predominant growth pattern, i.e. lepidic predominant, acinar predominant, papillary predominant, micropapillary predominant and solid predominant with mucin production. Hereafter, the issue of interobserver concordance in the pathological diagnosis of adenocarcinoma subtypes will become increasingly important [25], although the new classification is currently being verified by several researchers [13, 24]. Unless the histological subtyping of adenocarcinoma can be accurately determined, the true clinicopathological characteristics will still be equivocal regardless of the revision of the histological classification.

In conclusion, we found a significant correlation between the prognosis and histological subtype of adenocarcinoma based on the 1999 WHO classification. In particular, BACs were significantly associated with a better prognosis compared with the other subtypes. On the other hand, even though BAC is defined as noninvasive adenocarcinoma in the 1999 WHO classification, some of the patients in our registry with BAC had lymph node metastasis, pleural invasion or recurrence. The reproducible pathological evaluation of preinvasive or minimally invasive findings or the growth pattern of adenocarcinoma should be discussed in the forthcoming WHO classification of lung adenocarcinoma to be proposed by IASLC/ATS/ERS.

Conflict of interest: none declared.

REFERENCES

- [1] Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011;6: 244-58.
- [2] Sawabata N, Miyaoka E, Asamura H, Nakanishi Y, Eguchi K, Mori M et al. Japanese Lung Cancer Registry Study of 11,663 surgical cases in 2004. Demographic and prognosis changes over decade. J Thorac Oncol 2011;6: 1229-35
- [3] Travis WD, Colby TV, Corrin B, Shimosato Y, Brambilla E. Histological Typing of Lung and Pleural Tumours, World Health Organization International Histological Classification of Tumors. Berlin, Germany: Springer, 1999.
- [4] Asamura H, Goya T, Koshiishi Y, Sohara Y, Eguchi K, Mori M et al. A Japanese Lung Cancer Registry Study. Prognosis of 13,010 resected lung cancers. J Thorac Oncol 2008;3:46–52
- [5] Noguchi M, Morikawa A, Kawasaki M, Matsuno Y, Yamada T, Hirohashi S et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer 1995;75:2844–52.
- [6] Breathnach OS, Kwiatkowski DJ, Finkelstein DM, Godleski J, Sugarbaker DJ, Johnson BE et al. Bronchioloalveolar carcinoma of the lung: recurrences and survival in patients with stage I disease. J Thorac Cardiovasc Surg 2001;121:42-7.
- [7] Volpino P, D'Andrea N, Cangemi R, Mingazzini P, Cangemi B, Cangemi V. Bronchioloalveolar carcinoma: clinical, radiographic and pathological findings. Surgical results. J Cardiovasc Surg 2001;42:261–7.
- [8] Rena O, Papalia E, Ruffini E, Casadio C, Filosso PL, Oliaro A et al. Stage I pure bronchioloalveolar carcinoma: recurrences, survival and comparison with adenocarcinoma of the lung. Eur J Cardiothorac Surg 2003;23: 409-14.
- [9] Yoshino I, Yoshida S, Miyaoka E, Asamura H, Nomori H, Fujii Y et al. Surgical outcome of stage IIIA-cN2/pN2 non-small-cell lung cancer

- patients in Japanese Lung Cancer Registry Study in 2004. J Thorac Oncol 2012;7:850-55.
- [10] International Union Against Cancer. Lung and pleural tumours. In: Sobin LHGospodarowicz M (eds). TNM Classification of Malignant Tumours, 7th edn. New York, NY: Wiley-Blackwell, 2009, 138-46.
- [11] Sakurai H, Maeshima A, Watanabe S, Suzuki K, Tsuchiya R, Maeshima AM et al. Grade of stromal invasion in small adenocarcinoma of the lung. Histopathological minimal invasion and prognosis. Am J Surg Pathol 2004; 28:198-206
- [12] Motoi N, Szoke J, Riely GJ, Seshan VE, Kris MG, Rusch VW et al. Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol 2008;32:810-27.
- [13] Russell PA, Wainer Z, Wright GM, Daniels M, Conron M, Williams RA. Does lung adencarcinoma subtype predict patient survival? A clinicopathologic study based on the new International Association for the Study of Lung Cancer/ American Thoracic Society/ European Respiratory Society international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol 2011:6:1496-504.
- [14] Roggli VL, Vollmer RT, Greenberg SD, McGavran M, Spjut HJ, Yesner R. Lung cancer heterogeneity: a blinded and randomized study of 100 consecutive cases. Hum Pathol 1985;16:569–79.
- [15] Ebright MI, Zakowski MF, Martin J, Venkatraman ES, Miller VA, Bains MS et al. Clinical pattern and pathologic stage but not histologic features predict outcome for bronchioloalveolar carcinoma. Ann Thorac Surg 2002;74:1640-7.
- [16] Furak J, Trojan I, Szoke T, Tiszlavicz L, Morvay Z, Eller J et al. Bronchioloalveolar lung cancer: occurrence, surgical treatment and survival. Eur J Cardiothorac Surg 2003;23:818–23.
- [17] Campione A, Ligabue T, Luzzi L, Ghiribelli C, Paladini P, Voltolini L et al. Impact of size, histology, and gender on stage IA non-small cell lung cancer. Asian Cardiovasc Thorac Ann 2004;12:149–53.
- [18] Zell JA, Ignatius Ou SH, Ziogas A, Anton-Culver H. Validation of the proposed International Association for the Study of Lung Cancer non-small cell lung cancer staging system revisions for advanced bronchioloalveolar carcinoma using data from the California Cancer registry. J Thorac Oncol 2007;2:1078–85.
- [19] Koike T, Togashi K, Shirato T, Sato S, Hirahara H, Sugawara M et al. Limited resection for noninvasive bronchioloalveolar carcinoma diagnosed by intraoperative pathologic examination. Ann Thorac Surg 2009;88:1106–11.
- [20] Casali C, Rossi G, Marchioni A, Sartori G, Maselli F, Longo L et al. A single institution-based retrospective study of surgically treated bronchioloalveolar adenocarcinoma of the lung. Clinicopathologic analysis, molecular features, and possible pitfalls in routine practice. J Thorac Oncol 2010;5: 830-6.
- [21] Ebbert JO, Chhatwani L, Aubry MC, Wampfler J, Stoddard S, Zhang F et al. Clinical features of bronchioloalveolar carcinoma with new histologic and staging definitions. J Thorac Oncol 2010;5:1213–20.
- [22] Whitson BA, Groth SS, Andrade RS, Mitiek MO, Maddaus MA, D'Cunha J. Invasive adenocarcinoma with bronchoalveolar features: a populationbased evaluation of the extent of resection in bronchoalveolar cell carcinoma. J Thorac Cardiovasc Surg 2012;143:591–600.
- [23] Varlotto JM, Flickinger JC, Recht A, Nikolov MC, Decamp MM. A comparison of survival and disease-specific survival in surgically resected, lymph node-positive bronchioloalveolar carcinoma versus nonsmall cell lung cancer. Implication for adjuvant therapy. Cancer 2008;112: 1547–54.
- [24] Thunnissen E, Beasley MB, Borczuk AC, Brambilla E, Chirieac LR, Dacic S et al. Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international interobserver study. Mod Pathol 2012;25:1574–83.
- [25] Franklin WA, Aisner DL, Varella-Garcia M. Prognostic patterns in the histopathology of pulmonary adenocarcinoma. J Clin Oncol 2012;30: 1401–3.

Surgery for Small Cell Lung Cancer

A Retrospective Analysis of 243 Patients from Japanese Lung Cancer Registry in 2004

Hidefumi Takei, MD,* Haruhiko Kondo, MD,* Etsuo Miyaoka, PhD,† Hisao Asamura, MD,‡ Ichiro Yoshino, MD, § Hiroshi Date, MD, || Meinoshin Okumura, MD, ¶ Hirohito Tada, MD, # Yoshitaka Fujii, MD, ** Yoichi Nakanishi, MD, †† Kenji Eguchi, MD, ‡‡ Hirotoshi Dosaka-Akita, MD, §§ Hideo Kobayashi, MD, || || Noriyoshi Sawabata, MD, ¶ and Kohei Yokoi, MD; ¶¶ for the Japanese Joint Committee of Lung Cancer Registry

Introduction: Indications for surgical resection for small cell lung cancer (SCLC) have been very limited. Because early-stage SCLC is a rare presentation of lung cancer, studies comparing surgical resection among a large number of patients are unlikely to be conducted. This study reports the most recent surgical outcomes of a large number of SCLC patients who underwent surgery in 2004. Methods: In 2010, the Japanese Joint Committee of Lung Cancer Registry performed a nationwide retrospective registry study regarding the prognosis and clinicopathologic profiles of 11,663 patients who underwent resection for primary lung cancer in 2004. Of the 11,663 patients, 243 patients with SCLC (2.1%) were included in this study. The registry data of the patients with SCLC were analyzed, and the clinicopathologic profiles and surgical outcomes of the patients were evaluated. Results: The 5-year survival rate for all cases (n = 243, 213males, mean age 68.2 years) was 52.6%. The 5-year survival rates by c-stage and p-stage were as follows: IA, 64.3% (n = 132) and 72.3%(n = 93); IB, 45.7% (n = 36) and 61.1% (n = 51); IIA, 50.5% (n = 25); and 44.8% (n = 27); IIB, 33.3% (n = 10) and 40.3% (n = 17); IIIA, 30.5% (n = 30) and 23.4% (n = 45); and IV, 0% (n = 7) and 0% (n = 7) 9), respectively. A multivariate analysis showed that the significant prognostic factors were age, gender, c-stage, and surgical curability. A kappa value was moderate conformity between c-stage and p-stage in all cases. Conclusions: Surgical resection in selected patients with early-stage SCLC, especially stage I, had favorable results.

