Introduction According to the Japan Society for Hematopoietic Cell Transplantation (JSHCT), the number of transplants reported annually for the treatment of CML was 306 in 2000, but drastically dropped to 46 transplants in the year 2009. Unsurprisingly, the drop in transplant activity was observed in Japan after imatinib (IM) became available as an experimental drug in 2000 and subsequently as a frontline treatment for CML in 2001. Thus, the excellent outcomes demonstrated by tyrosine kinase inhibitors (TKIs) argue against the use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) as an upfront therapy for CML in CP1; allo-HSCT is currently recommended for patients with a T315I mutation, or who failed TKIs and progress to advanced phase disease [1-6]. Moreover, the newly launched third generation TKI, ponatinib, having a unique binding mechanism allowing inhibition of BCR-ABL kinases, including those with the T315I mutation may further narrow the range of transplant indication [7, 8]. Therefore, those CML patients who undergo allo-HSCT represent a selection of high-risk patients due to more advanced disease with high rates of accelerated or blast phase. To improve transplant outcomes, comprehensive approaches in transplant strategies including timing, choice of conditioning and GS, maintenance therapy might be needed for those CML patients being selected nowadays for allo-HSCT. The main purpose of this study was to analyze the impact of GS on transplant outcome for patients with CML in the era of TKIs, particularly the role of GS in each disease status. We also clarified the prognostic factors for transplant outcomes in each disease status. We herein report our analysis of 1,062 patients, whose complete registry-based clinical data which were provided by the JSHCT. ### Patients and methods ### **Patients** Data on a total of 1,143 patients of at least 20 years of age who had undergone allogeneic bone marrow, peripheral blood, or cord blood transplantation for CML between Y. Morishima Japan Marrow Donor Program, Tokyo, Japan Y. Atsuta Department of HSCT Data Management/Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan Y. Atsuta · H. Sakamaki Japanese Society of Hematopoietic Cell Transplantation, Nagoya, Japan January 1, 2000 and December 31, 2009 were initially collected through the Transplant Registry Unified Management Program (TRUMP). Eighty-one patients were excluded from the analysis, because one or two critical data such as alive, relapse, and engraftment status with or without date of onset were missing. Other missing data were dealt as missing data in the study and the analysis numbers in each variable were described, respectively. This included data from the Japan Cord Blood Bank Network (JCBBN), the Japan Marrow Donor Program (JMDP), and JSHCT. These are the 3 largest allo-HSCT registries in Japan, and their roles have been described previously [9]. The study was approved by the data management committees of JSHCT, as well as by the ethical committee of Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital (Tokyo, Japan), where this study was organized. ### Statistical analysis The outcome endpoints were neutrophil recovery, platelet recovery, acute and chronic GVHD, relapse, transplantation-related mortality (TRM), overall survival (OS), and leukemia-free survival (LFS). The definitions of the statistical models used were in accordance with the statistical guidelines of the European Group for Blood and Marrow Transplantation (EBMT) (http://www.ebmt.org/1Whati sEBMT/whatisebmt2.html). Neutrophil recovery was defined by an absolute neutrophil count (ANC) of at least 0.5×10^9 /L for 3 consecutive days, with the first day considered as the recovery day. Platelet recovery was defined by a non-transfused platelet count of at least 20×10^9 /L for 3 consecutive days. Deaths occurring before day 90 or day 180 were considered as competing risks for neutrophil or platelet recovery, respectively. The graft failure rate for neutrophils was calculated for patients living without relapse for more than 30 days. Acute and chronic GVHD were diagnosed and graded at each center according to the standard criteria [10-12]. Relapse was defined on the basis of the reappearance of the blast or Philadelphia chromosome (Ph) or BCR-ABL1 transgene by cytogenetic and/or molecular analysis, including polymerase chain reaction and fluorescence in situ hybridization. TRM was considered a sole cause of non-leukemic deaths occurring after transplantation; OS was