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ARTICLE INFO ABSTRACT
Arﬁd_e history: Epigenetics now refers to the study or research field related to DNA methylation and histone modifica-
Received 6 August 2014 tions. Historically, global DNA hypomethylation was first revealed in 1983, and, after a decade, silencing

Available online 4 September 2014 of a tumor suppressor gene by regional DNA hypermethylation was reported. After the proposal of the his-

tone code in the 2000s, alterations of histone methylation were also identified in cancers. Now, it is estab-
Keywords: lished that aberrant epigenetic alterations are involved in cancer development and progression, along with
Caflcer i mutations and chromosomal losses. Recent cancer genome analyses have revealed a large number of muta-
gi}}g\err;e;t‘fl;lation tions of epigenetic modifiers, supporting their important roles in cancer pathogenesis. Taking advantage of
Histone modification the reversibility of epigenetic alterations, drugs targeting epigenetic regulators and readers have been
developed for restoration of normal pattern of the epigenome, and some have already demonstrated clin-
ical benefits. In addition, DNA methylation of specific marker genes can be used as a biomarker for cancer
diagnosis, including risk diagnosis, detection of cancers, and pathophysiological diagnosis. In this paper, we
will summarize the major concepts of cancer epigenetics, placing emphasis on history.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction
Abbreviations: K, lysine; ac, acetylation; mel, mono-methylation; me2, Epigenetics referred to the study or research field for heritable

di-methylation; me3, tri-methylation; DNMT, DNA methyltransferase; FDA, U.S. modifications that regulated gene expression without changes in
Food and Drug Administration; POC, proof-of-concept.
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Fig. 1. History of cancer epigenetics. An overview of cancer epigenetics is shown focusing on fundamental findings and clinical applications.

and epigenetics now mainly refers to the study or research field
related to DNA methylation and histone modifications. In mam-
mals, epigenetic inheritance is important for pre-implantation
development [1], fetal development (2], cell differentiation [3]
and tissue differentiation [4]. It is also involved in gametogenesis
and cellular reprogramming during the generation of cloned ani-
mals and iPS cells [5].

At the same time, aberrant epigenetic modifications (epigenetic
alterations) are now considered to be involved in the pathogenesis
of several diseases, including pediatric tumors [6]. Especially, aber-
rant DNA methylation is deeply involved in cancer development
and progression because DNA methylation pattern is inherited
with a high fidelity in somatic cells [7]. Once aberrant DNA meth-
ylation is induced, it is accurately transmitted to daughter cells
after cell division. Aberrant DNA methylation is one of the major
mechanisms of inactivation of tumor-suppressor genes, along with
mutations and chromosomal losses [8].

Historically, the first discovery of epigenetic alterations in can-
cer goes back to 1983 when global DNA hypomethylation was
reported [9]. After a decade, regional DNA hypermethylation was
demonstrated to cause silencing of a tumor suppressor gene [10].
The CpG island methylator phenotype (CIMP) was reported first
in colorectal tumors in 1999 [11], and thereafter, the presence of
CIMP has become known in other types of cancers [12]. As for
histone modifications, the impact of histone deacetylase (HDAC)
inhibitors (HDACis) on cancer cell proliferation was known in the

1990s [13]. After the proposal of the “histone code” [14], its distur-
bances have been reported in various types of cancer. Most
recently, cancer genome analyses revealed the presence of muta-
tions of epigenetic regulators, including those of TET and IDH genes
[15]. Epigenetic drugs, such as DNA demethylating agents and
HDACis, have already become an option for cancer treatment [16].

In this review, we will summarize an overview and trends of
cancer epigenetics according to its history (Fig. 1).

1.1. Global hypomethylation in cancer

Global hypomethylation in cancer denotes a decrease in overall
content of 5-methylcytosine, and was revealed as the first epige-
netic abnormality in cancer by Feinberg and Vogelstein in 1983
[9] (Fig. 1). They analyzed DNA methylation in cancerous and
non-cancerous tissues by Southern blotting of DNA digested with
methylation-sensitive restriction enzymes, and found a substantial
reduction in DNA methylation in cancer tissues. Gama-Sosa and
colleagues also investigated the difference in DNA methylation
level between cancerous and non-cancerous tissues by a high-per-
formance liquid chromatography, and showed a reduction of 5-
methylcytosine content in cancer tissues [17]. Such hypomethyla-
tion was also found in pre-malignant adenomas [18,19].