Key Words: Small cell lung cancer, Surgery, Registry (J Thorac Oncol. 2014;9: 1140-1145)

ung cancer is the leading cause of cancer-related death in the United States and in Japan. Small cell lung cancer (SCLC) represents only 13-20% of all lung cancers. 1 It is distinguished by its rapid growth rate and early dissemination to regional lymph nodes and distant sites. Therefore, SCLC represents less than 5% of cases in large surgical series.²

In 1973, the Medical Research Council³ reported a postoperative survival rate that was as poor as the survival rate for nonsurgical treatment in SCLC patients. In addition, Mountain⁴ reported that there was no difference in outcome between resected and non-resected cases in 368 SCLC patients. After those two studies were published, the standard treatment for SCLC became chemotherapy and/or radiation, and surgery was basically contraindicated. In 1983, the Lung Cancer Study Group⁵ initiated the only randomized trial of adjuvant surgical resection after induction chemotherapy. This trial failed to show improved survival rates after surgery compared with radiation after neoadjuvant chemotherapy. Thereafter, several authors reported rather favorable surgical results in a relatively small number of patients with early-stage SCLC.6,7 Shepherd and colleagues⁸ reported in 1988 that the postoperative 5-year survival rate was 31% in 77 patients with surgery as the primary treatment for SCLC. In 2005, Japan Clinical Oncology Group reported a 68% 3-year postoperative survival rate in patients with resected clinical stage I SCLC undergoing postoperative adjuvant chemotherapy.9 Recently, several large cohort studies of surgery for limited disease SCLC have

*Department of General Thoracic Surgery, Kyorin University, Tokyo; †Department of Mathematics, Science University of Tokyo; ‡Division of Thoracic Surgery, National Cancer Center Hospital, Tokyo; §Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba; || Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, ¶Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, #Division of General Thoracic Surgery, Osaka City General Hospital, Osaka; **Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Science and Medical School, Nagoya; ††Department of Clinical Medicine, Research Institute for Diseases of the Chest, Faculty of Medical Sciences, Kyushu University, Fukuoka; ‡‡Department of Medical Oncology, Teikyo University School of Medicine, Tokyo; §§Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo; | Division of Respiratory Disease, National Defense Medical College, Tokorozawa; and ¶¶Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Disclosure: The authors declare no conflict of interest.

Address for correspondence: Hidefumi Takei, MD, Division of General Thoracic Surgery, Kyorin University, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611, Japan. E-mail: htakei@ks.kyorin-u.ac.jp

Copyright © 2014 by the International Association for the Study of Lung

ISSN: 1556-0864/14/0908-1140

been reported.^{10,11} An analysis of 205 clinical stage IA SCLC patients from the National Cancer Institute's Surveillance Epidemiology and End Results database who underwent radical lobectomy showed a 5-year survival rate of 50.3% without postoperative adjuvant radiotherapy.¹²

However, optimal indications for surgical resection for SCLC and the efficacy of perioperative chemotherapy have not yet been determined. Because early-stage SCLC is a rare presentation, accounting for 2.4% to 3.4% of resected lung cancer, ¹³ and a definite preoperative diagnosis of cell type as SCLC is rather difficult, studies prospectively comparing the significance of surgical resection in a large number of cases are unlikely to be conducted.

This study aimed to investigate recent surgical results for SCLC patients retrospectively, based on the large-volume Japanese nationwide registry database.

PATIENTS AND METHODS

Patients

In 2010, the Japanese Joint Committee of Lung Cancer Registry performed a nationwide retrospective registry study regarding the prognoses and clinicopathologic profiles of 11,663 patients who underwent resection for primary lung cancer in 2004. Of those patients, 243 with histologically confirmed SCLC (2.1%) were extracted from the database. The clinicopathologic factors and their relationship to postoperative survival were evaluated.

The following items were included for analysis: gender, age, smoking status, serum tumor markers (carcinoembryonic antigen and proGRP), clinical tumor, node, metastasis (TNM) stage (c-stage), pathological TNM stage (p-stage), surgical procedure, surgical curability (R0 and R1/R2), presence or absence of preoperative and postoperative chemotherapy, and survival time. The Union for International Cancer Control TNM staging, version 7,14 was adopted in this study.

This study and the Japanese Joint Committee of Lung Cancer Registry registration study adhere to the Ethical Guidelines for Epidemiologic Research imposed by the Japanese Ministry of Health, Labor, and Welfare. 15

Statistical Analysis

Survival time was defined as the time from the date of the surgery to the date of the last follow-up. Survival curves were estimated by the Kaplan-Meier method. Differences in survival were assessed by the log-rank test. A multivariate analysis by Cox's proportional hazards model was used to test the significance of prognostic factors. Statistical significance was considered to be established when the associated p value was less than 0.05.

A kappa value of conformity between c-stage and p-stage was also determined. A kappa has a maximum of 1 (indicating perfect agreement) and a minimum -1 (indicating worse than chance agreement). A value of 0 indicates an agreement that is no better than chance, values above 0.4 are usually considered indicative of "moderate" agreement, and values higher than 0.6 are considered "good" agreement.

RESULTS

Patient Profiles

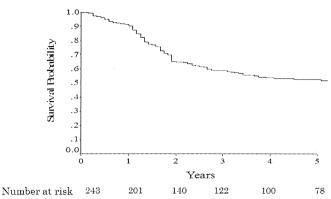
The clinicopathologic characteristics of the 243 patients with resected SCLC are summarized in Table 1. Of the 243 patients with resected SCLC, there were 213 (87.7%) men and 30 (12.3%) women. The mean age at the time of operation was 68.2 ± 9.5 years. Preoperative serum proGRP levels were elevated in 58 patients (23.9%) and within normal limits in 185 (76.1%) patients. The major operative mode was lobectomy/bilobectomy (n = 174, 71.6%), followed by segmentectomy/wedge resection (n = 51, 21.0%). More than 60% of patients (n = 169, 68.6%) were diagnosed as c-stage IA or IB. As for the pathologic stage, 93 patients (38.3%) were recognized as p-stage IA, and 51 (21.0%) as p-stage IB. There were 45 (18.5%) patients in p-stage IIIA. Complete resections (R0) were achieved in 214 (88.1%) patients.

Postoperative Survival

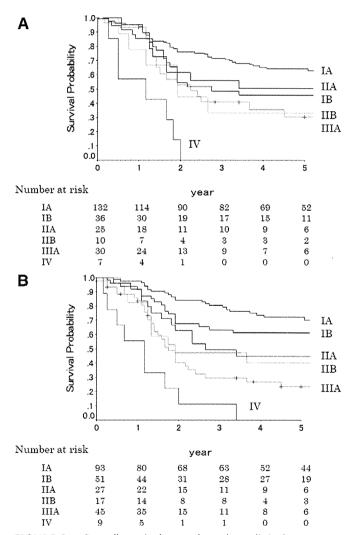
The overall postoperative survival curve is shown in Figure 1. The 5-year survival rate of the 243 patients with SCLC was 52.6%. The postoperative survival curves according to c-stage and p-stage are shown in Figure 2. The 5-year survival rates by c-stage and p-stage were as follows: 64.3% in c-stage IA, 45.7% in c-stage IB, 50.5% in c-stage IIA, 33.3% in c-stage IIB, 30.5% in c-stage IIIA, 0% in c-stage IV, 72.3% in p-stage IA, 61.1% in p-stage IB, 44.8% in p-stage IIA, 40.3% in p-stage IIB, 23.4% in p-stage IIIA, and 0% in p-stage IV. The differences in survival were significant between c-stage IA and c-stage IB (p = 0.0423), c-stage IA and c-stage IIB (p = 0.0367), c-stage IA and IIIA (p = 0.0023), p-stage IA and p-stage IIA (p = 0.0074), p-stage IA and p-stage IIB (p = 0.0033), p-stage IA and p-stage IIIA (p = 0.0000), and p-stage IB and p-stage IIIA (p = 0.0006).

The relationship of each factor to survival, determined by univariate analysis, is shown in Table 1. Except for c-stage and p-stage, there was statistical significance in gender (women fared better than men did), serum ProGRP level (worse in elevated cases), and surgical curability (R0 patients fared better than R1/R2 patients did). In a Cox proportional hazards model to predict overall survival, the following factors persisted as significant prognostic factors: gender, age, c-stage, and surgical curability (Table 2).

Clinicopathological Results According to c-Stage


The relationship of p-stage, perioperative chemotherapy, and surgical curability to c-stage is shown in Table 3. In c-stage IA + IB, 39 of 168 cases (23.2%) were upstaged to p-stage, and eight of 30 cases (26.7%) in c-stage IIIA and two (66.7%) of three in c-stage IIIB were downstaged to p-stage I or II. A conformity of c-stage and p-stage was determined to be moderate, with a kappa value of 0.425.

As for surgical curability, in c-stage I (IA + IB), 158 cases (96.3%) underwent R0 resection and only six cases (3.7%) underwent R1/R2 resection. In c-stage II, 32 cases


49.3 79.0 41.6 50.8 Nonsmoker vs. ex-smoker 56.3 Nonsmoker vs. smoker 0.225 30.6 Wedge resection vs. lobectomy/bilobectomy 63.6 Segmentectomy vs. lobectomy/bilobectomy 0.784 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. IA 0.042
79.0 41.6 50.8 Nonsmoker vs. ex-smoker 0.574 56.3 Nonsmoker vs. smoker 0.225 30.6 Wedge resection vs. lobectomy/bilobectomy 0.001 63.6 Segmentectomy vs. lobectomy/bilobectomy 0.784 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. IA 0.042
41.6 50.8 Nonsmoker vs. ex-smoker 0.574 56.3 Nonsmoker vs. smoker 0.225 30.6 Wedge resection vs. lobectomy/bilobectomy 0.001 63.6 Segmentectomy vs. lobectomy/bilobectomy 0.784 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. 1A 0.042
Nonsmoker vs. ex-smoker 50.8 Nonsmoker vs. ex-smoker 0.574 56.3 Nonsmoker vs. smoker 0.225 30.6 Wedge resection vs. lobectomy/bilobectomy 0.001 63.6 Segmentectomy vs. lobectomy/bilobectomy 0.784 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. 1A 0.042
Nonsmoker vs. ex-smoker 50.8 Nonsmoker vs. ex-smoker 0.574 56.3 Nonsmoker vs. smoker 0.225 30.6 Wedge resection vs. lobectomy/bilobectomy 0.001 63.6 Segmentectomy vs. lobectomy/bilobectomy 0.784 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. 1A 0.042
Nonsmoker vs. smoker 30.6 Wedge resection vs. lobectomy/bilobectomy 63.6 Segmentectomy vs. lobectomy/bilobectomy 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 63.3 45.7 IB vs. IA 0.042
30.6 Wedge resection vs. lobectomy/bilobectomy 0.001 63.6 Segmentectomy vs. lobectomy/bilobectomy 0.784 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. 1A 0.042
63.6 Segmentectomy vs. lobectomy/bilobectomy 0.784 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. IA 0.042
63.6 Segmentectomy vs. lobectomy/bilobectomy 0.784 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. IA 0.042
63.6 Segmentectomy vs. lobectomy/bilobectomy 0.784 58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. IA 0.042
58.3 31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. 1A 0.042
31.8 Pneumonectomy vs. lobectomy/bilobectomy 0.160 63.3 45.7 IB vs. IA 0.042
63.3 45.7 IB vs. IA 0.042
45.7 IB vs. IA 0.042
45.7 IB vs. IA 0.042
45.7 IB vs. IA 0.042
50.5 IIA vs. IA 0.253
33.3 IIB vs. IA 0.036
30.5 IIIA vs. IA 0.002
0 IV vs. IA 0.000
72.3
61.1 IB vs. IA 0.185
44.8 IIA vs. IA 0.007
40.3 IIB vs. IA 0.003
23.4 IIIA vs. IA 0.000
0 IV vs. IA 0.000
52.0 0.553
51.8
49.1 0.563
54.0
53.9
36.0 0.048
36.0 0.048 57.2
36.0 0.048

(94.1%) underwent R0 resection and three cases (8.8%) underwent R1/R2. In c-stageIIIA, R0 resections were done in 19 cases (65.5%). The 5 year survival rates of the patients

who underwent R0 resection with c-stage IA, c-stage IB, and c-stage II (IIA+IIB) were 65.4%, 51.6%, and 44.4%, respectively.