defined as the time between transplantation and death due to any cause; LFS was defined as the time interval from allo-HSCT to a first event, either relapse or death, in patients achieving complete remission. HLA antigen disparities were categorised as either GVHD or rejection direction. Low-resolution antigens of HLA-A and HLA-B were identified for all patients by serologic typing or low-resolution molecular typing methods. While, HLA-DRB1 alleles determined by high-resolution molecular typing using the sequence-based HLA typing method. In rBMT, HLA-DRB1 alleles were counted as identical, if the low-resolution antigens of HLA-A, B, and DR were identical. Data on HLA-DRBI allele were not fully available; there were 2 lacking data in CP1, 4 lacking data on CP2-AP and 2 lacking data in BC. Detail of HLA disparity toward either rejection or GVHD are noted in Table 1 and Supplementary Table 1. Adjusted probabilities of OS and LFS were analyzed using Cox proportional-hazards regression model. The variables used were patients' age at HSCT, patients' sex, body weight at HSCT, time from diagnosis to HSCT, ABO mismatch, conditioning regimen, imatinib administration, kind of GVHD prophylaxis, and year of HSCT. Variables with more than two categories were dichotomized for the final multivariate analyses. Variables were dichotomized as the followings: patient's age at HSCT younger or older than median; patient's body weight at HSCT lighter or heavier than median; time from diagnosis to HSCT <1 year or >1 year. ABO major mismatch or others; myeloablative conditioning regimen or others; cyclosporine-based GVHD prophylaxis regimen or tacrolimus-based; year of HSCT before or after 2004. The endpoints of neutrophil and platelet recovery, acute GVHD and chronic GVHD, relapse and TRM were analyzed using cumulative incidence curves that estimated incidence according to the Fine and Gray models, in which we first used univariate models that contained each of the variables one at a time. Then all variables with a P < 0.05 by the likelihood-ratio test were included in a multivariate model. Cause-specific hazard ratios were estimated with 95 % confidence intervals (CIs). Statistical analysis was performed with the R Foundation statistical computing package, version 2.12.2 (http://www.r-project.org/). Table 1 Characteristics of patients with CML in CP1, CP2-AP, and BP | | CP1 $(n = 531)$ | CP2-AP $(n = 342)$ | BP $(n = 189)$ | |-------------------------------------------------------------------|--------------------------------|--------------------------------|-------------------------------| | Graft source rBMT/uBMT/rPBSCT/CBT | 138/258/125/10 | 43/176/59/64 | 24/73/42/50 | | Gender | $338/193 \ (P < 0.001)$ | $215/127 \ (P < 0.001)$ | $123/66 \ (P < 0.001)$ | | Male/female | | | | | Median age at transplantation (range) | 40 (20–67) | 43 (21–69) | 43 (20–74) | | GVHD prophylaxis CyA + MTX/CyA based/FK + MTX/FK based/ others | 331/27/144/12/14 ^a | 148/17/145/19/9 ^a | 88/22/58/17/2 ^a | | Pre-transplant IM | 133/249 ^b | 187/108 ^b | $94/95 \ (P = 0.94)$ | | Yes/no | (P < 0.001) | (P < 0.001) | | | Duration from diagnosis to transplantation, months median (range) | 12.5 (0.8–169.0) | 18.2 (1.6–255.3) | 15.5 (2.4–322.7) | | Duration from diagnosis to transplantation ≤ 1 year/> 1 year | $248/258^{c} \ (P = 0.65)$ | $135/195^{c}$ (P < 0.001) | $80/100^{\circ} \ (P = 0.14)$ | | Patient's body weight, kg Median (range) | 61 (40–104) | 60 (34–104) | 58.5 (34–96) | | Conditioning regimen Myeloablative/reduced intensity | $475/53^{\rm d} \ (P < 0.001)$ | $289/53 \ (P < 0.001)$ | $161/28 \ (P < 0.001)$ | | Years at transplantation 2000-2004/2005-2009 | $447/84 \ (P < 0.001)$ | $211/131 \ (P < 0.001)$ | $116/73 \ (P < 0.01)$ | | ABO mismatch No/yes | $189/161^{\rm e} \ (P=0.13)$ | $132/156^{\rm e} \ (P=0.16)$ | $64/91^{\rm e} \ (P=0.03)$ | | HLA disparities (rejection direction) ^g 0-1/> 2 | $510/19^{\rm f} \ (P < 0.001)$ | $281/57^{\rm f} \ (P < 0.001)$ | $145/42^{f} $ (P < 0.001) | | HLA disparities (GVHD direction) ^g 0–1/> 2 | $507/22^{\rm f} \ (P < 0.001)$ | $285/53^{\rm f} \ (P < 0.001)$ | $140/47^{\rm f} (P < 0.001)$ | CP chronic phase, AP accelerated phase, BP blastic phase, rBMT related bone marrow transplantation, rPBSCT related peripheral blood stem cell transplantation, uBMT unrelated bone marrow transplantation, CBT unrelated cord blood transplantation, GVHD graft-versus-host disease, CyA cyclosporine, MTX methotrexate, FK tacrolimus, IM imatinib mesylate, HLA human