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Triple Inhibition of EGFR, Met, and VEGF Suppresses
Regrowth of HGF-Triggered, Erlotinib-Resistant Lung
Cancer Harboring an EGFR Mutation
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Introduction: Met activation by gene amplification and its ligand,
hepatocyte growth factor (HGF), imparts resistance to epidermal
growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in
EGFR-mutant lung cancer. We recently reported that Met activation by
HGF stimulates the production of vascular endothelial growth factor
(VEGF) and facilitates angiogenesis, which indicates that HGF induces
EGFR-TKI resistance and angiogenesis. This study aimed to determine

the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF- .

triggered EGFR-TKI resistance in EGFR-mutant lung cancer.
Methods: Three clinically approved drugs, erlotinib (an EGFR
inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase
and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a
novel dual TKI for Met and VEGF receptor 2, were used in this study.
EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene—
transfected PC-9 (PC-9/HGF) cells were examined.

Results: Crizotinib and TAS-115 inhibited Met phosphorylation
and reversed erlotinib resistance and VEGF production triggered by
HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115
inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the
triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib
and TAS-115 successfully inhibited PC-9/HGF tumor growth and
delayed tumor regrowth associated with sustained tumor vasculature
inhibition even after cessation of the treatment.

Conclusion: These results suggest that triple inhibition of EGFR,
HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clini-
cal drugs or TAS-115 combined with erlotinib, may be useful for
controlling progression of EGFR-mutant lung cancer by reversing
EGFR-TKI resistance and for inhibiting angiogenesis.
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Lung cancer is the leading cause of cancer-related deaths
worldwide. Recent advances in molecular biology have
identified driver oncogenes such as epidermal growth factor
receptor (EGFR) mutations or the echinoderm microtubule—
associated protein-like 4/anaplastic lymphoma kinase (ALK)
fusion gene in non—small-cell lung cancer (NSCLC). In the
treatment of NSCLCs harboring these driver oncogenes, the
use of EGFR tyrosine kinase inhibitors (TKIs; such as gefi-
tinib and erlotinib) and an ALK inhibitor (such as crizotinib)
to block driver oncogene survival signals resulted in marked
tumor regression.'™ Despite these clinical successes, tumors
acquire resistance to those agents in almost all cases during
the course of therapy.’

Recently, several mechanisms of EGFR-TKI resistance
have been identified and classified as follows: (1) alteration of
the target EGFR gene (e.g., T790M gatekeeper mutation)®’;
(2) activation of bypass resistance signals (e.g., Met gene
amplification,® hepatocyte growth factor [HGF] overexpres-
sion,” and activation of the nuclear factor-kappa B (NFkB)
pathway!® and Gas6-AXL axis)!!; and (3) other mechanisms
such as transformation to small-cell lung cancer,!*!4 epithelial-
to-mesenchymal transition,'*'7 alteration of microRNA, ¥ and
down-regulation of MED12.”® Previously, we demonstrated
that HGF activates, through the Met/PI3K/Akt pathway,
bypass signals that trigger resistance; overexpression of HGF
was observed more frequently than T790M and Mer ampli-
fication in tumors from patients with NSCLC who acquired
EGFR-TKI resistance in a Japanese cohort.?’ These findings
indicate that HGF is a clinically relevant target for overcoming
EGFR-TKI resistance in EGFR-mutant lung cancer.

Angiogenesis is essential for the progression of various
types of solid tumors, including NSCLC. Vascular endothe-
lial growth factor (VEGF) is the most prominent proangio-
genic molecule and is considered to be a therapeutic target
in NSCLC. We previously reported that overexpressed HGF
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stimulates VEGF production by means of phosphorylation
of Met/Gabl and promotes tumor growth by stimulating
angiogenesis in EGFR-mutant lung cancer models,”! which
indicates that HGF is a critical inducer of not only EGFR-
TKI resistance but also angiogenesis in EGFR-mutant lung
cancer. Therefore, we hypothesized that triple inhibition of
the driver signal (EGFR), bypass resistance signal (Met),
and angiogenesis (VEGF) may be beneficial for controlling
the progression of EGFR-mutant lung cancer with HGF-
triggered EGFR-TKI resistance.

EGFR-TKIs, erlotinib, gefitinib, ALK-TKI, crizotinib,
and the anti-VEGF antibody bevacizumab have been clinically
approved as molecularly targeted drugs in many countries.
Crizotinib is known to have activity against Met in addi-
tion to ALK and c-ros oncogene 1, receptor tyrosine kinase
(ROS1).222 In the present study, we investigated the therapeu-
tic effect of triple inhibition against HGF-triggered, EGFR-
TKI-resistant lung cancer harboring an EGFR mutation by
using clinically available targeted drugs, namely, erlotinib,
crizotinib, and bevacizumab. We further assessed the thera-
peutic potential of erlotinib and TAS-115 (Supplementary
Figure 1, Supplementary Digital Content 1, http://links.Iww.
com/JTO/A570), a novel VEGF receptor 2 (VEGFR-2) inhibi-
tor, which can be orally administered and has Met inhibitory
activity, and we compared this doublet treatment with the
clinically available triplet. In this study, we demonstrate that
the doublet inhibited the progression of HGF-overexpressing
EGFR-mutant lung cancer more efficiently than the clinically
available triplet treatment. Moreover, TAS-115 combined with
erlotinib also controlled tumor growth well and, remarkably,
delayed regrowth even after cessation of the treatment.

MATERIALS AND METHODS

Cell Cultures and Reagents

The EGFR-mutant human lung adenocarcinoma cell
lines PC-9 (del E746_A750) and HCC827, with deletions
in EGFR exon 19, were purchased from Immuno-Biological
Laboratories Co. (Gunma, Japan) and from American Type
Culture Collection (Manassas, VA) respectively.?? Human
HGF-gene transfectant (PC-9/HGF) and vector control (PC-9/
Vec) cells were established as previously described.?* These
cell lines were maintained in RPMI-1640 medium supple-
mented with 10% fetal bovine serum (FBS) and antibiotics.
All cells were passaged for less than 3 months before renewal
from frozen, early-passage stocks. The human embryonic
lung fibroblast cell line MRC-5 was purchased from the
Health Science Research Resources Bank (Osaka, Japan).
MRC-5 (P30-35) cells were maintained in Dulbecco’s modi-
fied Eagle’s medium with 10% FBS, 100 units/ml penicillin,
and 100 pg/ml streptomycin. Human dermal microvascular
endothelial cells (HMVECs) were incubated in RPMI-1640
medium with 10% FBS (control), RPMI-1640 medium with
10% FBS plus VEGEF, or HuMedia-MvG with different con-
centrations of TAS-115 for 72 hours. Thereafter, cell viability
was determined by thiazolyl blue tetrazolium bromide (MTT)
assay. Cells were regularly screened for mycoplasma by using
MycoAlert Mycoplasma Detection Kits (Lonza, Rockland,
ME). The cell lines were authenticated at the laboratory of
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the National Institute of Biomedical Innovation (Osaka,
Japan) by short tandem repeat analysis. TAS-115 was synthe-
sized by Taiho Co., Ltd (Tokyo, Japan). Erlotinib and crizo-
tinib were obtained from Selleck Chemicals (Houston, TX).
Bevacizumab was obtained from Chugai Pharma (Tokyo,
Japan). Human recombinant HGF was prepared as previously
described.?*

Production of HGF and VEGF in
Cell Culture Supernatants

Cells (2 x 10%) were cultured in a 2 ml of culture medium
with 10% FBS for 24 hours, washed with phosphate-buffered
saline (PBS), and incubated for 48 hours in the medium sup-
plemented with 10% FBS. In some experiments, HGF was
added to the medium. The culture media was harvested and
centrifuged, and the supernatants were stored at —80°C until
analysis. The concentrations of HGF and VEGF were deter-
mined by IMMUNIS HGF EIA (Institute of Immunology,
Tokyo, Japan) or Quantikine VEGF enzyme-linked immu-
nosorbent assay (R&D Systems, Minneapolis, MN), respec-
tively, according to the respective manufacturer’s protocol. All
samples were run in duplicate. Color intensity was measured
at 450 nm by using a spectrophotometric plate reader. Growth
factor concentrations were determined by comparison with
standard curves. The detection limits for HGF and VEGF
were 100 and 31 pg/ml, respectively.