FIGURE 1. Overall survival curve. The 5-year survival rate of patients with small cell carcinoma was 52.6%.

FIGURE 2. Overall survival curve based on clinical stage (Union for International Cancer Control-TNM Ver. 7). The 5-year survival rates by c-stage (A) and p-stage (B) were as follows: IA, 64.3% (n = 132) and 72.3% (n = 93); IB, 45.7% (n = 36) and 61.1% (n = 51); IIA, 50.5% (n = 25) and 44.8% (n = 27); IIB, 33.3% (n = 10) and 40.3% (n = 17); IIIA, 30.5% (n = 30) and 23.4% (n = 45); and IV, 0% (n = 7) and 0% (n = 9), respectively.

DISCUSSION

This study, which included 243 patients who underwent surgery in 2004, is the largest in number of patients with SCLC who underwent surgical intervention within just 1 year. It was expected that there would be low variations in preoperative staging evaluation, surgical technique, and postoperative care for each case. For such occasions, the results of this study were meaningful.

The current standard treatment for patients with SCLC is chemotherapy and radiotherapy, except for a portion of early-stage patients. The MRC study³ in 1973 was a randomized trial, comparing surgery versus radiation alone. In that study, the median survival rate in the surgery group was 6.5 months, compared with 10 months in the radiation group (p = 0.04). After that article was published, the standard care was changed from surgical resection to radiotherapy. However, only 34 of the 71 patients (48%) who were enrolled in the surgery arm actually underwent surgical resection. Most of the patients in the MRC study had relatively advanced disease.

Recently, several authors have reported positive results for surgery in patients with early-stage SCLC. 17,18 Shah and colleagues¹⁹ reported on surgical resection for SCLC patients without adjuvant chemotherapy in 1992. Of 28 patients who underwent surgical resection, 14 had stage I disease, five had stage II disease, and nine had stage III disease. The actual 5-year survival rate for patients in stage I was 57.1%, whereas no patients with stage II disease survived 5 years. In half of the patients in Shah's study, the tumor was in a central position. Lim and colleagues 11 reported excellent survival rates for patients in stages I to III who underwent lung resection with nodal dissection for SCLC. A total of 59 patients in their study underwent complete R0 resection for SCLC between 1980 and 2006, and the overall 5-year survival rate was 52%. That study supports the need to reevaluate surgery as the primary treatment and the use of clinical Tumor. Node. Metastasis criteria in the selection of patients with very limited SCLC for surgery. Weksler and colleagues²⁰ analyzed patients in the Surveillance Epidemiology and End Results database, making a retrospective analysis of a large national database. That study examined 3566 patients with stage I or II SCLC who underwent surgery from 1988 to 2007. Patients with stage II SCLC who had a lung resection had a median survival time of 25.0 months, compared with 14.0 months in patients with stage II SCLC who did not undergo lung resection (p < 0.0001). Weksler's study concluded that surgical resection as a component of treatment for stage I or stage II SCLC is associated with significantly improved survival and should be considered in the management of early-stage SCLC.

The overall 5-year survival rate of the patients in our study was 52.6%. Multivariate analysis found that good prognostic factors for survival were younger age, female gender, early-stage disease, and achieved curative resection. The same trends have been previously reported. Even though c-stage was one of the most important prognostic factors, the survival rate of the selected patients with c-stage II was favorable results. In particular, patients who underwent complete resection had good survival rates, not only with c-stage I, but also with c-stage II, compared with previous reports. In c-stage

I and II, 190 patients (95.5%) underwent R0 resection, and only nine underwent R1/R2 resection. Surgery was recommended for the c-stage I SCLC patients; however, based on these results, surgical resection might also be considered for patients with stage II SCLC.

On the other hand, in several patients in this study, c-stage did not correspond well with p-stage. Among the patients with stage I SCLC according to preoperative evaluations, 23.2% of the cases were upstaged to stage II or stage III postoperatively. A kappa value demonstrated moderate conformity between c-stage and p-stage in all cases. Vallieres and colleagues¹⁰ reported the same trend when comparing clinical and pathological staging of SCLC, using the International Association for the Study of Lung Cancer database. The overall concordance between clinical and pathologic TNM

TABLE 2. Multivariate Analysis of Overall Survival for Resected Small Cell Lung Cancer; Cox Proportional Hazards Model

	Hazard Ratio	95% CI	p Value
Age, per year increase	1.038	1.015-1.062	0.001
Gender			
Men	1.00		
Women	0.356	0.142-0.893	0.028
c-stage			0.029
IA	1.00		
IB	1.421	0.811-2.493	0.220
IIA	1.298	0.618-2.727	0.491
IIB	2.389	0.986-5.788	0.054
IIIA	1.514	0.797-2.876	0.205
IIIB	3.739	0.863-16.204	0.078
IV	4.557	1.769-11.741	0.002
Tumor marker			
ProGRP normal level	1.00		
ProGRP higher level	1.232	0.774-1.961	0.378
Residual tumor			
R0	1.00		
R1/R2	2.288	1.208-4.332	0.011
Cl, confidence interval			

staging was 58%. When grouping clinical stages I and II together, 19.7% were upstaged to stage pIIIA or above after resection according to the International Association for the Study of Lung Cancer database. Although there is no data on preoperative staging modality in the current study, intensive staging before considering surgical therapy is important, using such tools as positron emission tomography-computed tomography (PET-CT),²¹ endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA),²² and surgical mediastinoscopy.²³

Large cell neuroendocrine carcinoma (LCNEC) of the lung is defined as a high-grade neuroendocrine tumor no less than SCLC in the 1999 World Health Organization classification of lung tumors.²⁴ Takei et al.²⁵ reported that 44% (24 of 55) of operated patients who were originally diagnosed with SCLC (before 1999) were reclassified as LCNEC after the pathologic review. Studies on treatment of patients with SCLC naturally included many cases of LCNEC before LCNEC had been recognized. Thus, it is necessary to be aware when comparing studies performed before and after LCNEC was defined. The subjects of the current study are patients who were operated on in 2004, when LCNEC was well recognized.

In the present study, the survival benefit of postoperative adjuvant chemotherapy was not proved. It is assumed that because of biases in treatment acceptance, the patients' backgrounds were varied, although an analysis was conducted only in p-stage I patients.

Limitations of this analysis include that it is a retrospective study; there is no randomization for adjuvant treatment; there is a lack of preoperative histopathological diagnosis data; there is a lack of information regarding preoperative staging methods; and there is no information regarding the aim of the preoperative treatment and whether the induction treatment was followed by surgery or salvage surgery.

CONCLUSION

Surgical resection for selected patients with early-stage SCLC, especially stage I, had good survival outcomes. Based on this result, surgery might also be considered in c-stage II SCLC. Further, a clinical trial on the surgery for patients with c-stage II SCLC was recommended.

TABLE 3. Relationships Between c-Stage, p-Stage, Surgical Curability, and Perioperative Treatment

		p Stage					Surgical Curability ^a			
		IA	IB	IIA	IIB	IIIA	IIIB	IV	R0	R1/2
c-stage	IA	80	23	10	8	11	0	0	126	3
-	IB	4	21	3	1	6	0	1	32	3
	IIA	5	2	11	2	4	1	0	21	3
	IIB	0	2	1	4	2	0	1	10	0
	IIIA	4	2	0	2	21	0	1	19	10
	IIIB	0	1	1	0	0	0	1	3	0
	IV	0	0	1	0	1	0	5	3	4

R0, no residual tumor; R1/R2, microscopic or macroscopic residual tumor.

^aSix patients data of curability were missing.

REFERENCES

- Murren JR, Turrisi AT, Pass HI. Small cell lung cancer. In: DeVita VTJ, Hellman S, Rosenberg SA, eds. Cancer: Principles and Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2005:820–843.
- Masters G. The clinical presentation of small cell carcinoma. In: Pass HI, Carbone DP, Johnson DH, et al, eds. *Lung Cancer, Principles and Practice*. Philadelphia, PA: Lippincott Williams & Wilkins; 2005:304–314.
- Fox W, Scadding JG. Medical Research Council comparative trial of surgery and radiotherapy for primary treatment of small-celled or oat-celled carcinoma of bronchus. Ten-year follow-up. *Lancet* 1973;2:63–65.
- 4. Mountain CF. Clinical biology of small cell carcinoma: relationship to surgical therapy. *Semin Oncol* 1978;5:272–279.
- Lad T, Piantadosi S, Thomas P, Payne D, Ruckdeschel J, Giaccone G. A
 prospective randomized trial to determine the benefit of surgical resection of residual disease following response of small cell lung cancer to
 combination chemotherapy. *Chest* 1994;106(6 Suppl):320S–323S.
- Shields TW, Higgins GA Jr, Matthews MJ, Keehn RJ. Surgical resection in the management of small cell carcinoma of the lung. *J Thorac Cardiovasc Surg* 1982;84:481–488.
- Davis S, Wright PW, Schulman SF, Scholes D, Thorning D, Hammar S. Long-term survival in small-cell carcinoma of the lung: a population experience. J Clin Oncol 1985;3:80–91.
- Shepherd FA, Evans WK, Feld R, et al. Adjuvant chemotherapy following surgical resection for small-cell carcinoma of the lung. *J Clin Oncol* 1988;6:832–838.
- Tsuchiya R, Suzuki K, Ichinose Y, et al. Phase II trial of postoperative adjuvant cisplatin and etoposide in patients with completely resected stage I-IIIa small cell lung cancer: the Japan Clinical Oncology Lung Cancer Study Group Trial (JCOG9101). J Thorac Cardiovasc Surg 2005;129:977–983.
- 10. Vallières E, Shepherd FA, Crowley J, et al.; International Association for the Study of Lung Cancer International Staging Committee and Participating Institutions. The IASLC Lung Cancer Staging Project: proposals regarding the relevance of TNM in the pathologic staging of small cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer. J Thorac Oncol 2009;4:1049–1059.
- Lim E, Belcher E, Yap YK, Nicholson AG, Goldstraw P. The role of surgery in the treatment of limited disease small cell lung cancer: time to reevaluate. *J Thorac Oncol* 2008;3:1267–1271.
- Yu JB, Decker RH, Detterbeck FC, Wilson LD. Surveillance epidemiology and end results evaluation of the role of surgery for stage I small cell lung cancer. *J Thorac Oncol* 2010;5:215–219.