leukocyte antigen ^a Data on GVHD prophylaxis were not fully available; there were 3 missing data in CP data, 4 missing data on CP2-AP and 2 missing data in BC ^b Data on pre-transplant imatinib administration were not fully available; 149 data and 47 data were not retrieved in CP1 and in CP2-AP, respectively ^c Loss of data on duration from diagnosis to transplantation (≤ 1 year/> 1 year) was noted; 25 data in CP, 12 data in CP2-AP, and 9 data in BP were not retrieved d Three data regarding conditioning regimen in CP were not retrieved e Loss of data on ABO mismatch was noted; 181 data in CP, 54 data in CP2-AP, and 34 data in BP were not retrieved f Data on HLA-DRBI allele were not fully available; there were 2 lacking data in CP, 4 lacking data on CP2-AP and 2 lacking data in BC ^g More detail of HLA disparity toward either rejection or GVHD is noted in supplementary Table 1 ### Results ### Patient characteristics Of 1,062 patients (676 men, 386 women; median age, 41 years; range, 20-74), 414 patients (39 %) had a clear history of pre-transplant IM use. Disease status was as follows: CP1 (n = 531), CP2-AP (n = 342) and BC (n = 189). GS were related rBMT (n = 205), uBMT (n = 507), rPBSCT (n = 226) and CBT (n = 124). The unrelated PBSCT has not allowed in Japan until 2012 and, therefore, our data included only unrelated BMT, not PBSCT. In addition, during the study period, there were no related CBTs at all. The other variables, including GVHD prophylaxis, pre-transplant IM, body weight at allo-HSCT, duration from diagnosis to transplant, conditioning intensity, years at transplantation (2000-2004 vs. 2005-2009), ABO mismatch, HLA mismatch in either GVHD or rejection direction, are shown in Table 1. Fig. 1 Kaplan-Meier estimate of overall survival (OS) for patients in CP1 (a), CP2-AP (b) and BC (c); and leukemiafree survival (LFS) for patients in CP1 (d), CP2-AP (e) and BC Overall survival and leukemia-free survival The median follow-up period was 914 days after transplantation (range 2-3,902) and 1,914 days after diagnosis (range 29-9,120). Three-year OS was 70.6 % (95 % CI, 66.8-74.7 %) for patients in CP1 at the time of transplantation, 58.9 % (95 % CI, 53.7-64.7 %) for those with CP2-AP, and 26.9 % (95 % CI, 20.9-34.6 %) for those in BC. The probability of 3-year LFS for patients in CP1, CP2-AP and BC was 64.6 % (95 % CI, 60.4-68.6 %), 46.1 % (95 % CI, 40.9–51.9 %) and 19.2 % 14.1–26.1 %), respectively (data not shown). OS and LFS according to GS in CP1, CP2-AP, and BC are shown in Fig. 1a-c, and d-f, respectively. In view of OS and LFS according to GS, 3-year OS after rBMT, rPBSCT, uBMT, and CBT in CP1 was 84.4, 70.0, 64.4, and 48.0 %, respectively (Fig. 1a). Threeyear LFS after rBMT, rPBSCT, uBMT, and CBT in CP1 was 76.3, 64.3, 59.3, and 30 %, respectively (Fig. 2d). Multivariate analysis for OS identified the following factors as adverse prognostic factors for Fig. 2 The cumulative incidence of transplantation-related mortality (TRM) for patients in CP1 (a), CP2-AP (b) and BC (c); and relapse for patients in CP1 (d), CP2-AP (e) and BC (f) patients in CP1: older age (>median age, 40 years: HR 1.67, 95 % CI, 1.15–2.41, P = 0.007), ABO mismatch (HR 1.44, 95 % CI, 1.003–2.06, P = 0.048) (Table 2), and uBMT (RR 6.01, 95 % CI, 1.20-29.97, P = 0.029) (Table 3). In CP2-AP, older age (> median age, 43 years: HR 1.74, 95 % CI, 1.25–2.43, P < 0.001) was the only factor an adverse prognostic factor (Table 2). In BC, pre-transplant IM (HR 0.61, 95 % CI, 0.49-0.89, P = 0.011) was the only factor for better OS (Table 2). Concerning LFS, multivariate analysis showed that uBMT (RR 4.26, 95 % CI, 1.24-14.62, P = 0.021) and older age (>median age, 40 years: HR 1.43, 95 % CI, 1.02–1.99, P = 0.038) were adverse risk factors in CP1 (Table 2, 3). For patients in CP2-AP and BC, no significant factor for OS or LFS was found. Thus, for patients in CP1, GS could have a significant impact on survival outcomes. While, for patients in the advanced phase of CML of beyond CP1, GS could have no significant impact on OS or LFS (Table 3). # TRM and relapse The 1-year cumulative TRM rate by disease stage was 23.1 % (95 % CI, 19.5–26.7 %) in CP1, 24.2 % (95 % CI, 19.5–28.9 %) in CP2-AP, and 43.2 % (95 % CI, 35.9–50.5 %) in BC. TRM by GS is shown in Fig. 2a–c. The TRM rate appeared low in rBMT compared with uBMT or rPBSCT in CP1 (Fig. 2a). Multivariate analysis showed that uBMT (RR 2.49, 95 % CI 1.02–6.10, P=0.046) and older age (>median age, 40 years: HR 1.69, 95 % CI, 1.19–2.39, P=0.003) were