Global hypomethylation involves repetitive sequences, which is
observed not only in cancers but also in non-cancerous tissues
[20], such as normal mucosae exposed to chronic inflammation
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[21]. Global hypomethylation also involves promoter regions of
cancer-testis antigen genes, such as MAGE and GAGE [22,23].
Although several studies investigated DNA hypomethylation of
oncogenes [24-27], activation of oncogenes by hypomethylation
is still controversial because the regions analyzed in most studies
were outside the promoter region that control gene expression
and some oncogenes do not have CpG islands (CGIs) in their pro-
moter regions. On the other hand, it has been established that
DNA hypomethylation leads to chromosomal instability and tumor
development, using DNA methyltransferase 1 (Dnmt1) hypomor-
phic mouse [11,28,29].

1.2. Regional DNA hypermethylation in cancer

Regional DNA hypermethylation in cancer denotes increased
methylation at normally unmethylated CGIs. If a CGI in a gene pro-
moter region is methylated, its downstream gene is consistently
inactivated. Therefore, regional hypermethylation in a promoter
CGI of a tumor-suppressor gene can inactivate the gene, leading
to tumor development and tumor progression [8]. In 1993, inacti-
vation of the RB tumor-suppressor gene by DNA hypermethylation
of its promoter CGI was reported as the first evidence [10] (Fig. 1).
Subsequently, aberrant DNA methylation of other tumor-suppres-
sor genes, such as CDKN2A (p16) [30], MLH1 [31] and CDH1 [32]
was also reported as an alternative mode of inactivation to genetic
alterations.

As the importance of aberrant DNA methylation was recog-
nized, genome-wide screening techniques to identify aberrantly
methylated regions were developed in the late 1990s, including
restriction landmark genomic screening (RLGS) [33], methyla-
tion-sensitive representational difference analysis (MS-RDA) [34]
and methylation-specific arbitrarily-primed PCR (MS-AP-PCR)
[35]. In the 2000s, methods using an antibody against methylated
cytosine or methyl-CpG-binding domain protein (MBD) [36] were
developed. Now, microarray analysis combined with bisulfite
treatment, such as Infinium BeadArray for human sample [37],
and next-generation sequencing, such as reduced representation
bisulfite sequencing (RRBS) [38] and whole-genome bisulfite
sequencing [39], are widely used. Such genome-wide analyses
revealed that a large number of genes with promoter CGIs (from
several hundreds to one thousand) are hypermethylated in cancer
[40]. Since most of such genes are not expressed or expressed at
very low levels in normal cells, they are considered not as “driver
genes”, which are causally involved in tumorigenesis, but as “pas-
senger genes”, which are methylated by an accompanying phe-
nomenon of carcinogenesis. Until now, a large number of tumor-
suppressor genes have been shown to be potentially silenced by
aberrant DNA methylation, and aberrant DNA methylation is the
one of the major mechanisms that inactivates tumor-suppressor
genes.

1.3. The CpG island methylator phenotype

The “CpG island methylator phenotype (CIMP)” is defined as
frequent methylation of multiple CGIs, and was first reported in
colorectal cancers by Toyota and colleagues in 1999 [11,41]
(Fig. 1). The presence of tumors with the CIMP has been reported
in other type of cancers, including neuroblastoma [12], glioma
[42,43] and gastric cancer [44,45]. Importantly, the CIMP status
is uniquely associated with specific clinicopathological characteris-
tics in individual cancer types, indicating that the CIMP provides
information for cancer diagnosis and may be utilized to stratify
patients for therapeutic opportunities [46].

For instance, the CIMP of colorectal cancers is associated with
tumors in elderly patients, in the right-side colon and in female
patients [47]. The CIMP of neuroblastoma is strongly associated

with poor prognosis in patient cohorts from multiple countries,
including Japan, Germany, Italy and Sweden. Moreover, CIMP-posi-
tive cases include almost all cases with MYCN amplification, a
prognostic marker used in clinical practice, and the CIMP status
provides prognostic information not provided from MYCN amplifi-
cation [48]. In 2014, the analysis of neuroblastoma CIMP has
become commercially available in Japan.