- Sawabata N, Miyaoka E, Asamura H, et al.; Japanese Joint Committee for Lung Cancer Registration. Japanese lung cancer registry study of 11,663 surgical cases in 2004: demographic and prognosis changes over decade. *J Thorac Oncol* 2011;6:1229–1235.
- International Union against Cancer; Sobin LH, Gospodrowicz MK, Wittekind CH, eds. TNM Classification of Malignant Tumours. 7th Ed. New York, NY: Wiley-Liss; 2009.
- 15. The Ethical Guidelines for Epidemiologic Research notified by Japanese Ministry of Health, Labour and Welfare. December 1, 2008. Available at: http://www.mhlw.go.jp/general/seido/kousei/i-kenkyu/ekigaku/0504sisin.html.
- Cohen JA. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37–46.
- Varlotto JM, Recht A, Flickinger JC, Medford-Davis LN, Dyer AM, DeCamp MM. Lobectomy leads to optimal survival in early-stage small cell lung cancer: a retrospective analysis. *J Thorac Cardiovasc Surg* 2011;142:538–546.
- Schreiber D, Rineer J, Weedon J, et al. Survival outcomes with the use of surgery in limited-stage small cell lung cancer: should its role be reevaluated? *Cancer* 2010;116:1350–1357.
- Shah SS, Thompson J, Goldstraw P. Results of operation without adjuvant therapy in the treatment of small cell lung cancer. *Ann Thorac Surg* 1992;54:498–501.
- Weksler B, Nason KS, Shende M, Landreneau RJ, Pennathur A. Surgical resection should be considered for stage I and II small cell carcinoma of the lung. *Ann Thorac Surg* 2012;94:889–893.
- Bradley JD, Dehdashti F, Mintun MA, Govindan R, Trinkaus K, Siegel BA. Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. *J Clin Oncol* 2004;22:3248–3254.
- Wada H, Nakajima T, Yasufuku K, et al. Lymph node staging by endobronchial ultrasound-guided transbronchial needle aspiration in patients with small cell lung cancer. *Ann Thorac Surg* 2010;90:229–234.
- 23. Jett JR, Schild SE, Kesler KA, et al. Treatment of small cell lung cancer. Diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guideline. *Chest* 2013;143(suppl):e400s–e419s.
- Travis WD, Colby TV, Corrin B, et al. Histological Typing of Lung and Pleural Tumours. 3rd ed. Berlin: Springer; 1999.
- Takei H, Asamura H, Maeshima A, et al. Large cell neuroendocrine carcinoma of the lung: a clinicopathologic study of eighty-seven cases. J Thorac Cardiovasc Surg 2002;124:285–292.

The translation elongation factor eEF2 is a novel tumor-associated antigen overexpressed in various types of cancers

YUSUKE OJI¹, NAOYA TATSUMI¹, MARI FUKUDA², SHIN-ICHI NAKATSUKA¹², SAYAKA AOYAGI², ERIKA HIRATA², ISAMU NANCHI², FUMIHIRO FUJIKI³, HIROKO NAKAJIMA³, YUMIKO YAMAMOTO², SYOHEI SHIBATA², MICHIYO NAKAMURA², KANA HASEGAWA¹, SAYAKA TAKAGI², IKUYO FUKUDA², TOMOKO HOSHIKAWA², YUI MURAKAMI², MASAHIDE MORI¹³, MASAYOSHI INOUE⁴, TETSUJI NAKA⁵, TAKESHI TOMONAGA¹⁵, YOSHIFUMI SHIMIZU¹⁶, MASASHI NAKAGAWA¹⁷, JUNICHI HASEGAWA¹⁸, RIICHIRO NEZU¹⁸, HIDENORI INOHARA⁶, SHUICHI IZUMOTO⁷, NORIO NONOMURA⁸, TOSHIKI YOSHIMINE⁷, MEINOSHIN OKUMURA⁴, EIICHI MORII⁹, HAJIME MAEDA¹⁴, SUMIYUKI NISHIDA¹⁰, NAOKI HOSEN¹¹, AKIHIRO TSUBOI¹⁰, YOSHIHIRO OKA⁵ and HARUO SUGIYAMA²

Departments of ¹Cancer Stem Cell Biology, ²Functional Diagnostic Science, ³Cancer Immunology, ⁴Surgery, ⁵Respiratory Medicine and Allergy, Rheumatic Diseases, ⁶Otolaryngology and Sensory Organ Surgery, ⁷Neurosurgery, ⁸Urology, ⁹Pathology, ¹⁰Cancer Immunotherapy, and ¹¹Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka; ¹²Department of Pathology, Kansai Rosai Hospital, Hyogo; Departments of ¹³Thoracic Oncology, and ¹⁴General Thoracic Surgery, Toneyama National Hospital; ¹⁵Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka; ¹⁶Department of Internal Medicine, Takarazuka City Hospital, Hyogo; ¹⁷Department of Internal Medicine, Nissay Hospital; ¹⁸Department of Surgery, Osaka Rosai Hospital, Osaka, Japan

Received December 2, 2013; Accepted December 30, 2013

DOI: 10.3892/ijo.2014.2318

Abstract. Recent studies have shown that cancer immunotherapy could be a promising therapeutic approach for the treatment of cancer. In the present study, to identify novel tumor-associated antigens (TAAs), the proteins expressed in a panel of cancer cells were serologically screened by immunoblot analysis and the eukaryotic elongation factor 2 (eEF2) was identified as an antigen that was recognized by IgG autoantibody in sera from a group of patients with head and neck squamous cell carcinoma (HNSCC) or colon cancer. Enzyme-linked immunosorbent assay showed that serum eEF2 IgG Ab levels were significantly higher in colorectal and gastric cancer patients compared to healthy individuals. Immunohistochemistry experiments showed that the eEF2 protein was overexpressed in the majority of lung, esophageal, pancreatic, breast and prostate cancers, HNSCC, glioblastoma multiforme and non-Hodgkin's lymphoma (NHL). Knockdown

the growth in four eEF2-expressing cell lines, PC14 lung cancer, PCI6 pancreatic cancer, HT1080 fibrosarcoma and A172 glioblastoma cells, but not in eEF2-undetectable MCF7 cells. Furthermore, eEF2-derived 9-mer peptides, EF786 (eEF2 786-794 aa) and EF292 (eEF2 292-300 aa), elicited cytotoxic T lymphocyte (CTL) responses in peripheral blood mononuclear cells (PBMCs) from an HLA-A*24:02- and an HLA-A*02:01-positive healthy donor, respectively, in an HLA-A-restricted manner. These results indicated that the *eEF2* gene is overexpressed in the majority of several types of cancers and plays an oncogenic role in cancer cell growth. Moreover, the *eEF2* gene product is immunogenic and a promising target molecule of cancer immunotherapy for several types of cancers.

of eEF2 by short hairpin RNA (shRNA) significantly inhibited

Correspondence to: Professor Yusuke Oji, Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka Suita, Osaka 565-0871, Japan E-mail: oji@sahs.med.osaka-u.ac.jp

Key words: eukaryotic elongation factor 2, tumor associated antigen, cytotoxic T lymphocyte, autoantibody, cancer immunotherapy

Introduction

Cancer immunotherapy consists of therapeutic approaches to elicit effective antitumor immunity through active or passive immunization. Recent studies have shown that cancer immunotherapy have potential to provide anticancer activity as a single agent or in combination with conventional surgery, radiation and chemotherapy as reviewed (1-4). These findings indicate that cancer immunotherapy should be a promising therapeutic option for the cancer treatment.

Strategies of cancer immunotherapy include antitumor monoclonal antibodies, cancer vaccines, adoptive transfer of *ex vivo* activated T and natural killer cells, and administration of antibodies or recombinant proteins that either costimulate immune cells or block immune inhibitory pathways (5). Among these strategies, cancer vaccines are approaches to specifically activate host T cells against tumor antigens. The target antigens of cancer vaccine should be: i) highly immunogenic; ii) expressed in a significant proportion of cancer patients; iii) not expressed (or expressed in limited populations) in normal tissues; and iv) required for cancer cell growth and/or survival. Although large number of tumor-associated antigens (TAAs) have been identified using recently developed new technologies such as SEREX and protein microarrays (6,7), there are limited number of antigens that fit all of these criteria in current cancer vaccines.

High level protein biosynthesis is one of the characteristics of cancer cell metabolism (8). Translation is regulated at the initiation and elongation step and deregulated in cancer through a variety of mechanisms (9). Eukaryotic elongation factor 2 (eEF2) is a gene that plays an essential role in the polypeptide chain elongation step. Cells control translation levels at elongation step through regulation of eEF2 activity under multiple biological conditions such as cell cycle progression (10) and genotoxic stress (11,12), or in response to endogenous carbon monoxide that exerts antiproliferative effects (13). Previously, we showed that eEF2 was overexpressed in the majority of gastric and colorectal cancers and promoted progression of G₂/M of the cell cycle in association with activation of Akt and a G₂/M regulator, cdc2 proteins, resulting in the enhancement of in vitro and in vivo cancer cell growth (14). However, the role for eEF2 in the tumorigenesis remains largely unknown and it is undetermined whether eEF2 can be a target molecule of molecule-targeted cancer therapy.

In the present study, we identified eEF2 as an antigen eliciting humoral immune responses in a group of patients with HNSCC or colorectal cancer by immunoblot analysis and showed that eEF2 was overexpressed in the majority of various types of cancers such as lung, esophageal, pancreatic, breast and prostate cancers, HNSCC, glioblastoma multiforme and NHL. Knockdown of eEF2 by shRNA significantly inhibited growth of cancer cells. Furthermore, eEF2-derived 9-mer peptides, EF786 (eEF2 786-794 aa) and EF292 (eEF2 292-300 aa), elicited cytotoxic T lymphocyte (CTL) responses in PBMCs from an HLA-A*24:02- and an HLA-A*02:01-positive healthy donors, respectively, in an HLA-A-restricted manner.

Materials and methods

Cell lines. Lung cancer cell lines PC14 and LU99B, pancreatic cancer cell line PCI6, glioblastoma cell line A172, fibrosarcoma cell line HT1080, gastric cancer cell lines MKN28 and AZ-521, and breast cancer cell line MCF7 were cultured in Dulbecco's modified essential medium supplemented with 10% fetal bovine serum (FBS). Leukemia cell line K562, colon cancer cell line SW480, parent T2 and T2 cells with forced expression of either HLA-A24:02 (T2-2402) (15) or HLA-A02:01 (T2-0201) (16) were cultured in RPMI-1640 medium supplemented with 10% FBS. Leukemia cell line TF-1 was cultured in RPMI-1640 medium supplemented with 10% FBS containing 2 ng/ml human recombinant GM-CSF (Peprotech, Rocky Hill, NJ, USA).