factors associated with a significantly increased risk of TRM in CP1 (Table 2, 3). The 3-year cumulative relapse rate by disease stage was 9.0 % (95 % CI, 3.9–7.9 %) in CP1, 28.2 % (95 % CI, 23.3–33.1 %) in CP2-AP, and 43.6 % (95 % CI, 36.3–50.9 %) in BC. Relapse rate by GS is demonstrated in Fig. 2d–f. For patients in CP1, the relapse rate after CBT appeared to be higher than that after other GS (Fig. 2d). In multivariate analysis by the effect of GS in CP1, CBT (RR Table 2 Multivariate analysis of risk factors for the main outcomes after allo-HSCT for CML in CP1, CP2-AP, and BP | Main outcomes | Factors | CP1 | | | CP2-AP | | | | BP | | | | | |----------------------------------------|--------------------------|---------|------|------------|---------|---------|------|-----------|---------|---------|------|-------------|---------| | | | Factors | HR | (95 % CI) | P value | Factors | HR | (95 % CI) | P value | Factors | HR | (95 % CI) | P value | | | Age | ≤40 | 1 | | | ≤43 | 1 | | | | | | | | | | >40 | 1.67 | 1.15-2.41 | 0.007 | >43 | 1.74 | 1.25-2.43 | < 0.001 | | | | | | | ABO mismatch | No | 1 | | | | | | | | | | | | | | Yes | 1.44 | 1.003-2.06 | 0.048 | | | | | | | | | | | Pre-transplant IM | | | | | | | | | No | 1 | | | | | | | | | | | | | | Yes | 0.61 | 0.41 - 0.89 | 0.011 | | LFS | Age | ≤40 | 1 | | | | | | | | | | | | | | >40 | 1.43 | 1.02-1.99 | 0.038 | | | | | | | | | | TRM | Age | ≤40 | 1 | | | | | | | | | | | | | | >40 | 1.69 | 1.19-2.39 | 0.003 | | | | | | | | | | Relapse | HLA mismatch (rejection) | | | | | | | | | 0, 1 | 1 | | | | | | | | | | | | | | ≥2 | 1.7 | 1.04-2.76 | 0.033 | | | HLA mismatch (GVHD) | | | | | 0, 1 | 1 | | | | | | | | | | | | | | ≥2 | 3.57 | 1.55-8.21 | 0.003 | | | | | | | Pre-transplant IM | No | 1 | | | | | | | | | | | | | | Yes | 0.75 | 0.57-0.99 | 0.04 | | | | | | | | | | | BW | | | | | ≤60 kg | 1 | | | | | | | | | | | | | | >60 kg | 1.35 | 1.01-1.82 | 0.045 | | | | | | Acute GVHD | BW | | | | | ≤60 kg | 1 | | | | | | | | (≥grade 2) | | | | | | > 60 kg | 1.53 | 1.05-2.24 | 0.028 | | | | | | Chronic GVHD (extensive ^b) | BW | | | | | ≤60 kg | 1 | | | | | | | | | | | | | | >60 kg | 1.75 | 1.06-2.73 | 0.028 | 0 | | | | OS overall survival, LFS leukemia-free survival, TRM transplantation-related mortality, ANC absolute neutrophil count, GVHD graft-versus-host disease, IM imatinib, HLA human leukocyte antigen, BW body weight, HR hazard ratio, CI confidence interval, CP chronic phase, AP accelerated phase, BP blastic phase, imatinib imatinib mesylate ^a Overall grade of acute GVHD assigned according to the Center for International Blood and Marrow Transplant Research (CIBMTR) severity index ^b Chronic GVHD was graded as limited or extensive based on the Seattle criteria Table 3 Impact of graft sources on main outcomes after allo-HSCT for CML in CP1, CP2-AP, and BP | Main outcomes | Graft sources | CP1 | | | CP2-AP | | | BP | | | |----------------------------------------|---------------|-------|-------------------------|---------|--------|-------------|---------|------|---------------|---------| | | | RR | (95 % CI) | p value | RR | (95 % CI) | p value | RR | (95 % CI) | p value | | OS | rBMT | 1.00 | | | 1.00 | | - | 1.00 | | | | | uBMT | 6.01 | (1.20-29.97) | 0.029 | 1.12 | (0.33-3.79) | 0.851 | >99 | (0.00-99.99) | 0.999 | | | rPBSCT | 1.76 | (0.77-4.04) | 0.180 | 0.84 | (0.21-3.43) | 0.809 | 1.13 | (0.56-2.30) | 0.727 | | | CBT | 1.00 | (0.00-99.99) | 1.000 | NA | NA | NA | NA | NA | NA | | LFS | rBMT | 1.00 | | | 1.00 | | | 1.00 | | | | | uBMT | 4.26 | (1.24-14.62) | 0.021 | 1.61 | (0.55-4.74) | 0.383 | 0.00 | (0-99.99) | 0.999 | | | rPBSCT | 1.72 | (0.95-3.11) | 0.073 | 0.42 | (0.14-1.31) | 0.135 | 0.67 | (0.31-1.44) | 0.299 | | | CBT | 1.00 | (0.00-99.99) | 1.000 | NA | NA | NA | NA | NA | NA | | TRM | rBMT | 1.00 | | | 1.00 | | | 1.00 | | | | | uBMT | 2.49 | (1.02-6.10) | 0.046 | 1.36 | (0.60-3.09) | 0.47 | 2.71 | (0.74 - 9.96) | 0.13 | | | rPBSCT | 1.03 | (0.52-2.07) | 0.93 | 0.94 | (0.52-1.70) | 0.83 | 1.43 | (0.64-3.22) | 0.39 | | | CBT | 0.33 | (0.04-2.63) | 0.29 | 0.98 | (0.60-1.60) | 0.94 | 1.26 | (0.82-1.92) | 0.29 | | Relapse | rBMT | 1.00 | | | 1.00 | | | 1.00 | | | | | uBMT | 0.33 | (0.12-0.95) | 0.041 | 0.66 | (0.29-1.55) | 0.34 | 2.23 | (0.28-17.61) | 0.45 | | | rPBSCT | 1.13 | (0.62-2.07) | 0.68 | 1.17 | (0.64-2.14) | 0.6 | 1.06 | (0.44-2.54) | 0.9 | | | CBT | 25.16 | (1.76-369.10) | 0.018 | 1.15 | (0.74-1.80) | 0.53 | 0.77 | (0.39-1.60) | 0.49 | | ANC recovery | rBMT | 1.00 | | | 1.00 | | | 1.00 | | | | | uBMT | 0.82 | (0.55-1.23) | 0.35 | 0.83 | (0.53-1.31) | 0.43 | 0.58 | (0.27-1.26) | 0.17 | | | rPBSCT | 1.31 | (1.02-1.69) | 0.036 | 1.2 | (0.90-1.59) | 0.21 | 0.91 | (0.33-2.52) | 0.86 | | | CBT | 2 | (0.67-5.98) | 0.22 | 0.53 | (0.42-0.67) | < 0.001 | 0.55 | (0.37-0.82) | 0.003 | | Platelet recovery | rBMT | 1.00 | | | 1.00 | | | 1.00 | | | | | uBMT | 0.75 | (0.46-1.21) | 0.24 | 0.89 | (0.51-1.56) | 0.68 | 0.21 | (0.07-0.61) | 0.0039 | | | rPBSCT | 0.93 | (0.69-1.26) | 0.65 | 0.91 | (0.61-1.35) | 0.63 | 0.67 | (0.28-1.57) | 0.35 | | | CBT | 1.07 | (0.35-3.28) | 0.9 | 0.78 | (0.62-0.99) | 0.049 | 0.44 | (0.26-0.74) | 0.0018 | | Acute GVHD (all grades ^a) | rBMT | 1.00 | | | 1.00 | | | 1.00 | | | | | uBMT | 3.35 | (1.50-6.22) | < 0.001 | 1.67 | (0.92-3.02) | 0.09 | 1.22 | (0.46-3.25) | 0.69 | | | rPBSCT | 1.49 | (0.94-2.37) | 0.091 | 0.86 | (0.51-1.44) | 0.56 | 0.94 | (0.32-2.73) | 0.91 | | | CBT | 1.67 | (0.68-4.11) | 0.26 | 0.76 | (0.58-1.01) | 0.054 | 1.05 | (0.56-1.96) | 0.87 | | Acute GVHD (≥grade 2) | rBMT | 1.00 | | | 1.00 | | | 1.00 | | | | | uBMT | 4.28 | (1.92-9.53) | < 0.001 | 2.14 | (0.93-4.94) | 0.075 | 1.34 | (0.39-4.61) | 0.65 | | | rPBSCT | 1.5 | (0.82-2.72) | 0.19 | 1.53 | (0.82-2.86) | 0.18 | 2.23 | (0.36-1.39) | 0.39 | | | CBT | 1.00 | (0.00-99.99) | 1.000 | 0.84 | (0.58-1.22) | 0.36 | 1.45 | (0.55-3.81) | 0.45 | | Chronic GVHD | rBMT | 1.00 | | | 1.00 | | | 1.00 | | | | | uBMT | 0.95 | (0.53-1.70) | 0.86 | 1.1 | (0.45-2.68) | 0.84 | 0.27 | (0.06-1.33) | 0.11 | | | rPBSCT | 1.37 | (0.97-1.92) | 0.075 | 1.24 | (0.70-2.19) | 0.47 | 0.84 | (0.22-3.20) | 0.8 | | | CBT | 8.52 | (0.64–11.43) | 0.11 | 0.8 | (0.52–1.25) | 0.33 | 0.73 | (0.32–1.66) | 0.46 | | Chronic GVHD (extensive ^b) | rBMT | 1.00 | , and the second second | | 1.00 | , | | 1.00 | * | | | , | uBMT | 1 | (0.49-2.04) | 1 | 0.84 | (0.33-2.15) | 0.72 | 0.69 | (0.14-3.46) | 0.65 | | | rPBSCT | 1.31 | (0.87–1.96) | 0.19 | 1.19 | (0.60–2.34 | 0.62 | 1.08 | (0.27-4.24) | 0.92 | | | CBT | 6.61 | (0.22–200.8) | 0.28 | 0.63 | (0.36–1.09) | 0.097 | 0.77 | (0.31–1.88) | 0.56 | OS overall survival, LFS leukemia-free survival, TRM transplantation-related mortality, ANC absolute neutrophil count, GVHD graft-versus-host disease, RR relative risk, CI confidence interval, CP chronic phase, AP accelerated phase, BP blastic phase, rBMT related bone marrow transplantation, rPBSCT related peripheral blood stem cell transplantation, uBMT unrelated bone marrow transplantation, CBT unrelated cord blood transplantation, NA not available ^b Chronic GVHD was graded as limited or extensive based on the Seattle criteria ^a Overall grade of acute GVHD assigned according to the Center for International Blood and Marrow Transplant Research (CIBMTR) severity index 25.16, 95 % CI 1.76–369.10, P = 0.018) showed higher relapse, while uBMT (RR 0.33, 95 % CI 0.12–0.95, P = 0.041) was lower relapse compared with those in rBMT (Table 3). ### Engraftment The cumulative neutrophil recovery rate on day 90 was 97.5 % (95 % CI, 96.1–98.9 %) in CP1, 93.2 % (95 % CI, 90.5-95.9 %) in CP2-AP, and 82.3 % (95 % CI, 76.8-87.8 %) in BC. On day 180, the cumulative platelet recovery rate, as indicated by more than 2×10^{10} /L of platelets in blood, was 91.9 % (95 % CI, 89.5-94.3 %) in CP1, 85.1 % (95 % CI, 81.2-89.0 %) in CP2-AP, and 67.2 % (95 % CI, 60.3-74.1 %) in BC. Note that the neutrophil recovery and platelet recovery rates were lower after CBT, especially in patients in the advanced phase; i.e., neutrophil recovery in CBT: 90 % in CP1, 79.4 % in CP2-AP, and 64.0 % in BC; platelet recovery after CBT: 90.0 % in CP1, 72.5 % in CP2-AP, and 52.0 % in BC (Fig. 3a-f). Multivariate analysis showed that rPBSCT (RR 1.31, 95 % CI 1.02–1.69, P = 0.0396 was a significant factor for early neutrophil recovery in CP1. While, CBT (RR 0.53, 95 % CI 0.42–0.67, P < 0.001) was a significant factor for delayed neutrophil recovery in CP2-AP (Table 3). The factor statistically associated with delayed platelet recovery was CBT in CP2-AP (RR 0.78, 95 % CI 0.62-0.99, P = 0.0049) and in BC (RR 0.44, 95 % CI 0.26-0.74, P = 0.0018). Unrelated BMT (RR 0.21, 95 % CI 0.07–0.61, P = 0.0039) was also a significant factor for delayed platelet recovery in BC (Table 3). ### Acute and chronic GVHD The cumulative incidence of acute GVHD at all grades before day 100 was 62.8 % (95 % CI, 58.6-67.0 %) in CP1, 63.5 % (95 % CI, 58.2-58.8 %) in CP2-AP, and 68.6 % (95 % CI, 61.3-74.9 %) in BC. Patients who underwent uBMT showed a higher incidence