Cell Viability Assay

Cell growth was measured using the MTT dye reduc-
tion method.?* Tumor cells were plated into 96-well plates at
a density of 2x10% cells/100ml RPMI-1640 medium with
10% FBS per well. After 24-hour incubation, various reagents
were added to each well, and the cells incubated for a further
72 hours, followed by the addition of 50 pl of MTT solution
(2mg/ml; Sigma, St. Louis, MO) to each well and incuba-
tion for 2 hours. The media containing MTT solution was.
removed, and the dark blue crystals were dissolved by add-
ing 100ml of dimethyl sulfoxide. The absorbance of each well
was measured with a microplate reader at test and reference
wavelengths of 550 and 630nm, respectively. The percent-
age of growth is shown relative to untreated controls. Each
reagent concentration was tested at least in triplicate during
each experiment, and each experiment was conducted at least
three times.

Antibodies and Western Blotting

Protein aliquots of 25 pg each were resolved by sodium
dodecyl sulfate-polyacrylamide gel (Bio-Rad, Hercules, CA)
electrophoresis and transferred to polyvinylidene difluoride
membranes (Bio-Rad). After washing four times, the mem-
branes were incubated with Blocking One (Nacalai Tesque,
Kyoto, Japan) for 1 hour at room temperature and overnight at
4°C with primary antibodies to (3-actin (13E5), Met (25H2),
phospho-Met (Y1234/Y1235;3D7), phospho-EGFR (Y 1068),
Akt, phospho-Akt (Serd473; 736E11), VEGFR-2 (55B11),
phospho-VEGFR-2 (Tyr951;15D2), human EGFR (1 pg/ml),
human/mouse/rat Erk1/Erk2 (0.2 pg/ml), and p-Erk1l/Erk2
(T202/Y204; 0.1 pg/ml; R&D Systems). After three washes,
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the membranes were incubated for 1 hour at room tempera-
ture with species-specific, horseradish peroxidase—conjugated
secondary antibodies. Immunoreactive bands were visualized
with Super Signal West Dura Extended Duration Substrate
(Thermo Fisher Scientific, Waltham, MA) and an enhanced
chemiluminescence  substrate (Pierce  Biotechnology,
Rockford, IL). Each experiment was conducted at least three
times independently.

Coculture of Lung Cancer Cells with
Fibroblasts or Endothelial Cells

Cells were cocultured in Transwell collagen—coated
chambers separated by an 8-mm (BD Biosciences, San Jose,
CA) or 3-mm (Corning, Tewksbury, MA) pore size filter. Tumor
cells (8 x 10° cells/800ml) with or without TAS-115 (1.0 umol/
liter) or erlotinib (0.3 pmol/liter) in the lower chamber were
cocultured with MRC-5 (1% 10* cells/300 pl) cells in the upper
chamber for 72 hours. The upper chamber was then removed,
200 pl of MTT solution was added to each well, and the cells
were incubated for 2 hours at 37°C. The media was removed,
and the dark blue crystals in each well were dissolved in 400 pl
of dimethyl sulfoxide. Absorbance was measured with an MTP-
120 Microplate reader (Corona Electric, Ibaraki, Japan) at test
and reference wavelengths of 550 and 630 nm, respectively. The
percentage of growth was measured relative to untreated con-
trols. All samples were assayed at least in triplicate, with each
experiment conducted three times independently.

Subcutaneous Xenograft Models

Nude mice (male, 5-6 weeks old) were obtained from
Clea (Tokyo, Japan). Cultured tumor cells (PC-9/Vec or PC-9/
HGF) were implanted subcutaneously into the flanks of each
mouse at 3x10°% cells/0.1ml. When tumor volumes reached
100 to 200mm?, the mice (n = 5 per group) were randomized
to the following groups: (1) no treatment (control group), (2)
only 50mg/kg of erlotinib orally, (3) only 25 mg/kg of crizotinib
orally, (4) only 100 pg/mouse of bevacizumab intraperitoneally,
(5) only 75 mg/kg of TAS-115 orally, (6) erlotinib and crizotinib,
(7) crizotinib and bevacizumab, (8) erlotinib and bevacizumab,
(9) erlotinib, crizotinib, and bevacizumab, and (10) erlotinib and
TAS-115. Each tumor was measured in two dimensions three
times a week, and the volume was calculated using the follow-
ing formula: tumor volume (mm?) = 1/2 (length (mm) % (width
(mm))?). All animal experiments complied with the Guidelines
for the Institute for Experimental Animals, Kanazawa University
Advanced Science Research Center (Approval No. AP-122505).

Histological Analyses

For detection of endothelial cells (CD31), 5-pm-
thick frozen sections of xenograft tumors were fixed with
cold acetone and washed with PBS. Then, endogenous per-
oxidase activity was blocked by incubation in 3% aque-
ous H,O, for 10 minutes. After treatment with 5% normal
horse serum, the sections were incubated with primary
antibodies to mouse CD31 (MEC13.3; BD Biosciences).
After probing with species-specific, biotinylated second-
ary antibodies, the sections were incubated for 30 minutes
with avidin-—biotinylated peroxidase complex by using a

Copyright © 2014 by the International Association for the Study of Lung Cancer

Vectastain ABC kit (Vector Laboratories, Burlingame, CA).
The 3,3’-diaminobenzidine tetrahydrochloride Liquid System
(DAKO, Glostrup, Denmark) was used to detect immunos-
taining. Omission of the primary antibody served as a nega-
tive control. Terminal deoxynucleotidyl transferase—mediated
deoxyuridine triphosphate-biotin nick end-labeling stain-
ing was performed using the Apoptosis Detection System
(Promega Corporation, Madison, WI). In brief, 5-um-thick
frozen sections of xenograft tumors were fixed with PBS con-
taining 4% formalin. The slides were washed with PBS and
permeabilized with 0.2% Triton X-100. The samples were
then equilibrated, and DNA strand breaks were labeled with
fluorescein-12-2-deoxy-uridine-5-triphosphate  (fluorescein-
12-dUTP) by adding the nucleotide mixture and the termi-
nal deoxynucleotidyl transferase enzyme. The reaction was
stopped with saline sodium citrate, and the localized green
fluorescence of apoptotic cells was detected by fluorescence
microscopy (x200). The five areas containing the highest
numbers of stained cells within a section were selected for
histologic quantitation by light or fluorescent microscopy at a
%400 magnification. All results were independently evaluated
by three investigators (JN, TN, and ST).

Statistical Analysis

Differences were analyzed by one-way analysis of vari-
ance. All statistical analyses were carried out using GraphPad
Prism Ver. 4.01 (GraphPad Software, Inc., La Jolla, CA). A p
value of less than 0.01 was considered statistically significant.

RESULTS

Effect of Crizotinib and TAS-115 on Bypass
Resistance Signals Triggered by Exogenous
HGF In Vitro

In the first set of experiments, we examined the effect
of crizotinib and TAS-115 on exogenously added HGF-
triggered EGFR-TKI resistance in vitro. PC-9 and HCC827
cells are highly sensitive to erlotinib, whereas exogenously
added HGF induces resistance to erlotinib in both cell lines.
Crizotinib on its own discernibly inhibits the growth of
PC-9 cell at high concentrations, consistent with its mul-
tikinase activities, and it remarkably sensitizes the cell to
erlotinib even in the presence of HGF. TAS-115 does not
affect the growth of PC-9 or HCC827 cells at concentrations
less than 10 pmol/liter; however, the combined use of TAS-
115 with erlotinib reverses HGF-induced resistance in the
cell lines in a concentration-dependent manner (Figs. 14,
B and 24, B, and Supplementary Figure 2, Supplementary
Digital Content 2, http:/links.lww.com/JTO/A571). We
previously reported that stromal fibroblasts are a source
of exogenous HGF for EGFR-TKI-naive NSCLC and that
fibroblast-derived HGF induces resistance to gefitinib and
erlotinib in PC-9 and HCC827 cells.? Crizotinib and TAS-
115 reverse the erlotinib resistance of PC-9 cells induced by
coculturing with MRC-5 cells (Supplementary Figure 3A,
B, Supplementary Digital Content 3, http://links.lww.com/
JTO/A572). These results indicate that both crizotinib and
TAS-115 can reverse the EGFR-TKI resistance induced by
exogenous HGF in vitro.
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Combined use of crizotinib or TAS-115 with erlotinib reverses resistance to EGFR-TKI induced by exogenous HGF.

A and B, PC-9 cells were incubated with or without erlotinib or crizotinib and TAS-115 in the presence or absence of HGF (20
ng/ml) for 72 hours. Cell viability was determined by MTT assay. Bars show SD. The data shown are representative of five
independent experiments with similar results. EGFR, epidermal growth factor receptor; EGFR-TKI, EGFR-tyrosine kinase inhibitor;
HGF, hepatocyte growth factor; MTT, Thiazolyl Blue Tetrazolium Bromide.

