification and virus
genome integration in the TERT locus, in more than 68% of HCC
cases regardless of virus subtype. These findings show that TERT is a
central driver gene and a promising molecular target> in HCC. The
targeting of high-prevalence mT'OR-PIK3CA pathway activation and

antiproliferative activity in HCC cells by chemical inhibition should
also offer new therapeutic opportunities. In addition, newly identi-
fied alterations in the chromatin-remodeling complex and metabolic
enzymes are expected to be associated with cancer-specific epigenetic
and metabolomic features.

URLs. DNAcopy, http://www.bioconductor.org/packages/2.13/bioc/
html/DNAcopy.html; R software, http://www.R-project.org/; R survival
package, http://CRAN.R-project.org/package=survival/; HGSC
Mercury analysis pipeline, https://www.hgsc.bcm.edu/software/
mercury; GRCh38 human reference genome, http://www.ncbi.nln.nih.
gov/projects/genome/assembly/gre/human/; BWA2, httpi//bio-bwa.
sourceforge.net/; GATK4, http://www.broadinstitute.org/gatk/.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. Sequence data have been deposited in the European
Genome-phenome Archive (EGA) under accession EGAS00001000389,
the ICGC database (http://www.icgc.org/) and the database of
Genotypes and Phenotypes (dbGaP) under accession phs000509.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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