of acute GVHD (all grades) in CP1 and CP2-AP (Fig. 4a, b). This association was confirmed by multivariate analysis; uBMT (RR 3.35, 95 % CI 1.50-6.22, P < 0.001) was a significant factor in CP1 (Table 3). Pre-transplant IM (HR 0.75, 95 % CI 0.57-0.99, P = 0.04) was a significant risk factor for acute GVHD (all grades) in CP1 (Table 2). Focusing exclusively on grade II or higher acute GVHD, uBMT (RR 4.28, 95 % CI 1.92-9.53, P < 0.001) (Table 3) was a significant risk factor in CP1 (Table 2). For patients in CP2-AP, body weight (>60 kg) was a factor significantly associated with increased risk of aGVHD (all grade; RR 1.35, 95 % CI, 1.01-1.82, P = 0.045, grade II or higher grade; RR 1.53, 95 % CI, 1.05-2.24, P = 0.028) (Table 2). The cumulative incidence of chronic GVHD among evaluable patients who survived at least 100 days after allo-HSCT was 49.4 % (95 % CI, 44.7-54.1 %) in CP1, 42.2 % (95 % CI, 36.4-48.0 %) in CP2-AP, and 37.8 % (95 %CI, 30.0-45.6 %) in BC. For patients in CP1, rPBSCT showed a higher incidence of chronic GVHD (71.4 %), which was compared to other GS (Fig. 4d); however, this significant association was not confirmed in multivariate analysis (rPBSCT: RR 1.37 95 % CI 0.97-1.92, P = 0.075). For patients in CP2-AP and BC, chronic GVHD after CBT occurred at rates of 23.1 and 23.8 %, respectively, which were apparently lower than that of other GS (Fig. 4e, f), but these statistical associations were not also confirmed by multivariate analysis in CP2-AP or BC (Table 3). Concerning extensive chronic GVHD, multivariate analysis showed the significant association between body weight (>60 kg; RR 1.75, 95 % CI, 1.06-2.73, P = 0.028) and chronic GVHD in CP2-AP (Table 2). ## Discussion Our study reviewed 1,062 Japanese adult patients who underwent allo-HSCT during the past decade (2000–2009); thus, our cohort reflects the current use and results of allo-HSCT for CML in Japan. Moreover, the TRUMP database offers the advantage of a large number of patients with extensive data, which permits multivariate analysis. The 3-year OS was 70.6 % for patients in CP1, and the probability of 3-year LFS for patients in CP1 was 64.6 %. These survival data for patients in CP1 were comparable to those reported by others [12]. Based on the report from the EBMT, which included 13,416 CML patients and was apparently the largest CML transplant database including the 3 times cohorts (i.e., 1980-1990, 1991-1999, 2000–2003), the probability of OS at 2 years for patients transplanted in CP1 from an HLA-identical sibling was 74 %, with a cumulative incidence of TRM at 2 years of 22 % and of relapse of 18 % among the most recent cohort transplanted between 2000 and 2003 (n = 3,018) [13]. The Center for International Blood and Marrow Transplant Research (CIBMTR) recently reported the transplant outcomes of 449 patients with advanced phase CML; the disease-free survival rates remained as low as 35-40 % for CP2, 26-7 % for AP, and 8-11 % for BC [14]. Our series including 432 cases of CP2-AP and 189 cases of BC showed similar survival rates, as the probabilities of 3-year LFS in CP2-AP and BC were 46.1 and 19.2 %, respectively. Our primary object in this study was to assess the clinical impact of GS according to each disease status. Our study results revealed that the patients in CP1 who were Fig. 3 The cumulative incidence of absolute neutrophil count (ANC) recovery for patients in CP1 (a), CP2-AP (b) and BC (c); and platelet (PLT) recovery for patients in CP1 (d), CP2-AP (e) and BC (f) treated by rBMT showed a better 3-year OS (84.4 %) with a lower 1-year cumulative incidence of TRM, but the 3-year LFS and relapse rates were similar between patients receiving rBMT and patients receiving rPBSCT. These data were essentially in line with previous reports in which the CIBMTR reported the data of CML patients undergoing rPBSCT or rBMT in CP1; the 1-year LFS and relapse rates were similar for patients receiving rBMT or rPBSCT [14]. We also assessed the clinical impact of GS in CP2-AP; our results showed that there were no significant differences in OS or LFS between GS, despite lower probabilities of relapse after uBMT and lower probabilities of TRM after CBT. These results differ from the IBMTR reports in that for patients in CP2 or AP, rPBSCT was associated with a lower incidence of treatment failure and a higher probability of LFS at 1 year [15]. Regarding GVHD, a recent prospective randomized trial showed a trend toward a higher incidence of chronic GVHD after rPBSCT (59 % after