Effect of Crizotinib and TAS-115 on Bypass
Resistance Signals Triggered by Endogenous HGF

Previously, we showed that HGF is predominantly pres-
ent in tumor cells of patients with NSCLC with acquired
resistance to EGFR-TKIs and that transient HGF-gene trans-
fection into PC-9 cells results in resistance to EGFR-TKIs.?
We, therefore, generated a stable HGF-gene transfectant in
PC-9 cells (PC-9/HGF) and assessed the effects against con-
tinuously produced endogenous HGF. PC-9/HGF cells secrete
high levels of HGF and become resistant to erlotinib, whereas
PC-9 or the vector control PC-9/Vec cells do not. Although
TAS-115 does not affect the growth of PC-9/HGF cells,
crizotinib discernibly inhibits it at high concentrations. The
combination of crizotinib or TAS-115 with erlotinib success-
fully reverses the resistance of PC-9/HGF cells (Fig. 24-G).
Using Western blotting, we examined the effects of crizotinib
and TAS-115 on signal transduction in PC-9/Vec and PC-9/
HGF cells (Fig. 2H-I). We found that erlotinib inhibits the
phosphorylation of EGFR and ErbB3 in PC-9/Vec cells,
thereby inhibiting the phosphorylation of Akt and extracel-
lular signal-regulated kinase 1/2 (ERK1/2). Met phosphory-
lation is observed in PC-9/HGF cells but not in PC-9/Vec
cells. However, erlotinib fails to inhibit phosphorylation of
Akt or Erkl/2 in the presence of HGF. Both crizotinib and
TAS-115 suppress the constitutive phosphorylation of Met
but not EGFR, ErbB3, or downstream Akt and ERK1/2. HGF
stimulates the phosphorylation of Met, but the combined use
of crizotinib or TAS-115 with erlotinib inhibits the phos-
phorylation of Met, Akt, and Erk1/2. These results suggest
that crizotinib and TAS-115, when combined with erlotinib,
reverse HGF-triggered erlotinib resistance by inhibiting the
Met/Gab1/PI3K/Akt pathway.

Effect of Crizotinib and TAS-115 on
Angiogenesis In Vitro and In Vivo

As we reported previously,?! exogenous and endogenous
HGF stimulated VEGF production in the PC-9 cancer cell line.
Both crizotinib and TAS-115 inhibit VEGF production, pre-
sumably because of inhibiting Met activation by HGF (Fig. 34,
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B). We also assessed the effect of crizotinib, TAS-115, and
bevacizumab on the growth of HMVECs. VEGF promoted
HMVEC viability, whereas TAS-115 and bevacizumab, but
not crizotinib, inhibit VEGF-stimulated viability of HMVECs
in a dose-dependent manner (Fig. 3C, D). We also explored the
potential of TAS-115 against VEGFR-2. Western blot analysis
indicated that VEGFR-2 is phosphorylated by VEGF stimu-
lation in HMVECs, and TAS-115 and bevacizumab show an
inhibitory effect (Supplementary Figure 4, Supplementary
Digital Content 4, http:/links.lww.com/JTO/A573). We next
examined the effect on in vivo angiogenesis by using short-term
treatment models. Nude mice with established subcutaneous
tumors (tumor volume approximately 100mm?) were treated
with erlotinib with or without crizotinib, bevacizumab, and/or
TAS-115, and tumor vascularization was determined on day 4
(Fig. 44, B). In PC-9/Vec tumors, treatment with erlotinib
alone, TAS-115 alone, or erlotinib with TAS-115 inhibited
vascularization. PC-9/HGF tumors have more vascularization
than PC-9/Vec tumors. In PC-9/HGF tumors, treatment with
bevacizumab, but not erlotinib or crizotinib, inhibited vascular-
ization. We found that TAS-115 inhibited vascularization more
potently than bevacizumab. Under these experimental condi-
tions, treatment with erlotinib plus crizotinib inhibited vascu-
larization. Importantly, erlotinib plus TAS-115 more potently
inhibited vascularization, compared with erlotinib plus crizo-
tinib, with or without bevacizumab. These results indicate that
TAS-115 has a high potential to inhibit angiogenesis in vivo in
EGFR-mutant tumors that produce high levels of HGFE. We also
confirmed that treatment with crizotinib or TAS-115 inhibits
the phosphorylation of EGFR and Met in vivo (Supplementary
Figure 5, Supplementary Digital Content 5, http:/links.Iww.
com/JTO/A574).

Effect of Combined Treatment on Growth
of HGF-Overexpressing Tumors In Vivo

Nude mice bearing established subcutaneous tumors
(tumor volume approximately 100mm?) were treated with
erlotinib with or without crizotinib, bevacizumab, and/or
TAS-115 for 39 days. The treatment was feasible, and no

Copyright © 2014 by the International Association for the Study of Lung Cancer



Journal of Thoracic Oncology® ® Volume 9, Number 6, June 2014

Inhibition of EGFR/Met/VEGFR-2 Against EGFR-TKI-Resistance

140
A P B o Cu
| IR =
100 e 100 E-‘{
= i\ T‘-i-.i_.;.‘~; z z AN AN
S ow N\ -3 2w ES
Z w0 = k4 *,
= 60 = = \
S 3 8 804 .
® 40 ES ® 40‘ < Py X
20 20! X .
0 0
0 00100301 03 1 3 10 0 00100301 03 1 3 10 0 001005 04 03 1 3 1o {umoll)
Erlotinib (zmoliL) Crizotinib (umol/L) Enlotinib (0.3 pmoliL) + Crizotinib
140 140
D E F 10 G 1o oE
120 1 120 aPC-9Vee
L 0PC-OHGF
= = 100 1_--_;\ 100
3 ‘3 w0 i"{ 2 Z
] £ &N 2 g8
s ® 3 § 60
= w0
20 4
20
[

0 —
0 00100301 03 1 3 10 (pmoll)
Erlotinib 0.3 pmoliL) + TAS-115

0 001003 01 03 1
TAS-115 (umolL)

3 1

H

PC-9Vec
Evlotinib (0.3 umotl)
Goleb f3umat) -

PC-9HGF

Erlotinib (0.3 pmoliL)
Crizotinib (0.3 pmoliL)

[
Erlotinib (0.3 pmol/L)
TAS-115 (1.0 pmoliL)

Erlotinib 50.3 pmol/l.}

TAS-115 (1.0 pmol/L)

- - o+ - -
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assay. Bars show SD. B and D, PC-9/Vec and PC-9/HGF cells were treated with crizotinib or TAS-115 for 72 hours. -G, PC-9/Vec
and PC-9/HGF cells were incubated with or without erlotinib (0.3 pmol/liter) with or without crizotinib (0.3 ymol/liter) and TAS-
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Thereafter, cell lysates were harvested, and phosphorylation of the indicated proteins was determined by Western blot analysis.
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adverse events, including loss of weight, were observed.
Tumor volumes on day 39 are shown in Figure 54 and B (tumor
growth curves over time are shown in Supplementary Figure 6,
Supplementary Digital Content 6, http://links.lww.com/JTO/
A575). Erlotinib markedly inhibited the growth of PC-9/Vec
tumors, but TAS-115 inhibited it only modestly (81.7% and
40%, respectively). In PC-9/HGF tumors, erlotinib alone and
crizotinib alone inhibited tumor growth only slightly (30%
and 31.9%, respectively). Moreover, bevacizumab alone and
TAS-115 alone inhibited tumor growth modestly (67% and
76.6%, respectively). Erlotinib plus crizotinib, with or without
bevacizumab, inhibited tumor growth markedly (87.1% and
88.3%, respectively). Importantly, erlotinib plus TAS-115 fur-
ther inhibited tumor growth significantly (93.7%).

Effect of Combined Treatment on
Regrowth of HGF-Overexpressing Tumors
after Cessation of the Treatment

We further evaluated the effect on regrowth of PC-9/
HGF tumors after cessation of drug treatment. After 10 days
of cessation, tumors treated with erlotinib plus crizotinib with
or without bevacizumab regrew to 4.5 and 3.3 times their ini-
tial size at the start of cessation, respectively. Tumors treated

Copyright © 2014 by the International Association for the Study of Lung Cancer
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with erlotinib plus TAS-115 regrew to only 1.7 times their
initial size (Fig. 64). To explore the mechanism of this phe-
nomenon, we again evaluated tumor vascularization on day
49 (10 days after the start of cessation). Consistent with an
inhibitory effect against tumor regrowth, vessel density was
high (104.6+7.3) and modest (68.6+8.0) in tumors treated
with erlotinib plus crizotinib without and with bevacizumab,
respectively, whereas vessel density in the tumors treated with
erlotinib plus TAS-115 was very low (37.8+3.5; Fig. 6B).
However, the number of apoptotic cells was low (1.5£0.6),
modest (7.3+5.7), and high (22.7+6.4) in the tumors treated
with erlotinib plus crizotinib, crizotinib and bevacizumab,
and TAS-115, respectively. These results suggest that erlotinib
plus TAS-115 prevents tumor regrowth, even after cessation,
by means of sustained inhibition of angiogenesis.