Sera samples. Sera were obtained from 79 colorectal and 80 gastric cancer patients, 10 patients with head and neck squamous cell carcinoma (HNSCC) and 40 healthy individuals with informed consent at Osaka University Hospital and Osaka Rosai Hospital and stored at -80°C until use.

Tissue samples. Tumor tissues were obtained from 31 lung adenocarcinoma, 20 small-cell lung cancer, 15 esophageal squamous cell carcinoma, 21 HNSCC, 28 pancreatic cancer, 8 breast cancer, 16 glioblastoma, 4 prostate cancer and 50 NHL (40 diffuse large B-cell lymphoma and 10 folliclular lymphoma) patients. All samples were obtained with informed consent at Osaka University Hospital, Toneyama National Hospital, NHO Osaka Minami Medical Center, and Higashiosaka City General Hospital.

Western blot analysis. Proteins were separated by SDS-PAGE and transferred to Immobilon polyvinylidene difluoride membrane. After blocking of non-specific binding, the membranes were incubated with the first antibodies, followed by incubation with the corresponding secondary antibodies conjugated with alkaline phosphatase, and visualized using BCIP/NBT kit (Nacalai Tesque, Kyoto, Japan). Polyclonal anti-EF2 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) and anti-GAPDH (Chemicon International, Temecula, CA, USA) were used as the first antibodies.

Density gradient isoelectric focusing. Density gradient isoelectric focusing was performed by the method reported previously (17) with minor modifications. In brief, K562 cells (5x10⁷ cells) were lysed in 2 ml of 0.1% Triton X-100/PBS. After centrifugation, the supernatant was collected as cytoplasmic fraction. Proteins of the cytoplasmic fraction were precipitated with acetone and the pellet was solved in 1 ml of dH₂O containing 4% CHAPS and 7 M urea. Isoelectric focusing was carried out using an LKB column (NA-1720, Nihon-Eido Co., Tokyo, Japan) according to the manufacturer's instructions. On completion of the run, effluent fractions (3 ml each) were collected and twice dialyzed to 200 volume of de-ionized water for 18 h, and then the proteins were precipitated with acetone and stored at -80°C until use.

MALDI-TOF mass spectrometry. The bands on the silver stained gels were excised with surgical blazor. After dehydration with acetonitrile, the gel slice was dried with Speed Vac. The dried gels were digested with Trypsin (Promega, Madison, WI, USA) at 37°C for 24 h and the tryptic peptides were analyzed. All peptide mass fingerprinting (PMF) spectra were obtained by Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry using an ultraflex spectrometer (Bruker Daltonics, Bremen, Germany). PMF data were then searched with MS-FIT software against NCBInr database.

Immunohistochemistry. Formalin-fixed tissue sections were cut from each paraffin-block. After dewaxing and rehydration, the sections were antigen retrieved using Pascal (Dako Cytometry, Glostrup, Denmark) and reacted with the first antibody at 4°C overnight and then reacted with Dako Envision kit/HRP (Dako Cytometry) at room temperature for 30 min.

After treatment with 3% H₂O₂ solution to reduce endogenous peroxidase activity, immunoreactive eEF2 protein was visualized using diaminobenzidine (DAB). The sections were then counterstained with hematoxylin. The intensity of stain in tumor cells was scored as positive (increased staining in carcinoma cells compared to that in normal cells) or negative (less or negative staining in carcinoma cells) by a pathologist. eEF2-H118 antibody (Santa Cruz Biotechnology) that recognized 741-858aa of eEF2 protein and Sigma-Aldrich #SAB4500695 antibody that recognized the N terminus of eEF2 protein were used as first antibodies. Non-immune rabbit immunoglobulin (Dako Cytometry) was used as negative control for non-specific staining.

Sequencing. The *eEF2* gene overexpressed in tumors was RT-PCR amplified and directly sequenced in both directions by the method previously described (14).

Transient expression of shRNA targeting eEF2. Two different shRNA vectors targeting eEF2 mRNA (shEF-1918 and shEF-2804 targeting 1918-1947 and 2804-2833 nt of eEF2 sequence, respectively) were prepared as described previously (14). shRNA targeting luciferase (shLuc) was used as a control. shRNA vectors were transiently expressed as described previously (14).

Enzyme-linked immunosorbent assay (ELISA). ELISA was established to measure serum eEF2 IgG Ab levels by a method previously reported (18) with modifications. ELISA 96-well plates were coated with recombinant GST-tagged eEF2 fragmented protein (Ref Seq NM 001961, 411-858 aa) (2 µg/well). Plates were blocked with TBS containing 0.05% Tween-20 and 1% gelatin. Sera were diluted at 1:100 in TBS containing 0.05% Tween-20 (0.05% TBST) and pre-absorbed by immobilized GST protein at 4°C overnight. Then, 100 µl of the diluted sera was added to each well for overnight incubation at 4°C. After washing, captured eEF2 IgG Ab was detected using ALP-conjugated goat anti-human IgG Ab (Santa Cruz Biotechnology) and BCIP/NBT kit. Then, absorbance at 550 nm was measured using a microplate reader. All sera were examined in duplicate. The titers of eEF2 IgG Ab were calculated by interpolation from the standard line which was constructed for each assay from the results of simultaneous measurements of serial dilutions of rabbit polyclonal eEF2 H-118 Ab using the corresponding second Ab (data not shown). eEF2 Ab titer that produces the absorbance at 550 nm equal to that produced by 1.0 µg/ml of eEF2 H-118 Ab in the ELISA system was defined as 1.0 EF2-reacting-unit (ERU).

Synthetic peptides. The primary amino acid sequence of human eEF2 was analyzed for consensus motifs for 9-mer peptides capable of binding to HLA-A*24:02 or 02:01 using ProPred-I computer algorithm (Table I). Then, the top 4 candidate peptides for HLA-A*02:01 and 24:02 each were synthesized at immunological grade (Sigma Genosys, Hokkaido, Japan). Synthesized peptide was solved in dH₂O (2 mg/ml) and stored at -20°C until use.

MHC stabilization assay. Binding of the synthetic peptides to HLA-A*24:02 or 02:01 molecules was evaluated by MHC

stabilization assay using antigen processing mutant T2-2402 or T2-0201 cells as described previously (19). Expression of HLA-A24 or HLA-A02 molecules was measured with a FACSort flow cytometer (BD Biosciences, San Jose, CA, USA) and the mean fluorescence intensity (MFI) was recorded.

In vitro generation of eEF2 peptide-specific CD8+ T cells. PBMCs were obtained from an HLA-A*24:02-positive and an HLA-A*02:01-positive healthy donors by density gradient centrifugation. CD4+CD25+ Treg cells were depleted from PBMCs by using CD25 MicroBeads (Miltenyi Biotech, Auburn, CA, USA). For generation of autologous dendritic cells (DCs), CD14⁺ monocytes were isolated from the donor PBMCs using BD IMag CD14 isolation kit (BD Bioscience) and cultured in X-VIVO15 (Bio Whittaker, Walkersville, MD, USA) supplemented with 1% human AB serum (Nabi, Miami, FL, USA) containing IL-4 (1,000 U/ml) and GM-CSF (800 U/ml). After 24 h, IL-1 β (10 ng/ml), IL-6 (1,000 U/ml), TNF- α (10 ng/ml), and PGE-2 (1 μ g/ml) were added to the culture for DC maturation and the cells were cultured for 48 h. DCs were pulsed with EF2 peptide at the concentration of 10 µg/ml in X-VIVO15 supplemented with 1% human AB serum at 37°C for 2 h, irradiated at 30 Gy, and washed 3 times with RPMI-1640 medium. Then, Treg-depleted PBMCs (2x10⁶ cells) were stimulated by co-culture with the EF2 peptide-pulsed DCs at the DC: PBMC ratio of 1:10 in X-VIVO15 supplemented with 5% human AB serum. After 24 h of co-culture, IL-2 (20 U/ml) was added to the culture. The cultured cells were repeatedly stimulated with the EF2 peptide-pulsed, irradiated autologous PBMCs at 10-day intervals. After several times of re-stimulation, the cultured cells were maintained as the established T cell lines in X-VIVO15 supplemented with 5% human AB serum, IL-7 (10 IU/ml) and IL-15 (10 IU/ml) and used for cytotoxic assays.

⁵¹Cr release cytotoxicity assay. Effector cells were prepared from the established T cell lines using Human CD8 T Lymphocyte Enrichment Set-DM (BD Bioscience). Target cells (listed in Table III) were labeled with 100 µCi of ⁵¹Cr (Perkin-Elmer, Waltham, MA, USA) at 37°C for 1.5 h and the target cells ($1x10^4$ cells) were added to wells containing varying numbers of effector cells in 96-well plates. After 4 h of incubation at 37°C, 100 μ l of supernatants were collected from each well and measured for radioactivity. The percentage of specific lysis was calculated as follows: percentage of specific lysis = (cpm of experimental release - cpm of spontaneous release)x100/(cpm of maximal release - cpm of spontaneous release). Radioactivity of the supernatant of the target cells that were cultured without effector cells and the radioactivity of target cells that were completely lysed by the treatment with 1% Triton X-100 was used for spontaneous and maximal release, respectively. The characteristics of target cells in cytotoxicity assay are listed in Table III.

Statistics. The statistical significance in a difference between arithmetical means of test groups was assessed by unpaired t-test or Kruskal-Wallis test. After Kruskal-Wallis test, Scheffe's F-test was used as a post hoc test.

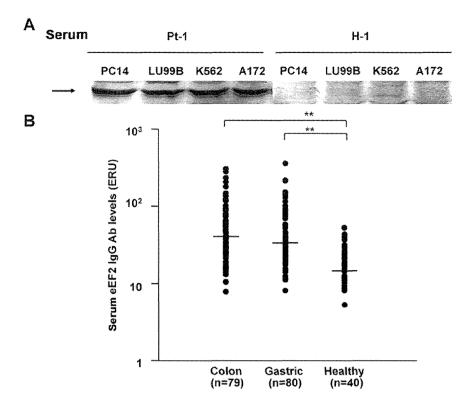


Figure 1. Elevation of serum eEF2 IgG autoantibody levels in cancer patients. (A) Cytoplasmic proteins from PC14, LU99B, K562 and A172 cells were subjected to immunoblot analysis using sera as the first antibodies. Representative results with sera from an HNSCC patient (Pt-1) and a healthy control individual (H-1) are shown. Arrows indicate the protein that is recognized by IgG autoantibody in the sera from the HNSCC patient. (B) Elevation of serum eEF2 IgG autoantibody levels in cancer patients. Assays were performed in duplicate. Colon, colorectal cancer; gastric, gastric cancer; and healthy, healthy individuals. Standard bar represents median value. **p<0.01. eEF2 Ab levels that produces the absorbance at 450 nm equal to that produced by $1 \mu g/ml$ of anti-eEF2 H-118 Ab in the ELISA system were defined as 1.0 eEF2-reacting-unit (ERU).