rPBSCT vs. 40 % after rBMT, P=0.11) for patients in CP1 [16]. Our results may confirm this report; although multivariate analysis in our study showed that rPBSCT (RR 1.37 95 % CI 0.97–1.92, P=0.075) was not a significant risk factor for developing chronic GVHD (Table 3), rPBSCT showed a higher incidence of chronic GVHD (71.4 %), which was compared to other GS in CP1 (Fig. 4d). Several investigators have addressed the clinical impact of pre-transplant IM on post-transplant outcomes for CML [14, 17–20]. The CIBMTR data demonstrated that pre-transplant IM was associated with better survival, but revealed no statistically significant differences in TRM, relapse, and LFS for patients in CP1 [17]. Among patients transplanted in the more advanced phases beyond CP1, pre-transplant IM was not associated with TRM, relapse, LFS, OS, or acute GVHD [17]. In contrast to these studies, our analysis showed that pre-transplant IM was significantly associated with better OS for patients in BC. In addition, multivariate analysis found pre-transplant IM was a Fig. 4 The cumulative incidence of acute GVHD at all grades for patients in CP1 (a), CP2-AP (b) and BC (c); and chronic GVHD at all grades for patients in CP1 (d), CP2-AP (e) and BC (f) significant factor associated with acute GVHD (>grade II) in CP1 (data not shown). Despite the study in the era of TKI, half of patients were in CP1, and 61 % of patients underwent allo-HSCT without use of pre-transplant TKI in this study. We should interpret these findings with utmost caution. We assume that most patients had already initiated the conventional treatment but could not reach a new, but expensive IM treatment before allo-HSCT, as a reason for these findings. Moreover, the findings that the number of patients in CP1 underwent allo-HSCT was 447 in the early period of IM from 2000 to 2004 and only 84 from 2005 to 2009 might support our assumption. Deininger et al. reported an effect of pre-transplant IM in their study that included 70 cases of CML and 21 cases of Ph (+) acute lymphoid leukemia. These investigators compared the outcomes with historical controls identified in the EBMT database [21], and observed a trend towards higher relapse mortality and significantly less chronic GVHD in patients with pre-transplant IM (OR = 0.44, P = 0.027). Thus, the clinical impact of pre-transplant IM is still a contentious issue; additional studies evaluating the long-term use of IM with a larger number of patients might permit a more refined analysis of the effect of pre-transplant IM. Although data on clinical outcomes after CBT are conflicting, CBT has apparent advantages over uBMT, including no risk to the donor and ease of availability. Previous reports, mostly from pediatric studies, have shown that, despite higher HLA mismatch, CBT carries a lower risk of acute GVHD and chronic GVHD in comparison with uBMT [22-24]. A recent Japanese retrospective analysis assessing 86 patients, including pediatric patients, disclosed the transplant outcomes of CBT: 2-year OS was 53 %; for patients in CP, AP and BC, the OS rates were 71, 59 and 32 %, respectively [25]. Although our small population with only 10 cases of CBT in CP1 may prohibit drawing meaningful conclusions, a trend of higher relapse and lower TRM, OS and LFS in CP1 was similar to results obtained by previous study groups. Nevertheless, in CP2-AP and BC, transplant outcomes after CBT were comparable to those of other GS, suggesting CBT as an acceptable alternative option in advanced phases of CML. As with all retrospective studies, this study had several limitations. Reported data from transplant centers were often incomplete: data on pre-transplant IM, duration from diagnosis to transplantation, and conditioning regimen could not be fully retrieved. The reasons for which patients in CP1 with IM proceeded with transplantation (planned, or IM resistance) or the reasons for delay in proceeding with transplantation in BC were unknown. Information on post-transplant use of TKIs as maintenance therapy or data on the presence of *BCR/ABL1* mutations was also unavailable in our cohort. Moreover, the selection of GS would often be governed by several unmeasured factors, but our data nonetheless provide a clinical basis for current selection of GS for the treatment of CML in the era of TKIs. In conclusion, this retrospective study evaluated the results of allo-HSCT for CML patients according to disease status and GS. For patients in CP1, rBMT may be the preferred option for better