DISCUSSION
In the present study, we demonstrated that combined
use of erlotinib and TAS-115, a novel angiogenesis inhibi-
tor with Met inhibitory activity, and the use of a triplet of
clinically available drugs (such as erlotinib, crizotinib, and
bevacizumab) could inhibit the growth of HGF-triggered
EGFR-TKI-resistant tumors containing EGFR mutations.

779



Nakade et al.

Journal of Thoracic Oncology® ® Volume 9, Number 6, June 2014

FIGURE 3. Crizotinib and TAS-115
inhibits VEGF production by cancer
cells and endothelial proliferation. A
and B, Tumor cells were incubated
with or without HGF (50 ng/ml) in

the presence of different concentra-
tions of crizotinib or TAS-115 for 48
hours. Thereafter, supernatants were
harvested, and the number of tumor
cells was counted. VEGF concentration
in the supernatants was determined
by ELISA. VEGF levels corrected by the
tumor cell number are shown. Cand
D, HMVECs were incubated in RPMI-
1640 medium with 10% FBS (control)
or RPMI-1640 medium with 10% FBS
in the presence or absence of VEGF (50
ng/ml) with different concentrations
of TAS-115, crizotinib, or bevacizumab
for 72 hours. Thereafter, cell viability
was determined by MTT assay. Bars
show SD. The data shown are from
three independent experiments with
similar results. VEGF, vascular endo-
thelial growth factor; HGF, hepatocyte
growth factor; ELISA, enzyme-linked
immunosorbent assay; HMVECs,
human dermal microvascular endothe-
lial cells; FBS, fetal bovine serum; MTT,
thiazolyl blue tetrazolium bromide.
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Moreover, TAS-115 combined with erlotinib remarkably = metastasis in a pancreatic cancer model in vivo.” These studies
delayed the regrowth of the HGF-triggered EGFR-TKI-  indicate the rationale for simultaneous inhibition of the HGF-

resistant tumors.

Met and VEGF/VEGFR-2 axes for cancer therapy.

Because we reported that HGF is a resistance factor to In line with our previous results, we observed that inhi-
EGFR-TKIin EGFR-mutant lung cancer,” HGF hasbeenshown  bition of both the driver signal (EGFR) and the resistance sig-
to induce resistance to various molecularly targeted drugs in  nal (Met) remarkably suppressed the growth of HGF-triggered
different types of cancers with driver oncogenes. HGF causes =~ EGFR-TKI-resistant tumors in vivo. However, the tumors
resistance to a selective ALK inhibitor®® and a BRAF inhibi-  regrew immediately after the cessation of the dual inhibition,
tor”” in lung cancer with ALK rearrangement and melanoma  which indicated the presence of cancer cells with proliferating
with BRAF mutation, respectively, by inducing bypass signals  potential that persisted continuously throughout the dual inhi-
that trigger resistance. Moreover, HGF restores angiogenesis  bition. Mechanisms of the resistance to dual inhibition should
associated with Met expression in tumor vascular endothelial ~ be clarified in the near future.
cells and thus induces resistance to sunitinib in various types of Additional inhibition of angiogenesis by VEGF neu-
cancer.”® These observations indicate that HGF induces resis-  tralization or VEGFR inhibition in addition to dual inhibition
tance to molecularly targeted drugs by multiple mechanisms; (EGFR and Met) could further inhibit growth of HGF-triggered
therefore, it is an important therapeutic target for circumvent-  EGFR-TKI-resistant tumor and delay regrowth of the tumors
ing resistance to various molecularly targeted drugs. after cessation of the treatment. Bevacizumab in combina-

HGF anditsreceptor Methave acloserelationwithVEGE.  tion with cytotoxic chemotherapy has been shown to prolong
Anti-VEGF treatment resulted in a remarkable up-regulationof ~ progression-free survival in various solid tumors. Our results
Met expression in tumors.” Hypoxia-stimulated expression of ~ suggest that the angiogenesis inhibitor in combination with
VEGE?* Met,” and Neuropilinl (NRP1), a receptor of VEGE, = molecularly targeted drugs such as EGFR-TKI and Met-TKI,
promotes tumor progression.”?! Furthermore, it was reported ~ which directly act on cancer cells, may also delay tumor
that serum levels of HGF and VEGF were inversely correlated ~ progression.
with the clinical response to EGFR-TKIs in lung cancer.’?-34 It is still controversial whether tumor blood vessels
In addition, a dual inhibitor of VEGFR-2 and Met (XL-184)  rapidly regrow after cessation of VEGF inhibition. Mancuso
was shown to have completely suppressed the invasion and et al.® reported that tumor vasculature regrew within 7 days of
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cessation of VEGFR inhibitors (given for 7 days) in the RIP-
Tag2 pancreatic cancer model and the Lewis lung carcinoma-
xenograft model. Bagri et al.* showed that long-term (7 weeks)
treatment with an anti-VEGF antibody prevented the regrowth
of tumors compared with control or short-term (2 weeks) treat-
ment, but the effect of the long-term treatment on vasculature
regrowth after cessation was not well elucidated. In the present
study, we demonstrated that regrowth of tumor vasculature was
inhibited even after cessation for 10 days of treatment when,

Copyright © 2014 by the International Association for the Study of Lung Cancer

before that, continuous treatment (for 39 days) consisted of
bevacizumab plus erlotinib and crizotinib or TAS-115 plus erlo-
tinib; and this inhibition was associated with a high number of
apoptotic cells in the tumors and delayed tumor regrowth. These
effects were more remarkable with TAS-115 plus erlotinib than
with the triplet treatment in our experimental conditions. It is
unclear why continuous triple inhibition, especially by TAS-
115 plus erlotinib, delayed the recovery of tumor angiogenesis.
One possible explanation is that continuous treatment with
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TAS-115 may impair the function of endothelial progenitor
cells expressing VEGFR-2. Further studies with longer follow-
up and histochemical analysis will be required to determine
the exact mechanisms. On the other hand, VEGFR inhibitory
activity may be the disadvantage of TAS-115 for specific cases
in which EGFR-TKI resistance caused by only MET amplifi-
cation. Previous study reported that anti-VEGF therapy elicits
malignant progression of tumors to increased local invasion
and distant metastasis.’” Therefore, biomarkers for detecting
the activities of MET and VEGFRs may be necessary for the
optimal use of dual inhibitors for MET and VEGFR.

Inhibition of multiple signaling pathways may cause
severe adverse events, especially with continuous admiration
of the inhibitors. In our study, S0 mg/kg erlotinib administered
daily plus 100 pg/body bevacizumab administered weekly did
not show obvious adverse events in nude mice. However, some
nude mice treated with daily 50mg/kg crizotinib plus daily
50mg/kg erlotinib exhibited severe weight loss and died. Thus,
we had to reduce the dose of crizotinib to 25 mg/kg daily when
administered along with 50 mg/kg erlotinib. On the other hand,
daily administration of 75 mg/kg TAS-115, as expected, inhib-
ited its two targets, Met phosphorylation and angiogenesis,
in vivo, and did not show obvious adverse events, including
weight loss, even in combination with daily administration of
50mg/kg erlotinib, suggesting the feasibility of this combined
treatment. However, the safety and efficacy of triple inhibition
with the triplet of clinically available drugs or with erlotinib
plus TAS-115 need to be carefully evaluated in clinical trials.

782

In conclusion, we demonstrated that triple inhibition
of EGFR, Met, and angiogenesis could be achieved by a
combination of clinically available drugs (erlotinib, crizo-
tinib, and bevacizumab) or erlotinib and TAS-115 and that
the triple inhibition efficiently controlled growth of HGF-
triggered, EGFR-TKI-resistant tumors containing EGFR
mutations. Clinical trials are warranted to evaluate the
efficacy and safety of the triple inhibition in EGFR-mutant
lung cancer patients who acquired EGFR-TKI resistance
due to HGFE.
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Abstract

Introduction

An increasing number of genetic alterations that aberrantly
activate tyrosine kinases have been identified as oncogenic drivers
of non-small cell lung cancer (NSCLC). Active mutations of
epidermal growth factor receptor (EGFR), such as the L858R
point mutation or deletion/insertion of several amino acids
between exons 19 and 20, are more commonly observed in
patients with NSCLC. The active mutation of KRAS is also
predominantly found in patients with NSCLC. In addition to
these active oncogene mutations, chromosomal rearrangements
involving the tyrosine kinase domains of ALK, ROS1, and RET are
observed in 1% to 5% of patients with NSCLC (1). The oncogenic
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fusion protein in NSCLC can be targeted by tyrosine kinase
inhibitors (TKI), such as crizotinib; therefore, a number of
specific TKIs targeting the fusion tyrosine kinase are currently
under development. Although EGFR inhibitors (e.g., gefitinib or
erlotinib) or the ALK inhibitor crizotinib show remarkable
efficacy in most cases, the majority of patients will develop
tumors resistant to targeted therapies in less than 1 year of
treatment (2, 3). In cancers harboring the ALK fusion protein,
several mechanisms of crizotinib resistance have been reported,
including acquired secondary mutations in the kinase domain of
ALK, genomic amplification of the ALK fusion gene, and
amplification or activation of other kinases (3-7).