The mechanisms for development of CIMP are one of the most
discussed topics in the field of cancer epigenetics [49]. Recent stud-
ies by Killian and colleagues and by Turcan and colleagues demon-
strated an association between specific genomic alterations and
the presence of the CIMP [50,51]. In gastrointestinal stromal
tumors, cases with mutation of succinate dehydrogenase (SDH)
displayed the CIMP phenotype [51]. In gliomas, IDH1 mutation
was shown to be sufficient to establish a glioma with CIMP [50].

1.4. Discovery of 5-hydroxymethylcytosine and the role of TET proteins
in cancer

Whether active DNA demethylation is present or not has been a
strong debate for a long period as DNA methylation was thought to
be a consequence of failure in maintenance methylation after DNA
replication. However, finally, a mechanism of active DNA demeth-
ylation was proposed by involvement of oxidative demethylation
[52]. In 2009, Tahiliani and colleagues showed that the ten-eleven
translocation (TET) family proteins could modify 5-methylcytosine
to 5-methylhydroxycytosine (5-hmC) by oxidation of the 5-methyl
group [53,54]. Now, many investigators trust the presence of active
DNA demethylation by TET proteins [55].

TET2, a close relative of TET1, was also reported as an enzyme
related with 5-hmC generation. Frequent somatic TET2 mutations
were observed in several hematological cancers, and a low level
of 5-hmC was observed in bone marrow samples of patients with
TET2 mutations [56]. As for solid tumors, in 2012, Lian and col-
leagues demonstrated that loss of 5-hmC was present in mela-
noma, and that IDH2 mutations and down-regulation of TET
proteins might be the mechanisms of loss of 5-hmC [57]. As genes
in which demethylation is important to suppress tumor develop-
ment and progression, TIMP2 and TIMP3 were implicated as
TET1-target genes in prostate and breast cancers [58].

1.5. Aberrant histone modifications in cancers

The histone code hypothesis was proposed by Jenuwein and
Allis in 2001, to explain how combinations of histone modifica-
tions contribute to alterations of chromatin structure and changes
of gene expression [14] (Fig. 1). Now, in various cancers, alterations
of histone modifications have been reported in both global and
gene-specific manners. In 2005, for the first time, Fraga and col-
leagues reported down-regulation of histone H4K16ac and histone
H4K20me3 in colorectal cancer and leukemia [59] (Fig. 1). Impor-
tantly, some histone alterations were found to be associated with
poor prognosis, such as histone H3K4me1 and H3K9me2, 3 in pros-
tate cancers and histone H3K4me2, H3K9me2 and H3K18ac in
pancreatic cancers [60,61]. Gene-specific change of histone marks,
such as H3K27me3, H3K9me2 and H3K79me2, inactivated tumor-
suppressor genes, resulting in tumor development and progression
[62-64].

Before the proposal of the histone code hypothesis, a difference
in histone acetylation was reported between cancer and normal
tissues [65]. In addition, inhibitors of HDACs were developed and
their differentiation induction effect on leukemic cells was noted
[66]. The impact of HDACis on cancer cell proliferation was also
revealed [13], and now, aberrant histone acetylation in cancer
has became a therapeutic target using epigenetic drugs [16].
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1.6. Mutations of epigenetic regulators in cancer

Recent genomic analyses using next generation sequencing dis-
covered mutations of epigenetic regulators in cancers [15,67]. In
2009, Abdel-Wahab and colleagues, along with other groups, found
frequent mutations in TET2 in myeloid malignancies, and showed
the association between the mutations and decreased overall sur-
vival in AML [68,69]. IDH1 and IDH2 mutations are also frequently
observed in gliomas, and those mutations were shown to lead to
loss of their physiological function, conversion of isocitrate into
a-ketoglutarate, and to gain of function to produce 2-hydroxyglut-
arate (2-HG) [70,71]. The metabolite 2-HG competitively inhibited
activity of TET1 and TET2, leading to decrease of 5-hmC. 2-HG also
inhibited several histone demethylases, such as KDM2A, leading to
genome-wide alterations of histone modifications (72].