survival, whereas rPBSCT carries a higher risk for chronic GVHD, which could be a major drawback for patients in CP1. In advanced phases, GS had no significant impact on survival, suggesting that CBT is a reasonable alternative therapy when there is no related or unrelated donor available, or when a transplant is needed urgently. In the era of the new-generation TKIs, indications for allo-HSCT and selection of GS for advanced CML need further evaluation. **Acknowledgments** We thank all of the physicians and nurses who cared for patients in this study. We also thank all the data managers and officers of the JSHCT, JMDP, and JCBBN. Conflict of interest The authors declare no conflict of interest. ## References - Cortes J, H Kantarjian. How I treat newly diagnosed chronic phase CML. Blood. 2012;120:1390-7. - Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27:6041–51. - 3. Hehlmann R, Berger U, Pfirrmann M, et al. Drug treatment is superior to allografting as first line therapy in chronic myeloid leukemia. Blood. 2007;109:4686–92. - Saussele S, Lauseker M, Gratwohl A, et al. Allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia in the imatinib era: evaluation of its impact within a subgroup of the randomized German CML Study IV. Blood. 2010;115:1880–5. - Radich J. Stem cell transplant for chronic myeloid leukemia in the imatinib era. Semin Hematol. 2010;47:354–61. - Venepalli N, Rezvani K, Mielke S, et al. Role of allo-SCT for CML in 2010. Bone Marrow Transpl. 2010;45:1579–86. - Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367:2075–88. - O'Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16:401–12. - Atsuta Y, Suzuki R, Yoshimi A, et al. Unification of hematopoietic stem cell transplantation registries in Japan and establishment of the TRUMP System. Int J Hematol. 2007;86:269–74. - Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus Conference on acute GVHD grading. Bone Marrow Transpl. 1995:15:825-8. - Sullivan KM, Agura E, Anasetti C, et al. Chronic graft-versushost disease and other late complications of bone marrow transplantation. Semin Hematol. 1991;28:250–9. - Kanda J. Effect of HLA mismatch on acute graft-versus-host disease. Int J Hematol. 2013;98:300–8. - 13. Gratwohl A, Brand R, Apperley J, et al. Allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia in Europe 2006: transplant activity, long-term data and current results. An analysis by the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2006;91:513–21. - Khoury HJ, Kukreja M, Goldman JM, et al. Prognostic factors for outcomes in allogeneic transplantation for CML in the imatinib era: a CIBMTR analysis. Bone Marrow Transpl. 2012;47:810–6. - Champlin RE, Schmitz N, Horowitz MM, et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood. 2000;95:3702-9. - Oehler VG, Radich JP, Storer B, et al. Randomized trial of allogeneic related bone marrow transplantation versus peripheral blood stem cell transplantation for chronic myeloid leukemia. Biol Blood Marrow Transpl. 2005;11:85–92. - Lee SJ, Kukreja M, Wang T, et al. Impact of prior imatinib mesylate on the outcome of hematopoietic cell transplantation for chronic myeloid leukemia. Blood. 2008;112:3500-7. - 18. Oehler VG, Gooley T, Snyder DS, et al. The effects of imatinib mesylate treatment before allogeneic transplantation for chronic myeloid leukemia. Blood. 2007;109:1782–9. - 19. Perz JB, Khorashad JS, Marin D, et al. Imatinib preceding allogeneic stem cell transplantation in chronic myeloid leukemia. Haematologica. 2006;91:1145–6. - Giralt SA, Arora M, Goldman JM, et al. Chronic Leukemia Working Committee, Center for International Blood and Marrow Transplant Research. Impact of imatinib therapy on the use of allogeneic haematopoietic progenitor cell transplantation for the treatment of chronic myeloid leukaemia. Br J Haematol. 2007:137:461-7. - Deininger M, Schleuning M, Greinix H, et al. The effect of prior exposure to imatinib on transplant-related mortality. Haematologica. 2006:91:452-9. - 22. Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med. 1997;337:373–81. - Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339:1565-77. - Sanz GF, Saavedra S, Jimenez C, et al. Unrelated donor cord blood transplantation in adults with chronic myelogenous leukemia: results in nine patients from a single institution. Bone Marrow Transpl. 2001;27:693-701. - Nagamura-Inoue T, Kai S, Azuma H, et al. Unrelated cord blood transplantation in CML: Japan Cord Blood Bank Network analysis. Bone Marrow Transpl. 2008;42:241–51.