Recently, crizotinib was shown to be an effective inhibitor of
ROS1 tyrosine kinase, and two case reports have described the
activity of crizotinib in patients with ROS1-rearranged lung cancers
(8, 9). Although crizotinib exhibited activity in a patient with
NSCLC harboring the ROS! fusion, a resistant tumor eventually
emerged. Recently, the G2032R mutation in the ROS1 kinase
domain was identified in a cizotinib-treated resistant tumor,
which was not observed before treatment (10). The mutation
was located in the solvent-front region of the ROS1 kinase
domain and was analogous to the G1202R ALK mutation
identified in crizotinib-resistant ALK-rearranged lung cancers. We
previously reported that the ALK G1202R mutation confers high-
level resistance to crizotinib compared with all next-generation ALK
inhibitors that were examined (3). Therefore, it is important to
identify novel compounds that can overcome the G2032R ROS1
mutation, which confers crizotinib resistance in these cancers.

AACR

101



Published OnlineFirst October 28, 2014; DOI: 10.1158/1078-0432.CCR-14-1385

In this study, we tested several ALK inhibitors to examine the
potency of the sterically distinct ALK inhibitors, because the
kinase domains of ALK and ROS1 are highly similar and
grouped in the same kinase family (11). Subsequently, we
identified a number of different crizotinib and/or ceritinib
resistant mutations including G2032R mutation in the ROS1

kinase domain by N-ethyl-N-nitrosourea (ENU)-driven
accelerated mutagenesis screening. High-throughput drug
screening identified several kinase inhibitors as a potent ROS1
inhibitor, and identified that the ¢MET/RET/vascular endothelial
growth factor (VEGFR) inhibitor cabozantinib can potently
inhibit both wild-type (WT) and the resistant mutant CD74-
ROS1. On the basis of these results, we propose the use of several
inhibitors as alternative therapeutic strategies for ROSI-
rearranged cancers and cabozantinib as a key drug for
overcoming crizotinib resistance in ROS1 fusion-positive
cancer cells lines, particularly those mediated by secondary
mutations.

Materials and Methods

Reagents

Crizotinib was obtained from ShangHai Biochempartner;
alectinib, cabozantinib, and ceritinib (LDK378) were
purchased from ActiveBiochem; NVP-TAE-684 and ASP3026
were purchased from ChemieTek; AP26113 was purchased
from Selleck; and foretinib was purchased from AdooQ
BioScience. Each compound was dissolved in dimethyl
sulfoxide (DMSO) for cell culture experiments. For inhibitor
screening, the SCADS Inhibitor Kit was provided by the
Screening Committee of Anticancer Drugs supported by a
Grant-in-Aid for Scientific Research on Innovative Areas,
Scientific Support Programs for Cancer Research, from the
Ministry of Education, Culture, Sports, Science, and Technology
of Japan.

www.aacrjournals.org
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Isolation of genomic DNA, preparation of total RNA, and
sequencing of the ROS1 fusion gene

Genomic DNA was isolated from cell pellets after proteinase K
treatment. The ROS1 kinase domain was amplified by polymerase
chain reaction (PCR) from the genomic DNA and sequenced
bidirectionally using Sanger sequencing.

Cell culture conditions

Human embryonic kidney 293FT cells (Invitrogen) were
cultured in Dulbecco's Modified Eagle Medium supplemented
with 10% fetal bovine serum (FBS; D-10). Ba/F3 cells, which are
immortalized murine bone marrow-derived pro-B cells, were
cultured in D-10 media with or without 0.5 ng/mL of
interleukin  (IL)-3 (Invitrogen). Crizotinib-resistant ROS1
fusion-positive NSCLC patient-derived MGHO047 cells were
cultured in ACL-4 medium supplemented with 3% FBS (10).

Survival assays

To assess 72-hour drug treatment, 2,000 to 3,000 cells were
plated in replicates of three to six in 96-well plates. Following drug
treatments, the cells were incubated with the CellTiter-Glo Assay
reagent (Promega) for 10 minutes. Luminescence was measured
using a Centro LB 960 microplate luminometer (Berthold
Technologies). The data were graphically displayed using
GraphPad Prism version 5.0 (GraphPad Software). ICsq values
were determined using a nonlinear regression model with a
sigmoidal dose response in GraphPad.

Immunoblot analysis

Lysates were prepared as previously described (3, 12). Equal
volumes of lysate were electrophoresed and immunoblotted
with antibodies against phospho-ROS1 (Tyr2274), ROS1
(69D6), phospho-p42/44 ERK/MAPK (Thr202/Tyr204), p42/
44 ERK/MAPK, phospho-Akt (Ser473; D9E), panAkt (C67E7),
phospho-S6  ribosomal protein (Ser240/244, DG8F8), S6
ribosomal protein (54D2), STAT3 (79D7), phospho-STAT3
(Tyr705; Cell Signaling Technology), GAPDH (6C5, Millipore),
and B-actin (Sigma).

Retroviral infection

¢DNA encoding WT or mutant CD74-ROS1 was cloned into
1,520 retroviral expression vectors (pLenti), and viruses were
replicated in 293FT cells by transfecting with packaging
plasmids. After retroviral infection, Ba/F3 cells were selected by
incubation with puromycin (0.7 pg/mL) for 2 weeks. For Ba/F3
cells infected by CD74-ROS1 variants, IL3 was withdrawn from
the culture medium at least 2 weeks before the experiments.

ENU mutagenesis screening

The ENU mutagenesis screening protocol was based on
procedures published by Bradeen and colleagues (13) and
O'Hare and colleagues (14). Briefly, ENU (Sigma) was
dissolved in DMSO at a concentration of 100 mg/mL. All
materials that came in contact with ENU were decontaminated
with 0.2 mol/L NaOH. For each resistance screen, approximately
1.5 x 10® Ba/F3 CD74-ROS1 cells in a total of 160 mL of growth
media were exposed to a final concentration of 100 pg/mL of
ENU. After approximately 16 hours, the cells were collected by
centrifugation, washed, and incubated for 24 hours. After a 24-
hour recovery period, the cells were split into five aliquots of
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3 x 107 cells each. Crizotinib or ceritinib was added at a final
concentration of 30, 50, 100, or 200 nmol/L, and cells of each
aliquot were distributed into five 96-well plates (5 x 10* cells in
200-pL media per well). Plates were incubated over a course of 4
weeks with regular inspection. When clear signs of cell growth
were microscopically observed and a color change of the media
occurred, the content of the respective well was transferred into 1
mL of growth media containing the original concentration of
inhibitors in a 24-well plate. After approximately 1 week of
expansion, the cell number was sufficient for further processing
(see below).

Identification of ROS1 mutations

Genomic DNA was prepared by lysing the cells with proteinase
K buffer, which was heat inactivated at 95°C for 5 minutes. Then,
the temperature was gradually decreased by 2°C/min. For
sequence analysis, a DNA fragment covering the entire kinase
domain of ROS1 was amplified using KOD Plus (TOYOBO). The
PCR products were then purified with a gel purification kit (GE
healthcare) and sequenced using standard Sanger sequencing.

Drug screening

Inhibitor screening was conducted using a subset of the
modified SCADS library containing 282 compounds in three
96-well microplates. Parental, CD74-ROS1 WT-, or CD74-
ROS1-G2032R-expressing Ba/F3 cells were seeded in triplicates
in 96-well plates on day 1, and each inhibitor was added at 10
nmol/L, 100 nmol/L, 1 pmol/L, and 3 umol/L on the same day.
Cell viability was determined on day 4 using the CellTiter-Glo
Assay. The cell viability from triplicate plates was averaged to
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determine relative cell growth compared with that of DMSO-
treated controls.

Statistical analysis

All data are presented as mean =+ SD. Statistical analysis was
performed using the two-tailed Student ¢ test. Significance was
established for P values < 0.05.