Mutations of other epigenetic modifiers, including DNMT3A,
EZH2 and SETD2, have also been identified. When DNMT3A muta-
tion occurs at R882, most frequent in AML, the methyltransferase
activity of DNMT3A is decreased [73,74]. It has been reported that
in lymphoma, EZH2 mutation at Y641 increased its enzymatic
activity, leading to aberrant histone H3K27 methylation [75-77].
An analysis of renal carcinoma showed inactivating mutations of
STED2, a histone H3K36 methyltransferase, and KDM5C, a histone
H3K4 demethylase, and KMDG6A, a histone H3K27 demethylase
[78,79]. The investigation of cancer genome accelerated our under-
standing of cancer epigenome.

1.7. Histone H3.3 mutations in malignant glioma

Specific roles of histone variants in various biological processes
were clarified entering the 2010’'s. In cancers, Schwartzentruber
and colleagues demonstrated that 31% of glioblastomas contained
somatic mutations in a histone variant, histone H3.3, in 2012 [80].
Mutations in the H3F3A gene, K27M and G34R/V, have been iden-
tified, leading to amino acid changes in the N-terminal domain of
the H3.3 protein. These mutations were mutually exclusive, and
the tumors with H3.3 mutation showed distinct profiles of DNA
methylation and gene expression [80,81]. Tumors with K27M also
displayed a global decrease of H3K27me2 and H3K27me3. These
results suggested that the H3F3A mutation defined a unique sub-
group of gliomas.

1.8. Clinical application as epigenetic cancer therapy

One of the most important characteristics of epigenetic altera-
tions is their reversibility [82]. Drugs targeting epigenetic altera-
tions and regulators have been developed for the purpose of
restoration of normal epigenomic pattern, and were shown to have
clinical benefits [83]. Two classes of epigenetic drugs, DNMT inhib-
itors and HDACis, are already in clinical practice.

(a) Development and clinical application of DNA demethylating
agents

In 1964, Sorm and colleagues developed 5-azacytidine (azaciti-
dine; 5-Aza; Vidaza®) and 2'-deoxy-5-azacytidine (decitabine; 5-
aza-CdR; Dacogen®) as classical cytostatic agents [84]. The possible
anti-cancer activity of azacytidine was reported in 1968 using a
mouse model of acute leukemia without attention to its ability of
DNA demethylation [85]. In 1979, Taylor and Jones revealed its
activity to induce cell differentiation in vitro and its involvement
in the inhibition of DNA methylation [86].

Nevertheless, the first clinical trial of decitabine in patients with
acute leukemia, published in 1981, was conducted without much
attention to its epigenetic effects [87]. Although a significant
reduction in circulating blasts was observed, the dose determined

based upon the maximum-tolerant dose induced severe and pro-
longed myelosuppression, possibly due to the cytotoxic effect of
high-dose of decitabine. After implementation of a new regimen
focusing on their epigenetic action, namely a low dose and a pro-
longed exposure, the DNA demethylating drugs exhibited a much
better anti-cancer effect [88]. Azacytidine and decitabine were
approved in 2004 and 2006, respectively, by the FDA for the treat-
ment of myelodysplastic syndrome (MDS) [89,90].

A new generation of DNMT inhibitors, such as SGI-110, is cur-
rently being developed in clinical trials [16]. In addition, a combi-
nation with an HDACis or another anti-cancer drug is also being
attempted. Indeed, a combination of a DNA demethylating agent
and an HDACis was shown to be promising in patients with refrac-
tory advanced non-small cell lung cancer [91,92].

(b) Clinical application of HDAC inhibitors

The first clinical trial using HDACis, romidepsin (depsipeptide;
Istodax®), reported in 2001, demonstrated to be promising [93].
In 2006, suberoylanilide hydroxamic acid (SAHA; vorinostat;
Zolinza®) was approved by the FDA for the treatment of cutaneous
T cell lymphoma (CTCL), and romidepsin was also approved for the
same indication in 2009. In human, there are 18 HDAC proteins
categorized into four classes, class I, Ila, IIb and IIl. Romidepsin
and SAHA target at least four HDACs across multiple classes, show-
ing no strict specificity in their target HDACs. To reduce toxicity
associated with such global HDAC inhibition, novel agents are
being developed for selective inhibition of specific HDACs. Entino-
stat and mocetinostat selectively target class | HDACs, and ACY-
1215 is a specific inhibitor of HDAC6. Until now, more than 20 dif-
ferent inhibitors are under investigation in clinical trials for hema-
tological and solid tumors [16,94].