Results

Production of IgG autoantibody against eukaryotic elongation factor 2 (eEF2) in cancer patients. To identify novel tumor-associated antigens (TAAs) with high molecular weight (more than 100 kDa), which were difficult to isolate by standard two dimensional electrophoresis methods because they could not be absorbed into a strip gel, proteins from tumor lysates were first separated by SDS-PAGE, transferred to PVDF membrane, and then probed with sera from tumorbearing patients. As shown in Fig. 1A, an approximately 100 kDa protein was recognized by sera from 4 of 10 HNSCC and 2 of 3 colon cancer patients in cytoplasmic proteins from two lung cell lines (PC14 and LU99B), one leukemic cell line (K562) and one glioblastoma cell line (A172), whereas it was not recognized by the sera from 5 healthy individuals. To identify this protein, cytoplasmic proteins of K562 cells were fractionated by density gradient isoelectric focusing, separated by SDS-PAGE, and subjected to immunoblot analysis using sera from an HNSCC patient as the first antibody. Since immunoblot analysis detected this protein in fractions of pH 6.62 and pH 6.75, the silver-stained band corresponding to this protein was excised from the SDS-PAGE gel and the protein was analyzed by MALDI-TOF Mass Spectrometry. The search for NCBInr database by MS-Fit software identified the protein as human eukaryotic elongation factor 2 (eEF2) that had M.W. of 95.3-kDa and calculated pI of 6.4.

Elevation of serum eEF2 IgG antibody levels in cancer patients. Serum eEF2 IgG Ab levels were examined by ELISA in 79 colorectal and 80 gastric cancer patients and 40 healthy individuals and detected in all the samples examined (Fig. 1B). eEF2 IgG Ab levels ranged from 7.8 to 301.7 (median 41.1), from 8.1 to 353.9 (median 33.6) and from 5.2 to 53.0 (median 20.6) ERU in colorectal and gastric cancer patients and healthy individuals, respectively. eEF2 IgG Ab levels were significantly (p<0.01) higher in both colorectal and gastric cancer patients than healthy individuals.

Overexpression of eEF2 in various types of human cancers. eEF2 protein was immunohistochemically examined in 51 lung cancers, 15 esophageal squamous cell carcinomas, 21 HNSCCs, 28 pancreatic cancers, 8 breast cancers, 16 glioblastoma multiformes, 4 prostate cancers and 50 NHLs. Immunohistochemical analysis with two different anti-EF2 antibodies recognizing different regions of eEF2 protein showed similar results. Overexpression of eEF2 protein was detected in 71.0% (22 of 31) of lung adenocarcinoma, 95.0% (19 of 20) of small-cell lung cancer, 73.3% (11 of 15) of esophageal cancer, 60.7% (17 of 28) of pancreatic cancer, 50.0% (4 of 8) of breast cancer, 75.0% (3 of 4) of prostate cancer, 52.4% (11 of 21) of HNSCC, 75.0% (12 of 16) of glioblastoma multiformes, and 94.0% (47 of 50) of NHL. Results are summarized in Table I. Representative results are shown in Fig. 2.

Table I. Overexpression of eEF2 in human cancers.

Cancer	Overexpression of eEF2 (%)
Lung cancer	80.4 (41/51)
Lung adenocarcinoma	71.0 (22/31)
Small cell lung cancer	95.0 (19/20)
Esophageal squamous cell carcinoma	73.3 (11/15)
Head and neck squamous cell carcinoma	52.4 (11/21)
Pancreatic cancer	60.7 (17/28)
Breast cancer	50.0 (4/8)
Glioblastoma	75.0 (12/16)
Prostate cancer	75.0 (3/4)
Non-Hodgkin's lymphoma	94.0 (47/50)
Diffuse large B cell lymphoma	92.5 (37/40)
Follicular lymphoma	100 (10/10)

Expression of eEF2 protein in human cancers was examined by immunohistochemistry. Immunostaining was evaluated as positive when cancer cells were stained brown in >10% of the cells.

Overexpressed eEF2 gene is a non-mutated, wild-type. To examine whether or not the overexpressed eEF2 gene was non-mutated, wild-type, the 5' (84-1334 nt) and the 3' (1314-2660 nt) sequences of eEF2 mRNA (coding sequence: 84-2660 nt) from five lung adenocarcinomas and five HNSCCs were amplified by RT-PCR and direct sequencing. No mutation was found in the eEF2 gene in the 10 cancers examined (data not shown).

Knockdown of eEF2 inhibits cancer cell growth. To examine the role of eEF2 in cancer cell growth, either of two different shRNAs targeting eEF2 (shEF-1918 and shEF-2804) or a control shRNA targeting luciferase (shLuc) was transfected into four eEF2-expressing cells, lung cancer PC14, pancreatic cancer PC16, fibrosarcoma HT-1080, and glioblastoma A172 and eEF2-undetectable breast cancer MCF7 cells. After culture for 72 h, both of the two shRNAs targeting eEF2 (shEF-1918 and shEF-2804) reduced eEF2 protein expression levels (Fig. 3A) and significantly inhibited cell growth in all the four eEF2-expressing cells examined (Fig. 3B). However, neither of the two shRNAs targeting eEF2 inhibited growth of eEF2-undetectable MCF7 cells.

Identification of eEF2 peptides that bind to HLA-A*24:02 or HLA-A*02:01 molecules. Epitope candidates of eEF2 that bound to HLA-A*24:02 or HLA-A*02:01 molecules were first analysed using ProPred-I computer algorithm (Table II).

As candidate epitope peptides that bound to HLA-A*24:02 molecules, EF78, EF786, EF701 and EF412 peptides were selected and analyzed for binding affinity to HLA-A*24:02 molecules by the MHC stabilization assay. These peptides were pulsed to T2-2402 cells and the expression of HLA-A*24:02 molecules on the cell surface was analyzed by flow cytometry. As shown in Table II, all the four peptides increased the expression of HLA-A24:02 molecules on T2-2402 cells as a result of the stabilization of HLA-A24:02

Figure 2. Overexpression of eEF2 in various types of cancers. Representative results of immunohistochemical analysis for eEF2 protein expression in (A and C) lung adenocarcinoma, (B and D) normal lung cells, (E and F) breast cancer, and (G and H) prostate cancer. eEF2 was stained with (A, B, E and G) eEF2-H118 antibody or (C, D, F and H) #SAB4500695 antibody. eEF2 protein was stained brown. Macrophages are non-specifically stained in normal lung tissues.

molecules. Among the four peptides, EF786 peptide showed binding affinity higher than CMVpp65₃₂₈₋₃₃₆, which was an exogenous cytomegalovirus antigen epitope, to the HLA-A*24:02 molecules. As candidate peptides that bound to HLA-A*02:01 molecules, EF292, EF739, EF519 and EF671 peptides were selected and analyzed for binding affinity to HLA-A*02:01 molecules by the MHC stabilization assay. As shown in Table II, all the four peptides increased the expression of HLA-A02:01 molecules on T2-0201 cells and EF292 peptide showed the highest binding affinity to HLA-A*02:01 molecules among the four HLA-A*02:01-binding peptides examined.

Generation of EF2-specific CTLs from HLA-A*24:02- or HLA-A*02:01-positive donors. Treg-depleted PBMCs from

Table II. Characteristics of EF2-derived peptides and results of the MHC stabilization assay.

Peptide	Position (aa)	Sequence	Score	%MFI increase
HLA-A*24:02-binding peptides				
EF78	78-86	FYELSENDL	360	40.5
EF786	786-794	AYLPVNESF	252	1552.1
EF701	701-709	RFDVHDVTL	40	297.3
EF412	412-420	AFGRVFSGL	33.6	47.9
CMVpp65 328-336		QYDPVAALF		1344.1
HLA-A*02:01-binding peptides				
EF292	292-300	LILDPIFKV	3290	183.3
EF739	739-747	RLMEPIYLV	2426	141.1
EF519	519-527	KLVEGLKRL	705	58.9
EF671	671-679	YLNEIKDSV	642	89.6

The primary amino acid sequences of human eEF2 were analyzed for consensus motifs for 9-mer peptides capable of binding to HLA- $A^*24:02$ or 02:01 molecules using ProPred-I software. Percentage MFI increase in MHC stabilization assay was calculated as follows: percentage MFI increase = (MFI with the given peptide - MFI without peptide)/(MFI without peptide) x 100.

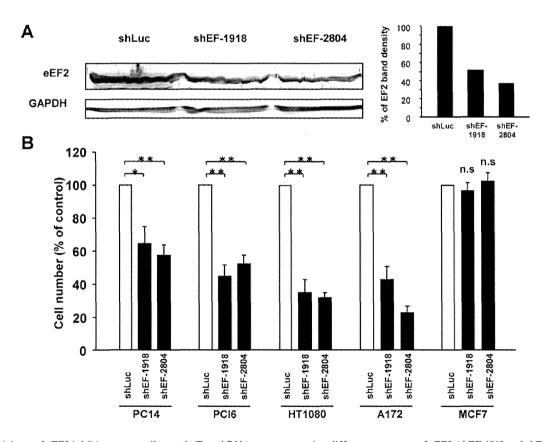


Figure 3. Knockdown of eEF2 inhibits cancer cell growth. Two shRNA vectors targeting different sequences of eEF2 (shEF-1918 and shEF-2804 targeting 1918-1947 and 2804-2833 nt of eEF2 sequence, respectively) or control shRNA targeting luciferase (shLuc) was transfected into PC14, PC16, HT1080, A172 and MCF7 cells. (A) Reduction in eEF2 protein expression levels in HT1080 cells. Results of western blot analysis are shown. (B) After 72 h of transfection, the cell numbers were examined. *p<0.05; **p<0.01. Experiments were independently performed three times.

HLA-A*24:02- or HLA-A*02:01-positive healthy donors were repeatedly stimulated with EF2 peptides (EF786 and EF292 peptides for HLA-A*24:02- and HLA-A*02:01-positive healthy donors, respectively) and pulsed irradiated autologous DCs and EF2 peptide-specific CTLs were established.

To examine whether EF2 peptides are capable of eliciting CTL responses, CTL activities of established CTLs were examined. As shown in Fig. 4A, EF786-specific, HLA-A*24:02-restricted CTLs lysed EF786 peptide-pulsed T2-2402 cells but not unpulsed ones. The EF786-specific

Table III. Characteristics of target cells in the killing assay.