Results

Several ALK inhibitors effectively inhibit CD74-ROS1 fusion

The tyrosine kinase domains of ALK and ROS1 shared 70%
identity, and both kinases belong to the same branch in a kinase
phylogenic tree (11). To identify inhibitors capable of inhibiting
the kinase activities of the ROS1 fusion protein, we tested
the potency of various ALK inhibitors to CD74-ROS1. First,
we established IL3 independently growing Ba/F3 cells by
transformation with CD74-ROS1, which is the most frequently
observed ROS1 fusion gene in NSCLC. From the polyclonal
CD74-ROS1-addicted Ba/F3 cells, we picked up the clone with
a high expression of CD74-ROS1 and similar crizotinib
sensitivity to the polyclonal cells (clone #6; Supplementary Fig.
S1), which was propagated to examine the sensitivity to various
ALK inhibitors currently being clinically evaluated. Our results
showed that crizotinib, ceritinib (LDK378), and AP26113
exhibited remarkable growth suppression of CD74-ROS1 Ba/
F3 cells, ASP3026 showed moderate inhibitory activity,
and alectinib (CH5424802) showed none (Fig. 1A and B).
Corresponding to the cell growth-inhibiting activity, crizotinib,
ceritinib, AP26113, and ASP3026, but not alectinib, inhibited

Drugs ICso(nmol/L)|  Figure 1.
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phospho-ROS1 and its downstream phospho-STAT3 in a dose-
dependent manner (Fig. 1C). Among these compounds,
crizotinib and ceritinib are clinically available for ALK fusion-
positive NSCLC. Furthermore, ceritinib, AP26113, and ASP3026
were shown to be active against the ALK gatekeeper mutation
(L1196M), which is most frequently observed in crizotinib-
resistant ALK-rearranged NSCLC (15). Therefore, we decided to
identify potential resistance mechanisms to crizotinib or ceritinib
in CD74-ROS1 mediated by a resistance mutation in the ROS1
kinase domain.

Identification of crizotinib- and ceritinib-resistant Ba/F3
CD74-ROS1 cells by accelerated mutagenesis screening

To identify ROSI mutations responsible for resistance to
crizotinib or ceritinib in ROS1 fusion-positive cancers, we
performed random mutagenesis screening by exposing the
CD74-ROS1 Ba/F3 cells to the alkylating agent ENU, followed
by selection using various concentration of crizotinib or ceritinib.
After culturing with the inhibitors for 3 to 4 weeks, we observed an
inhibitor dose-dependent reduction in the number of wells with
growing cells. The resistant cells were recovered and the ROS1
kinase domains were sequenced. The resistant clones were selected
by treatment with 200 nmol/L of crizotinib or ceritinib, and all
carried the G2032R mutation (Fig. 2A). Of the clones selected with
100 nmol/L crizotinib, one clone harbored the K2003I mutation in
the CD74-ROS1 and a second cdlone harbored no mutation. After
expanding the isolated clone from ENU mutagenesis screening
harboring K20031 mutated CD74-ROS1, we tested the sensitivity
to crizotinib and ceritinib. We found that K20031-mutated ROS1
did not confer resistance to crizotinib or ceritinib. On the other
hand, G2032R-mutated CD74-ROS1 conferred high resistance to
both crizotinib and ceritinib (Fig. 2B and C). When the cells were
selected using a lower concentration of crizotinib (50 nmol/L) or
ceritinib (100 nmol/L), various mutations in the clones were
identified (Supplementary Fig. S2). Next, we tested the isolated

Figure 2. A
Identification of crizotinib and
ceritinib-resistant mutations by
accelerated mutagenesis screening. A,
number of the ROSI kinase domain
mutations found in the ENU-treated
CD74~ROS1 Ba/F3 clones isolated
after growth in the presence of

100 and 200 nmol/L of crizotinib or
200 nmol/L of ceritinib. B, inhibition of
phospho-ROS1 by crizotinib and
ceritinib in ENU-selected crizotinib- or
ceritinib-resistant Ba/F3 clones.
CD74~ROS1 WT-expressing Ba/F3
cell clone 6 or ENU-selected K2003! or
Ba/F3 cells harboring the G2032R
mutation were exposed to increasing
concentrations of crizotinib or
ceritinib for 2 hours. Cell lysates were
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clones from ENU mutagenesis for crizotinib or ceritinib sensitivity.
The recovered Ba/F3 cells harboring the mutations E1990G
with M2128V, L1951R, G2032R, or L2026M with K2003I in
ROS1 showed ICsq values against crizotinib that were more
than 3-fold higher than that of WT CD74-ROS1-expressing
BaF3 cells (Supplementary Fig. S3A and S3B). On the other
hand, Ba/F3 CD74-ROS1 cells harboring the L2026M mutation,
which is a gatekeeper mutation corresponding to L1196M in ALK,
were sensitive to ceritinib. Likewise, the mutations E1990G
with M2128V, L1951R, or G2032R conferred resistance to
ceritinib. In particular, the CD74-ROS1-expressing Ba/F3 cells
harboring the G2032R mutation were extremely resistant to
both crizotinib and ceritinib. Then, we conducted immunoblot
analysis of the recovered Ba/F3 cells by treating the cells
with various concentrations of crizotinib or ceritinib. The results
were consistent with those of the cell viability assay, in which
phosphorylation of CD74-ROS1 harboring the G2032R mutation
was not completely attenuated even following treatment with 1
umol/L of crizotinib or ceritinib (Fig. 2B). The G2032R mutation
was recently identified in a patient with crizotinib refractory CD74-
ROS1 fusion-positive NSCLC (10). In contrast, cells carrying the
L1951R and E1990G with M2128V mutations exhibited resistance
to crizotinib or ceritinib, consistent with the results of the
cell viability assay. Cells harboring the 1L2026M/K20031 double
mutant exhibited resistance to crizotinib but not to ceritinib
(Supplementary Fig. $3C).

To confirm whether these mutations confer resistance to
crizotinib and ceritinib, we introduced each mutated CD74-
ROS1 in Ba/F3 cells. All of the resistant mutated CD74-ROS1
(L1951R, L1982F, E1990G, F1994L, K2003I, L2026M, and
G2032R) maintained transforming activity. Then, we tested the
sensitivity of Ba/F3 cells expressing CD74-ROS1 mutants to
crizotinib or ceritinib. Similar to the result of the recovered Ba/
F3 cells from ENU mutagenesis screening, L1951R and G2032R
mutated CD74-ROS1-induced Ba/F3 cells showed marked
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resistance to crizotinib, ceritinib, and AP26113. L2026M
mutant-induced Ba/F3 cells were resistant to crizotinib but
not to ceritinib or AP26113. L1982F, E1990G, or F1994L
mutants showed slight resistance to crizotinib and ceritinib.
(Fig. 3A-C and Supplementary Fig. S4A-S4C).

Next, we mapped these mutations on the crystal structure data
of crizotinib: ROS1 to elucidate the location of mutations that
confer resistance (Fig. 3D and Supplementary Fig. §5). L1951 and
G2032 mutations were located in the solvent-front region
(entrance of the crizotinib-binding pocket), and L2026, which
correspond to the L1196 mutation in ALK, is a gatekeeper
mutation of ROS1. All of the identified mutations that
conferred higher crizotinib resistance were located close to the
crizotinib-binding domain of the ROS1 kinase (Fig. 3D).

High-throughput inhibitor screening identified cabozantinib
(XL-184) as a potent ROS1 inhibitor

To identify potent ROS1 kinase inhibitors that selectively
suppress the growth of Ba/F3 cells expressing either WT or the
crizotinib-resistance mutant CD74~ROS1, we performed cell-
based high-throughput screening with a series of kinase
inhibitors and anticancer agents used in dinical practice or
under current dinical evaluation. IL3-independent Ba/F3 cells
expressing either WT or G2032R-mutated CD74-ROS1 were
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Other identified mutations mapped on
the whole ROS1 kinase domain are
shown in Supplementary Fig. S5.
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treated for 72 hours with serial dilutions of 282 kinase
inhibitors and anticancer drugs in the SCAD inhibitor library.
Potential ROS1 kinase inhibitors were selected for further
evaluation using the following criteria: selective growth-
inhibitory effect (<40% cell viability) against WT or G2032R-
mutated Ba/F3 CD74-ROS1 cells at an inhibitor concentration of
<100 nmol/L and >10-fold lower ICs, value compared with that
for Ba/F3 parental cells. Using this assay, we newly demonstrated
that cabozantinib (XL184), foretinib, TAE684, SB218078, and
CEP701, in addition to the ALK inhibitors under clinical
evaluation or in dinic, are potent inhibitors of CD74-ROS1
Ba/F3 cell growth (Table 1; Fig. 4A and B; Supplementary
Table S1). Furthermore, among these inhibitors, cabozantinib
(XL184), foretinib, and TAE684 effectively inhibited the growth of
both WT and G2032R-mutated CD74-ROS1 Ba/F3 cells, and the
autophosphorylation of both WT and CD74-ROS1 (Fig. 4B). Of
note, CEP701 showed intermediate selectivity to the growth of
CD74-ROS1 Ba/F3 cells, and CEP701 only inhibited the
autophosphorylation of WT CD74-ROS1 but not the
autophosphorylation of G2032R-mutated CD74-ROS1. And to
inhibit the phospho-ROS1 of G2032R-mutated CD74-ROS1,
higher concentration of TAE684, foretinib, or cabozantinib,
compared with that for CD74-ROS1 (WT)-expressing Ba/F3
cells was needed (Fig. 4A and B).
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Table 1. Kinase inhibitor screening identified multiple inhibitors active against CD74-R0OS1 WT and G2032R crizotinib-resistant mutant