(c) Inhibitors targeting other epigenetic modifiers and readers

Other candidates for epigenetic drugs are inhibitors for histone
methyltransferases, histone demethylases, and proteins that recog-
nize histone modifications. Histone H3K9 methyltransferase G9a,
overexpressed in several type of cancers, could be inhibited by a
chemical compound, BIX-01294 [95]. BIX-01294 showed strong
anti-growth ability in cancer cell lines with high expression of
G9a [96]. Specific inhibitors of EZH2, such as GSK126, have also been
developed, and exhibited anti-tumor activity for lymphoma with
EZH2-activating mutation [97] and rhabdoid tumors with SMARCB1
mutation [98]. The potent inhibitor of DOT1L, histone H3K79 meth-
yltransferase, could induce selective killing of mixed lineage leuke-
mia cells harboring MLL translocation [63]. Bromodomain-
containing proteins recognize acetylated histone and function as
readers of histone acetylation at super-enhancers [99]. Several inhib-
itors of such proteins has been developed, and are in phase I trial. For
the past few years, the development of epigenetic drugs speeded up
across industry and academia, and it is evident that the new epige-
netic drugs will be brought into the clinical area.

1.9. Clinical applications as epigenetic cancer diagnosis

DNA methylation of specific marker genes can be used as a bio-
marker for cancer diagnosis [100]. Generally, cancer diagnosis can
be categorized into (a) risk diagnosis, (b) detection of cancers, and
(c) pathophysiological diagnosis that estimates cancer responsive-
ness for therapy and patient prognosis.

(a) Estimation of cancer risk by DNA methylation

Aberrant DNA methylation is observed not only in cancer tissue
but also in non-cancerous tissue and pre-cancerous tissue of espe-
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cially inflammation-associated cancers, indicating “epigenetic field
for cancerization” [101]. Since the epigenetic field reflects the past
exposure to carcinogens and/or inflammation, its severity, assessed
as aberrant DNA methylation of specific marker genes, can be corre-
lated with cancer risk. As a very convincing prospective cohort study,
one report was published in 2014 by Asada and colleagues [102].

(b) DNA methylation markers for cancer detection

For cancer detection markers, samples and sensitivity should be
always considered. One of the most promising DNA methylation
markers for screening of colorectal cancer is SEPT9 hypermethylation
in blood. In 2011, Warren and colleagues demonstrated that colorec-
tal cancer could be detected in blood-based samples with a sensitiv-
ity of 90% and a specificity of 88% [103]. GSTP1 hypermethylation in
urine has been also reported as a promising biomarker to detect
prostate cancer with 82% sensitivity and 95% specificity [104].

(c) DNA methylation markers for cancer pathophysiological
diagnosis

DNA methylation marker can be used to predict a response to
chemotherapy. The promoter hypermethylation of MGMT, which
codes a DNA repair enzyme, can be used to predict a response of
glioma to alkylating agents. In a tumor with unmethylated MGMT,
its expression can be induced after treatment with an alkylating
agent, such as temozolomide, and leads to resistance to alkylating
agent. On the other hand, in a tumor with methylated MGMT, its
expression can never be induced even after the treatment [105].

Response to a therapy can be associated with DNA methylation of
not only a single gene but also multiple genes, namely the CIMP. Jover
and colleagues demonstrated that colorectal cancer with the CIMP
could be resistant to chemotherapy with 5-fluorouracil [106]. In the
case of neuroblastoma, the cases with the CIMP have significantly
poorer prognosis than those without. Importantly, the predictive abil-
ity of the CIMP of neuroblastoma has been shown to be much stronger
than that of MYCN amplification applied to clinical situation [12,48].

2. Conclusion

Since global hypomethylation was reported in 1983, approxi-
mately 30 years have passed. Meanwhile, a large number of find-
ings in cancer epigenetics have been made, and some were
brought into cancer therapy and diagnosis. However, there still
remain a lot of issues to be solved in the field of cancer epigenetics,
such as how mutations of chromatin remodelers are involved in
cancer development and how epigenetic alterations are exactly
induced by exposure to inflammation. Fortunately, new technolo-
gies are now available for epigenetic and genetic analyses, and
our understanding of cancer epigenetics will be accelerated. More
findings will be brought into cancer diagnosis and therapy.
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