Target cells	HLA-A*24:02 expression	HLA-A*02:01 expression	eEF2 expression
T2	-		Undetectable
T2-2402	+		Undetectable
T2-0201	-	+	Undetectable
SW480	+		+
AZ-521	769		+
MKN28	-		+
TF-1		+	+
K562	ene.	-	+
MCF7		+	Undetectable

Cell surface protein expression of HLA-A molecules was confirmed by flow cytometry. Expression of eEF2 protein was analyzed by western blot analysis.

CTLs lysed HLA-A*24:02-positive, eEF2-expressing SW480 cells, but not HLA-A*24:02-negative, eEF2-expressing AZ-521 and MKN28 cells. As shown in a Fig. 4B, EF292 peptide-specific, HLA-A*02:01-restricted CTLs lysed EF292 peptide-pulsed T2-0201 cells but not unpulsed ones. Moreover, the EF292-specific CTLs lysed HLA-A*02:01-positive, eEF2-expressing TF-1 cells, but not HLA-A*02:01-negative, eEF2-expressing K562 cells and HLA-A*02:01-positive, eEF2-undetectable MCF7 cells (Fig. 4B).

Discussion

We showed that eEF2 was overexpressed in the majority of various types of tumors such as lung, esophageal, pancreatic, and breast cancer and promoted growth of various types of cancer cells. Moreover, *eEF2* gene product elicited both humoral and cellular eEF2-specific immune responses. The production of eEF2 IgG autoantibody was enhanced in patients with colorectal and gastric cancer and 9-mer eEF2 peptides elicited EF2-specific CTLs from healthy donors. These results indicated that overexpressed eEF2 played an oncogenic role and served as a TAA in these tumors.

It is considered that production of autoantibody indicates the potential of its antigen as a target of cancer immunotherapy (20). In the present study, we showed the elevation of serum EF2 IgG levels in colorectal and gastric cancer patients, indicating that eEF2 overexpressed in cancer cells was recognized by the host immune system and induced eEF2-specific immune responses. Since production of IgG autoantibody needed help from CD4⁺ helper T cells (Th cells) for class switch from IgM to IgG, elevation of EF2 IgG Ab levels indicated the activation of EF2-specific Th cells. It is well established that Th cells play an important role in the immune responses against cancer (21). CD4+ Th cells are required for activation and maintenance of CD8+ CTLs, but they could also exert cytotoxic function against cancer in the absence of CD8+ CTLs recognizing antigenic peptides presented by MHC class II molecules (22,23). These results indicated that EF2 protein was an immunogenic molecule

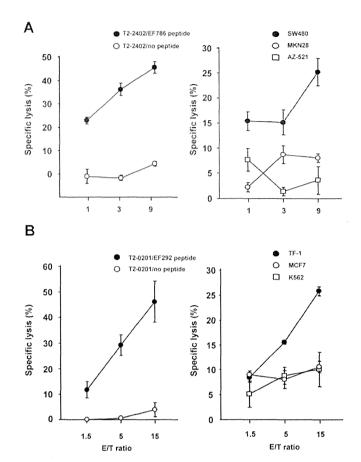


Figure 4. Generation of eEF2-specific CTLs. (A, left panel) Specific lysis of EF786 peptide-pulsed T2-2402 cells by EF786-specific, HLA-A*24:02-restricted CTLs. (A, right panel) Specific lysis of eEF2-expressing, HLA-A*24:02-positive SW480 by EF786-specific, HLA-A*24:02-restricted CTLs. AZ-521 and MKN28 are eEF2-expressing, but HLA-A*24:02-negative. (B, left panel) Specific lysis of EF292 peptide-pulsed T2-0201 cells by EF292-specific, HLA-A*02:01-restricted CTLs. (B, right panel) Specific lysis of eEF2-expressing, HLA-A*02:01-positive TF-1 cells by EF292-specific, HLA-A*02:01-restricted CTLs. K562 is eEF2-expressing and HLA-A*02:01-negative, and MCF7 is eEF2-undetectable and HLA-A*02:01-positive. E/T, effector/target ratio. CTL cytotoxic assays were performed in triplicate.

that is capable of eliciting not only humoral but also cellular immune responses. In fact, eEF2-derived EF786 peptide showed the binding affinity higher than CMVpp65328-336, an exogenous viral antigen epitope, and elicited *in vitro* EF786-specific CTLs from PBMCs of HLA-A*24:02-positive healthy donors. Taken together, eEF2 protein is highly immunogenic and a promising target molecule for cancer immunotherapy.

Expression of target molecules in tumor cells is the first requisite for TAA-targeting cancer immunotherapy. Survivin is a member of the family of the inhibitor of apoptosis proteins and functions as a key regulator of mitosis and programmed cell death (24). Survivin is overexpressed in various types of tumors with the frequency of 34.5% in gastric cancers (25), 50-60% in colorectal cancers (25,26), 64% in malignant gliomas (27), 53-72% in lung cancers (28,29), and 70.7% in breast cancers (30). Cancer vaccines to induce an antigen-specific immune responses against survivin-expressing tumor cells have been developed with

promising results (31,32). Thus, survivin appears to be a promising TAA. However, survivin-targeted immunotherapy may be applicable to a limited population of patients because of its low expression rates in several tumors. In addition, the frequency of survivin-positive tumor cells may vary in individual tumors (25). Thus, the existence of tumor cells lacking survivin could result in tumor evasion from CTL responses against survivin induced by vaccination. NY-ESO-1 is a member of cancer testis antigens and is expressed in a variety of common cancers. Clinical trials that evaluate therapeutic responses against NY-ESO-1 are underway in various cancers (33). However, NY-ESO-1 protein was expressed in only 20 to 30% of lung (34), bladder and ovarian cancers (35) and melanoma and was undetectable in colon and renal cancers (36). Thus, therapeutic strategy against NY-ESO-1 is applicable to a minor population of cancer patients. Compared to these TAAs, eEF2 is more attractive as a target molecule of cancer immunotherapy because of its high frequency of overexpression in various types of cancers. The frequency of eEF2 overexpression exceeded 70% in lung, esophageal, breast and prostate cancers, and 90% in gastric and colorectal cancers and NHL, as shown in the present and previous (14) studies. These results indicated that eEF2targeted immunotherapy should be a therapeutic strategy that would be applicable to the majority of cancer patients. WT1 is also a promising target molecule of immunotherapy and was ranked as top of TAAs (37). WT1 is overexpressed in the majority of leukemia (38) and various types of tumors such as lung (39), colorectal (40) and pancreatic cancer (41), and glioblastoma multiforme (42). However, WT1 might be less expressed in malignant lymphoma. In diffuse large B-cell lymphoma the most common type of NHL, WT1 protein was detected in only 33% of the cases examined (43). Thus, eEF2-targeted immunotherapy may have a priority for NHL.

One mechanism for escape from immune surveillance is the loss of expression of target molecules in cancer cells (44). Therefore, it is important to know whether or not loss of eEF2 expression affects tumor growth in consideration of the potential of eEF2 as a target molecule for cancer immmunotherapy. As shown in the present study, knockdown of eEF2 by shRNA significantly inhibited cancer cell growth. Also, we have demonstrated that eEF2 was overexpressed in the majority of gastric and colorectal cancers and promoted progression of G_2/M in the cell cycle, resulting in the enhancement of *in vitro* and *in vivo* cancer cell growth (14). Based on these findings showing the involvement of eEF2 in cancer cell growth, it is unlikely that antigenic loss of eEF2 could become a mechanism of tumor escape from eEF2-specific immune responses.

A primary goal of cancer immunotherapy is generation of effective CTL responses through the expansion of robust pre-existing, naturally occurring CD8+ CTL precursors and the establishment of long-lasting memory CD8+ T cells. This critically depends on the activation of pre-existing antigen-specific CTL precursors as the initial step to induce immune responses. In the present study, eEF2-specific CTL clones were established from HLA-A*24:02- or HLA-A*02:01-positive healthy donors. In addition, eEF2 IgG autoantibody is detected at low levels in healthy individuals examined. Since these results indicated the existence of not

only eEF2-specific CTL precursors but also eEF2-specific B and Th cells even in healthy donors without cancer, the host immune system of cancer patients should have a potential to make robust immune responses against eEF2-expressing cancers by vaccination with EF2 protein or peptide.

In conclusion, eEF2 that is overexpressed in a wide variety of cancers is a promising cancer antigen that can elicit both humoral and cellular immune responses and shows promise as a target molecule of cancer immunotherapy.

Acknowledgements

We thank Shigemi Norioka (Osaka University) and Mamoru Sato (Chiba University) for their technical support on isoelectric focusing. We also thank Kaori Miyazaki and Atsushi Okumura (Osaka University) for their experimental assistance. This study was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Sports, Culture and Technology, Japan, the Ministry of Health, Labour and Welfare, Japan and Fukui Satoshi Medical Research Foundation.

References

- Lesterhuis WJ, Haanen JB and Punt CJ: Cancer immunotherapy - revisited. Nat Rev Drug Discov 10: 591-600, 2011.
- 2. Wright SE: Immunotherapy of breast cancer. Expert Opin Biol Ther 12: 479-490, 2012.
- 3. Slingluff CL Jr: The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J 17: 343-350, 2011.
- 4. Murala S, Alli V, Kreisel D, Gelman AE and Krupnick AS: Current status of immunotherapy for the treatment of lung cancer. J Thorac Dis 2: 237-244, 2010.
- 5. Topalian SL, Weiner GJ and Pardoll DM: Cancer immunotherapy comes of age. J Clin Oncol 29: 4828-4836, 2011.
- Desmetz C, Mange A, Maudelonde T and Solassol J: Autoantibody signatures: progress and perspectives for early cancer detection. J Cell Mol Med 15: 2013-2024, 2011.
- 7. Murphy MA, O'Leary JJ and Cahill DJ: Assessment of the humoral immune response to cancer. J Proteomics 75: 4573-4579, 2012.
- 8. Grzmil M and Hemmings BA: Translation regulation as a therapeutic target in cancer. Cancer Res 72: 3891-3900, 2012.
- 9. Bilanges B and Stokoe D: Mechanism of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 26: 5973-5990, 2007.
- 10. Hizli AA, Chi Y, Swanger J, Carter JH, Liao Y, Welcker M, Ryazanov AG and Clurman BE: Phosphorylation of eukary-otic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase. Mol Cell Biol 33: 596-604, 2013.
- 11. White SJ, Kasman LM, Kelly MM, Lu P, Spruill L, McDermott PJ and Voelkel-Johnson C: Doxorubicin generates a proapoptotic phenotype by phosphorylation of EF-2. Free Radic Biol Med 43: 1313-1321, 2007.
- Kruiswijk F, Yuniati L, Magliozzi R, Low TY, Lim R, Bolder R, Mohammed S, Proud CG, Heck AJ, Pagano M and Guardavaccaro D: Coupled activation and degradation of eEF2K regulates protein synthesis in response to genotoxic stress. Sci Signal 5: ra40, 2012.
 Schwer CI, Stoll P, Rospert S, Fitzke E, Schallner N, Burkle H,
- Schwer CI, Stoll P, Rospert S, Fitzke E, Schallner N, Burkle H, Schmidt R and Humar M: Carbon monoxide releasing molecule-2 CORM-2 represses global protein synthesis by inhibition of eukaryotic elongation factor eEF2. Int J Biochem Cell Biol 45: 201-212, 2013.
- 14. Nakamura J, Aoyagi S, Nanchi I, Nakatsuka S, Hirata E, Shibata S, Fukuda M, Yamamoto Y, Fukuda I, Tatsumi N, Ueda T, Fujiki F, Nomura M, Nishida S, Shirakata T, Hosen N, Tsuboi A, Oka Y, Nezu R, Mori M, Doki Y, Aozasa K, Sugiyama H and Oji Y: Overexpression of eukaryotic elongation factor eEF2 in gastrointestinal cancers and its involvement in G₂/M progression in the cell cycle. Int J Oncol 34: 1181-1189, 2009.