Parental Ba/F3 (+IL3)

CD74-ROS1 WT

CD74-ROS1 (G2032R)

3 umol/L 1umol/L 100 nmol/L 10 nmol/L 3 pmol/L _1pumol/L 100 nmol/L 10 nmol/L 3 umol/L 1 pmol/L 100 nmol/L 10 nmol/L

AP26113 2.4 16.6 101.6 104.7 0.2 0.5
Crizotinib 2.5 5.2 102.7 106.0 14 19
Ceritinib 13 74.8 104.6 103.0 0.6 0.8
ASP3026 69.4 96.3 0.7 100.9 0.3 0.8
5$B218078 4.1 5.9 418 104.7 1.3 1.9
CEP7O01 16 25 47.3 96.6 1.5 1.2
TAE684 1.6 8.9 99.4 102.6 0.3 0.5
XL184 771 105.7 m2 1011 0.3 1.0
Foretinib 3.3 2.8 94.0 108.5 0.5 0.7

1.5 30.0 0.4 1.2 765 14.8
4.4 42.0 2.7 23 109.8 120.2
5.2 62.1 11 9.7 102.2 109.3
8.5 74.9 6.0 58.8 101.0 110.0
1.9 40.0 22 31 28.9 96.4
14 325 1.4 1.6 12.9 97.0
0.9 10.7 0.5 0.5 10.1 110.2
11 21.2 0.5 0.6 5.6 90.4
1.7 32.3 0.7 0.7 14.9 10.9

NOTE: The top 9 list of inhibitors, which specifically inhibit the growth of CD74-R0OS1-expressing Ba/F3 cells, was obtained from high-throughput screening of 282
inhibitors. Ba/F3 parental cells (with IL3) or those expressing CD74-R0OS1 WT or CD74-R0OS1-G2032R were seeded in 96-well plates and treated with the indicated
concentration of various inhibitors for 72 hours. Cell viability was analyzed using the CellTiter-Glo Assay. The average cell viability (% of control) of the top 9 inhibitors

is shown. All of the screening data are shown in Supplementary Table S1.

Each number indicates cell viability (% of vehicle-treated control). Bold numbers indicate less than 40% of vehicle-treated control.

Cabozantinib overcomes the crizotinib-resistant CD74-ROS1
mutation

To examine the effect of cabozantinib on cells harboring
these mutations, each of the Ba/F3 cells harboring the various
CD74-ROS1 mutations (both ENU recovered Ba/F3 clones and
CD74-ROS1 mutants-transformed Ba/F3 cells) were treated
with cabozantinib, and the cell growth and phosphorylation of
ROS1 were examined. The results showed that cabozantinib dose-
dependently inhibited phospho-ROS1 in all crizotinib-resistant
mutant strains and inhibited the growth of all Ba/F3 cells harboring
crizotinib-resistant CD74-ROS1 mutations. ICsy values of all
crizotinib-resistant mutants against cabozantinib were less than
25 nmol/L, although the ICs, values of crizotinib-resistant mutant
(G2032Rand L1951R) Ba/F3 cells were approximately 5-to 10-fold
higher than that of WT CD74-ROS1 harboring Ba/F3 cells (Fig. 5
and Supplementary Figs. S6 and S7).

In our previous study of clinical crizotinib resistance in ROS1-
rearranged NSCLC, we established the MGHO047 cell line
harboring the CD74-ROS1-G2032R mutation directly isolated
from the pleural effusion of a crizotinib-resistant patient. Using
this cell line, we compared the activities of cabozantinib and
crizotinib and found that crizotinib did not inhibit the growth of
MGHO047 cells harboring the G2032R mutation, whereas
cabozantinib potently inhibited the growth of MGHO047 cells
(Fig. 6A). Furthermore, as exhibited by the Ba/F3 cell line
models, cabozantinib effectively suppressed phospho-ROS1
and downstreamm phospho-Akt, phospho-ERK, and phospho-
ribosomal S6 proteins in MGHO047 cells (Fig. 6B). These results
suggest that cabozantinib presents an alternative therapeutic
strategy to treat ROS1-rearranged NSCLC in both crizotinib-
naive patients and resistant cases caused by resistance
mutations in the kinase domain.

Discussion

Recently, the cMET/ALK/ROS1 inhibitor crizotinib has been
clinically evaluated for treatment of ROS1-rearranged NSCLC and
has shown remarkable activity (8, 9). Because of the similarity
between ROS1 and ALK kinase domains, we examined the
sensitivity of various ALK inhibitors on CD74-ROS1 fusion
and found that all the tested ALK inhibitors, except for
alectinib, effectively inhibited ROS1 fusion. Among those ALK
inhibitors, ceritinib was recently approved by the U.S. FDA for
ALK-positive patients with crizotinib-resistant or crizotinib-

www.aacrjournals.org

intolerant disease, because high response rate in crizotinib-
resistant disease was observed in phase I study (16). Ceritinib
has also been shown to be active in both WT and gatekeeper-
mutated ALK (L1196M), which causes aizotinib resistance (17).
In EGFR mutant-positive lung cancers that become resistant to
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Figure 4.

Newly identified inhibitors effectively inhibit phospho-ROS1 of WT CD74~
ROS], or both WT and G2032R crizotinib-resistant mutant. A and B, inhibition
of phospho-ROS1 by various identified ROSTinhibitors selected from the high-
throughput screening. CD74-ROS1 WT-expressing (clone 6) or CD74-R0OS1-
G2032R-expressing Ba/F3 cells were exposed to increasing concentrations
of crizotinib, CEP701, SB218078 (A), cabozantinib (XL184), TAE684, or
foretinib (B) for 2 hours. Following treatment, the cell lysates were
immunoblotted to detect the indicated proteins.
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EGFR TKIs, the secondary T790M gatekeeper mutation is
detected in roughly one-half of all cases (2). In contrast, in
crizotinib-resistant ALK-positive lung cancers, many types of
resistance mutations in the ALK kinase domain were identified
in various cell lines as well as crizotinib-resistant patients (3).
Because the tyrosine kinase domains of ALK and ROS1 share
approximately 70% homology, it is possible that many kinds
of crizotinib-resistance mutations will also occur in ROS1-
rearranged NSCLC.

To prospectively identify resistance mutations affecting the
ALK/ROS1 inhibitors crizotinib and ceritinib, we performed a
cellular drug resistance screen in CD74-ROS1-transformed Ba/F3
cells and identified several resistant mutations, including
G2032R, as the most pronounced mutations that confer
crizotinib resistance. So far, only the G2032R mutation in
ROS1 has been identified in crizotinib-treated resistant patients
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with ROSI-rearranged NSCLC (10). In this study, the newly
identified resistance mutations of L1982F, E1990G, F1994L,
and L2026M were less frequent and conveyed milder resistance
to crizotinib. In addition, a screen with the structurally distinct
ALK/ROS1 inhibitor ceritinib revealed a slightly different
mutation profile; however, the most pronounced resistant
mutations were L1951R and G2032R. In addition to ENU-
induced accelerated mutagenesis screening, we also performed
saturated mutagenesis screening (18-20) and identified different
unique mutations (E2020K and P2021L), but no G2032R
mutation was observed (data not shown). Similarly, a previous
study using the same methods to identify crizotinib-resistance
mutations in EML4-ALK identified unique mutations but did not
recapitulate the clinically relevant mutations. These results suggest
that induced mutation profiles in mismatch repair-deficient
Escherichia coli strains might be slightly different from plausible
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Figure 6.

Cabozantinib inhibits the growth of G2032R mutation harboring MGHO047 cells and the phosphorylation of CD74-ROS]1. A, crizotinib-resistant CD74~R0OS1-positive
NSCLC patient-derived MGHO47 cells were seeded on 96-well plates and treated with the indicated concentration of crizotinib, ceritinib, or cabozantinib (XL184) for
7 days. Cell viability was analyzed using the CellTiter-Glo Assay. B, comparison of the inhibition of phospho-ROS1 and its downstream signaling by crizotinib,
cabozantinib, or ceritinib in CD74-R0OS1-G2032R-expressing MGHO47 cells. MGHO47 cells were exposed to the indicated concentrations of crizotinib, cabozantinib
(XL184), or ceritinib for 6 hours. Cell lysates were immunoblotted to detect the indicated proteins.

mutations in mammalian cells. However, the mutagenesis
screening study with imatinib in Ba/F3 cells harboring
BCR-ABL fusion showed that the saturated screening assay is
useful to identify various resistance mutations including those
with clinical relevance (18).

The mutations identified from ENU-accelerated muta-
genesis screening can be categorized into three types. The
first type includes solvent-front mutations (e.g., L1951R and
G2032R), which are located in the solvent-front region of the
kinase domain adjacent to the crizotinib-binding site. An
amino acid change of the conserved glycine to arginine at
position 2032 or leucine to arginine at position 1951 of the
ROS1 kinase domain confers considerable resistance to
multiple ALK/ROS1 kinase inhibitors, such as crizotinib,
ceritinib, and AP26113. The G2032R ROS1 mutation is
analogous to the G1202R ALK mutation, which has been
identified in ALK-rearranged lung cancers that have become
resistant to crizotinib, alectinib, and ceritinib (3, 17). It
is likely that these solvent-front mutations decrease the
affinity of the mutant ROS1 for crizotinib because of steric
hindrance (10).

The second type includes the gatekeeper mutation L2026M,
which is equivalent to gatekeeper mutations observed in EGFR
(T790M), ALK fusion (L1196M), and BCR-ABL (T315I). The
third type is characterized by helix aiC (L1982F or V), which is
a homologous residue of L1152 in ALK, previously identified
in patients with crizotinib-treated ALK-positive NSCLC (6).

To overcome resistance to crizotinib and ceritinib caused by
the G2032R ROS1 mutation, we performed high-throughput
drug screening, which subsequently identified cabozantinib
(XL-184) as a potent ROS1 inhibitor that effectively inhibited
both the WI' CD74-ROS1 kinase as well as those harboring
resistance mutations including G2032R. Furthermore,
cabozantinib effectively inhibited the growth of the
crizotinib-resistant patient-derived MGHO047 cells harboring
G2032R-mutated CD74-ROS1. Cabozantinib is a small
molecule that inhibits the activity of multiple tyrosine
kinases, including RET, MET, and VEGFR2. Currently,
cabozantinib is clinically available for treatment of refractory
medullary thyroid cancer. Data from previous clinical trials

www.aacrjournals.org

revealed a peak plasma concentration of cabozantinib after
repeated oral administration (175 mg) of around 1,410 ng/
mL (2810 nmol/L). Even in the much lower dose (0.64 mg/kg,
which is corresponding to about 40-mg oral administration)
treated patient, an average peak plasma concentration of
cabozantinib after repeated oral administration was around
322 ng/mL (643 nmol/L; ref. 21). On the basis of the data
from our study, we found that cabozantinib at concentrations
less than 30 nmol/L inhibited all of the identified crizotinib-
resistance mutations, which was much lower than dinically
achievable levels. During the preparation of this manuscript,
Davare and colleagues (22) identified that foretinib, which is an
oral multikinase inhibitor targeting MET, VEGFR-2, RON, KIT,
and AXL kinases and currently being clinically evaluated, is a
potent inhibitor against ROS1 and overcomes resistance
mutations including G2032R. Although we confirmed that
foretinib also inhibited WT and all mutated crizotinib-
resistance ROS1 fusions, our results suggest that cabozantinib
is slightly more potent than foretinib. Furthermore, previously
reported mean plasma concentrations of foretinib in two clinical
trials were 72 and 340 nmol/L (23, 24). Although itis impossible
to simply compare the plasma concentrations and expected
efficacy in humans, cabozantinib is likely to be more potent
and effective than foretinib.

In conclusion, our study clearly demonstrated that patients
with crizotinib-resistant cancers due to an acquired mutation,
such as G2032R, may benefit from more potent and effective
ROS1 TKI. Notably, although solvent-front mutations are
occasionally observed in patients with crizotinib-resistant ALK
fusion-positive NSCLC, the frequency of G2032R mutations in
ROS1-positive NSCLC has yet to be established. Because
secondary mutations, such as the gatekeeper mutation, may
not represent the predominant mechanism of acquired
crizotinib resistance, additional studies are needed to elucidate
other mechanisms of resistance. The results of these studies will be
critical to selecting the best therapeutic strategies for targeting TKI
resistance in clinical practice. Although, crizotinib is currently a
key agent used to treat cancers harboring ROS1 translocations,
cabozantinib may be able to prevent or overcome resistance to
ROS1 inhibitors.
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Tivantinib (ARQ 197) Exhibits Antitumor Activity by Directly
Interacting with Tubulin and Overcomes ABC Transporter—
Mediated Drug Resistance

Aki Aoyama'?, Ryohei Katayama', Tomoko Oh-hara', Shigeo Sato’, Yasushi Okuno®, and Naoya Fuijita'?

Abstract

Tivantinib (ARQ197) was first reported as a highly selective inhibitor of c-MET and is currently being
investigated in a phase III clinical trial. However, as recently reported by us and another group, tivantinib
showed cytotoxic activity independent of cellular c-MET status and also disrupted microtubule dynamics. To
investigate if tivantinib exerts its cytotoxic activity by disrupting microtubules, we quantified polymerized
tubulin in cells and xenograft tumors after tivantinib treatment. Consistent with our previous report, tivantinib
reduced tubulin polymerization in cells and in mouse xenograft tumors in vivo. To determine if tivantinib
directly binds to tubulin, we performed an in vitro competition assay. Tivantinib competitively inhibited
colchicine but not vincristine or vinblastine binding to purified tubulin. These results imply that tivantinib
directly binds to the colchicine binding site of tubulin. To predict the binding mode of tivantinib with tubulin,
we performed computer simulation of the docking pose of tivantinib with tubulin using GOLD docking
program. Computer simulation predicts tivantinib fitted into the colchicine binding pocket of tubulin without
steric hindrance. Furthermore, tivantinib showed similar ICs, values against parental and multidrug-resistant
cells. In contrast, other microtubule-targeting drugs, such as vincristine, paclitaxel, and colchicine, could not
suppress the growth of cells overexpressing ABC transporters. Moreover, the expression level of ABC
transporters did not correlate with the apoptosis-inducing ability of tivantinib different from other microtubule
inhibitor. These results suggest that tivantinib can overcome ABC transporter-mediated multidrug-resistant
tumor cells and is potentially useful against various tumors. Mol Cancer Ther; 13(12); 2978-90. ©2014 AACR.

2978

Introduction

The receptor tyrosine kinase, MET proto-oncogene,
receptor tyrosine kinase (c-MET) is a high-affinity recep-
tor for hepatocyte growth factor (HGF), and its down-
stream v-gkt murine thymoma viral oncogene homolog 1
(AKT) and mitogen-activated protein kinase 1 (ERK)
pathways are regulated by HGF/c-MET. The HGF/c-
MET axis is involved in cancer progression, metastasis,
and acquired resistance. HGF/c-MET signaling is often
highly activated in tumors because of various mechan-
isms (1). Because c-MET-addicted cancers have been
shown to be highly sensitive to c-MET kinase inhibitors
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in vitro and in vivo, c-MET is recognized as a therapeutic
target, and some c-MET inhibitors are currently being
evaluated in clinical trials (2).

Tivantinib (ARQ197) was first reported to be a highly
selective inhibitor of c-MET (3). Crystal structure analysis
elucidated a unique mechanism in which tivantinib pref-
erentially binds to the inactive form of c-MET. In addition,
unlike other ¢-MET inhibitors, tivantinib inhibits c-MET
through a non-ATP-competitive mechanism (4). From the
results of a phase I clinical trial, tivantinib showed encour-
aging antitumor activity and tolerability (5). In early
clinical trials, tivantinib increased overall survival (OS)
and progression-free survival (PFS) in patients with hepa-
tocellular cancer showing high c-MET expression. On the
basis of these data, the phase III trial currently ongoing
enrolls only MET-high patients (6). On the other hand, ina
recent clinical trial of tivantinib combined with an epi-
dermal growth factor receptor (EGFR) tyrosine kinase
inhibitor (TKI), there were no significant differences in
PFS and OS between the study arm (tivantinib with EGFR-
TKI) and control arm (EGFR-TKI only; ref. 7). Surprising-
ly, subgroup analysis showed that tivantinib with EGFR-
TKI treatment significantly improved PFS among patients
with non-small cell lung cancer (NSCLC) with Kirsten rat
sarcoma viral oncogene homolog (KRAS) mutation, but
the latest phase III data presented at European Cancer
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