- Kuzushima K, Hayashi N, Kimura H and Tsurumi T: Efficient identification of HLA-A*2402-restricted cytomegalovirusspecific CD8(+) T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood 98: 1872-1881, 2001.
- 16. Oka Y, Elisseeva OA, Tsuboi A, Ogawa H, Tamaki H, Li H, Oji Y, Kim EH, Soma T, Asada M, Ueda K, Maruya E, Saji H, Kishimoto T, Udaka K and Sugiyama H: Human cytotoxic T lymphocyte responses specific for peptides of wild-type Wilms' tumor gene WT1 product. Immunogenetics 51: 99-107, 2000.
- Masuda T, Ide N and Kitabatake N: Effects of chemical modification of lysine residues on the sweetness of lysozyme. Chem Senses 30: 253-264, 2005.
- 18. Oji Y, Kitamura Y, Kamino E, Kitano A, Sawabata N, Inoue M, Mori M, Nakatsuka S, Sakaguchi N, Miyazaki K, Nakamura M, Fukuda I, Nakamura J, Tatsumi N, Takakuwa T, Nishida S, Shirakata T, Hosen N, Tsuboi A, Nezu R, Maeda H, Oka Y, Kawase I, Aozasa K, Okumura M, Miyoshi S and Sugiyama H: WT1 IgG antibody for early detection of nonsmall cell lung cancer and as its prognostic factor. Int J Cancer 125: 381-387, 2009
- 19. Morishima S, Akatsuka Y, Nawa A, Kondo E, Kiyono T, Torikai H, Nakanishi T, Ito Y, Tsujimura K, Iwata K, Ito K, Kodera Y, Morishima Y, Kuzushima K and Takahashi T: Identification of an HLA-A24- restricted cytotoxic T lymphocyte epitope from human papillomavirus type-16 E6: the combined effects of bortezomib and interferon-gamma on the presentation of a cryptic epitope. Int J Cancer 120: 594-604, 2007.
- Chiriva-Internati M, Yu Y, Mirandola L, D'Cunha N, Hardwicke F, Cannon MJ, Cobos E and Kast WM: Identification of AKAP-4 as a new cancer/testis antigen for detection and immunotherapy of prostate cancer. Prostate 72: 12-23, 2012.
 Qin Z and Blankenstein T: CD4+ T cell-mediated tumor
- Qin Z and Blankenstein T: CD4⁺ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFNγ receptor expression by nonhematopoietic cells. Immunity 12: 677-686, 2000.
- Immunity 12: 677-686, 2000.
 Bogen B, Munthe L, Sollien A, Hofgaard P, Omholt H, Dagnaes F, Dembic Z and Lauritzsen GF: Naive CD4* T cells confer idiotype-specific tumor resistance in the absence of antibodies. Eur J Immunol 25: 3079-3086, 1995.
- 23. Lin Y, Fujiki F, Katsuhara A, Oka Y, Tsuboi A, Aoyama N, Tanii S, Nakajima H, Tatsumi N, Morimoto S, Tamanaka T, Tachino S, Hosen N, Nishida S, Oji Y, Kumanogoh A and Sugiyama H: HLA-DPB1*05:01-restricted WT1 332-specific TCR-transduced CD4* T lymphocytes display a helper activity for WT1-specific CTL induction and a cytotoxicity against leukemia cells. J Immunother 36: 159-170, 2013.
 24. Mita AC, Mita MM, Nawrocki ST and Giles FJ: Survivin: key
- Mita AC, Mita MM, Nawrocki ST and Giles FJ: Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 14: 5000-5005, 2008.
- 25. Lu CD, Altieri DC and Tanigawa N: Expression of a novel anti-apoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res 58: 1808-1812, 1998.
- Kawasaki H, Altieri DC, Lu CD, Toyoda M, Tenjo T and Tanigawa N: Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res 58: 5071-5074, 1998
- 27. Chakravarti A, Noll E, Black PM, Finkelstein DF, Finkelstein DM, Dyson NJ and Loeffler JS: Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol 20: 1063-1068, 2002.
- Wang M, Liu BG, Yang ZY, Hong X and Chen GY: Significance of survivin expression: Prognostic value and survival in stage III non-small cell lung cancer. Exp Ther Med 3: 983-988, 2012.
- III non-small cell lung cancer. Exp Ther Med 3: 983-988, 2012.
 29. Bria E, Visca P, Novelli F, Casini B, Diodoro MG, Perrone-Donnorso R, Botti C, Sperduti I, Facciolo F, Milella M, Cecere FL, Cognetti F and Mottolese M: Nuclear and cytoplasmic cellular distribution of survivin as survival predictor in resected non-small-cell lung cancer. Eur J Surg Oncol 34: 593-598, 2008.
- 30. Tanaka K, Iwamoto S, Gon G, Nohara T, Iwamoto M and Tanigawa N: Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Cancer Res 6: 127-134, 2000.

- 31. Idenoue S, Hirohashi Y, Torigoe T, Sato Y, Tamura Y, Hariu H, Yamamoto M, Kurotaki T, Tsuruma T, Asanuma H, Kanaseki T, Ikeda H, Kashiwagi K, Okazaki M, Sasaki K, Sato T, Ohmura T, Hata F, Yamaguchi K, Hirata K and Sato N: A potent immunogenic general cancer vaccine that targets survivin, an inhibitor of apoptosis proteins. Clin Cancer Res 11: 1474-1482, 2005.
- 32. Kameshima H, Tsuruma T, Torigoe T, Takahashi A, Hirohashi Y, Tamura Y, Tsukahara T, Ichimiya S, Kanaseki T, Iwayama Y, Sato N and Hirata K: Immunogenic enhancement and clinical effect by type-I interferon of anti-apoptotic protein, survivin-derived peptide vaccine, in advanced colorectal cancer patients. Cancer Sci 102: 1181-1187, 2011.
- Cebon J, Knights A, Ebert L, Jackson H and Chen W: Evaluation of cellular immune responses in cancer vaccine recipients: lessons from NY-ESO-1. Expert Rev Vaccines 9: 617-629, 2010.
- 34. Kim SH, Lee S, Lee CH, Lee MK, Kim YD, Shin DH, Choi KU, Kim JY, Park do Y and Sol MY: Expression of cancer-testis antigens MAGE-A3/6 and NY-ESO-1 in non-small-cell lung carcinomas and their relationship with immune cell infiltration. Lung 187: 401-411, 2009.
- Yakirevich E, Sabo E, Lavie O, Mazareb S, Spagnoli GC and Resnick MB: Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens in serous ovarian neoplasms. Clin Cancer Res 9: 6453-6460, 2003.
- 36. Jungbluth AA, Chen YT, Stockert E, Busam KJ, Kolb D, Iversen K, Coplan K, Williamson B, Altorki N and Old LJ: Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer 92: 856-860, 2001.
- 37. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM and Matrisian LM: The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15: 5323-5337, 2009.
- 38. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, Kita K, Hiraoka A, Masaoka T, Nasu K, Kyo T, Dohy H, Nakauchi H, Ishidate T, Akiyama T and Kishimoto T: WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84: 3071-3079, 1994.
- 39. Oji Y, Miyoshi S, Maeda H, Hayashi S, Tamaki H, Nakatsuka S, Yao M, Takahashi E, Nakano Y, Hirabayashi H, Shintani Y, Oka Y, Tsuboi A, Hosen N, Asada M, Fujioka T, Murakami M, Kanato K, Motomura M, Kim EH, Kawakami M, Ikegame K, Ogawa H, Aozasa K, Kawase I and Sugiyama H: Overexpression of the Wilms' tumor gene WT1 in de novo lung cancers. Int J Cancer 100: 297-303, 2002.
- 40. Oji Y, Yamamoto H, Nomura M, Nakano Y, Ikeba A, Nakatsuka S, Abeno S, Kiyotoh E, Jomgeow T, Sekimoto M, Nezu R, Yoshikawa Y, Inoue Y, Hosen N, Kawakami M, Tsuboi A, Oka Y, Ogawa H, Souda S, Aozasa K, Monden M and Sugiyama H: Overexpression of the Wilms' tumor gene WT1 in colorectal adenocarcinoma. Cancer Sci 94: 712-717, 2003.
- 41. Oji Y, Nakamori S, Fujikawa M, Nakatsuka S, Yokota A, Tatsumi N, Abeno S, Ikeba A, Takashima S, Tsujie M, Yamamoto H, Sakon M, Nezu R, Kawano K, Nishida S, Ikegame K, Kawakami M, Tsuboi A, Oka Y, Yoshikawa K, Aozasa K, Monden M and Sugiyama H: Overexpression of the Wilms' tumor gene WT1 in pancreatic ductal adenocarcinoma. Cancer Sci 95: 583-587, 2004.

 42. Oji Y, Suzuki T, Nakano Y, Maruno M, Nakatsuka S, Jomgeow T,
- Oji Y, Suzuki T, Nakano Y, Maruno M, Nakatsuka S, Jomgeow T, Abeno S, Tatsumi N, Yokota A, Aoyagi S, Nakazawa T, Ito K, Kanato K, Shirakata T, Nishida S, Hosen N, Kawakami M, Tsuboi A, Oka Y, Aozasa K, Yoshimine T and Sugiyama H: Overexpression of the Wilms' tumor gene WT1 in primary astrocytic tumors. Cancer Sci 95: 822-827, 2004.
 Drakos E, Rassidakis GZ, Tsioli P, Lai R, Jones D and
- Drakos E, Rassidakis GZ, Tsioli P, Lai R, Jones D and Medeiros LJ: Differential expression of WT1 gene product in non-Hodgkin lymphomas. Appl Immunohistochem Mol Morphol 13: 132-137, 2005.
- Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331: 1565-1570, 2011.

