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Figure 2. Periostin is upregulated upon histamine stimulation in cultured wild-type (WT) fibroblasts. WT fibroblasts were stimulated with histamine at the
indicated concentrations for 2 hours (a, b) or 24 hours (c). Periostin mRNA expression was determined by reverse transcriptase-PCR (RT-PCR) analysis (a) and real-
time PCR analysis (b). Periostin protein expression was evaluated by western blotting analysis (c). Three independent experiments were performed, and
representative blots and quantitative analysis of signal density on blots from three independent experiments are shown (using glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) as an internal control). Values in b and ¢ are shown as mean % SD for three independent experiments. ***P<0.001; NS, no significance,
compared with control (0 pum histamine) by one-way analysis of variance (ANOVA) followed by Dunnett’s test.

but not by either H2R or H4R antagonists (Figure 3a and b),
suggesting that histamine upregulates periostin expression
through H1R activation in vitro.

Next, we determined whether periostin was induced by
histamine via H1R in vivo. Histamine release was triggered
through mast cell degranulation using the compound 48/80
in WT and H1R-deficienct (HTR™/~) mice. After treatment
with compound 48/80 for three consecutive days, skin at the
injected site was sampled. Periostin expression in WT and
H1R~’~ mouse skin was compared by western blotting
analyses (Figure 3c). In WT mice, periostin expression mark-
edly increased after compound 48/80 treatment, although no
such increase was observed in HTR™’~ mice (Figure 30).
These results suggest that HIR mediates histamine-induced
periostin upregulation.

H1R activation upregulates periostin expression via the ERK1/2
pathway

Next, to investigate the signal transduction pathway involved
after H1R activation by histamine in dermal fibroblasts, we
used a commercial human phosphorylated kinase array kit
to profile the phosphorylated kinases in normal human
dermal fibroblasts (Figure 4a). Subsequently, phosphorylation
of analogous kinases was confirmed in murine dermal
fibroblasts by western blot analysis (Figure 4b). Compared
with nontreated dermal fibroblasts, enhanced phosphorylation
of extracellular signal-regulated kinase 1/2 (ERK1/2) and the
downstream factor cAMP response element-binding protein
(CREB) was observed after 10 minutes and 30minutes of
histamine stimulation (Figure 4a and b).

Furthermore, we found that histamine-induced phosphor-
ylation of ERK1/2 and CREB was blocked not only with U0126
(a selective ERK1/2 kinase inhibitor) but also with an H1R
antagonist (Figure 4c and d).

These observations demonstrated that histamine activates
the ERK1/2 signal transduction pathway via H1R in dermal
fibroblasts.

In addition, to verify the involvement of ERK1/2 activation
in histamine-induced upregulation of periostin, western blot-
ting analysis was performed (Figure 4c and d). Both U0126
and H1R antagonists decreased the expression of periostin, as
well as suppressed the phosphorylation of CREB (Figure 4c
and d). These results indicated that H1R-mediated signaling
upregulated periostin expression via the ERK1/2 pathway.

H1R-mediated upregulation of periostin is essential for
histamine-induced collagen production

To investigate the involvement of periostin in histamine-
induced collagen production, primary dermal fibroblasts from
WT and periostin-deficient (PN~77) mice were stimulated
with histamine (100um) for 48hours. The induction of
collagen was abolished in PN/~ fibroblasts at both the
mRNA (Figure 5a) and protein (Figure 5b and c) levels.
Histamine-treated PN/~ fibroblasts did not exhibit increases
in mRNA or protein expression of type | collagen (Col1;
Figure 5a—c).

As described above, periostin was induced by histamine via
the HIR pathway. To further clarify whether HIR was
associated with histamine-induced collagen production, H1R
antagonist was added to WT fibroblasts before histamine
stimulation. After 48 hours of histamine stimulation, collagen
production was evaluated as determined by quantitative real-
time reverse transcriptase-PCR, Sircol Collagen Assay, and
western blotting analyses (Figure 6). As expected, histamine-
induced collagen synthesis was blocked by an H1R antagonist
(Figure 6a-c). Furthermore, this inhibitory effect was rescued
by the addition of recombinant mouse periostin (rmPeriostin;
Figure 6a—c).

In addition, this mechanism was confirmed in cultured
primary human dermal fibroblasts derived from healthy donor
skin biopsies (Supplementary Figure S1 online).

Finally, we addressed the question of how strong the effect
of histamine on tissue remodeling was in AD. Compared with
normal skin and AD nonlesioned skin, increased expression of
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periostin was observed in hoth acute AD lesioned skin and
skin tissues with positive Dermatophagoides farinae (Derf1)
scralch tests (Supplementary Figure S2 online). Our results
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suggest that histamine may contribute to the initiation of tissue
remodeling during the acute phase of AD.

DISCUSSION
Here, we report that histamine increases the expression of
periostin in dermal fibroblasts. Moreover, periostin increases
de novo synthesis of Coll via an ERK1/2-mediated pathway.
It is widely recognized that mast cells contribute to the
healing of skin wounds (Hebda et al., 1993; Artuc et al., 1999;
Trautmann et al., 2000; Gailit et al, 2001; Noli and Miolo,
2001). Impaired wound closure in mast cell-deficient mice
indicates that mast cells have a crucial role in the wound
repair process (Weller et al., 2006). An increased number of
mast cells in fibrotic tissues such as scleroderma, keloid, or
healing wounds has been identified (Hawkins et al., 1985;
Atkins and Clark, 1987), although it is still unclear whether
mast cells are fibrogenic. In many instances, chemical
mediators, such as histamine, which is derived from
degranulated mast cells or basophils, have been implicated
as a cause of inflammation and tissue remodeling in AD
(Davies and Greaves, 1980; Nishioka et al., 1987; Wahlgren,
1999; Murota and Katayama, 2009). In support of these
findings, H1R antagonist has been shown to inhibit the
synthesis of Col1 by dermal fibroblasts (Murota et al., 2008).
Interestingly, histamine H1R antagonists but not H2R anta-
gonists reduced wound closure in experimentally induced skin
wounds in mice (Weller et al.,, 2006). Therefore, histamine
is believed to have an important role in the wound-healing
process. Indeed, disruption of histamine in histidine
decarboxylase knockout mice resulted in delayed cutaneous
would healing, and this phenotype was rescued by exogenous
histamine administration (Numata et al, 2006). It remains
unclear how histamine promotes wound healing. Some
reports indicated that histamine induces fibroblast prolifera-
tion after a long period of coculturing (Russel et al., 1977;
Topol et al., 1981). In our study, increased expression of Col1
mRNA was observed after 48 hours of co-incubation with
histamine. Thus, histamine-mediated tissue remodeling may
require the expression of periostin as a second messenger in
order to elicit tissue remodeling.

<

Figure 3. Histamine upregulates periostin expression via histamine receptor 1
(H1R) in vitro and in vivo. In vitro, wild-type (WT) fibroblasts were either
treated with histamine antagonists (H1R, H2R, or H4R; 100 mm) or left
untreated for 2 hours, and then cells were stimulated with histamine (100 pwm)
for an additional 2 hours (a) or 24 hours (b). Periostin expression was examined

by quantitative real-time reverse transcriptase-PCR (qRT-PCR) (a) and western

blotting analysis (b). In vivo, WT and H1~7~ mice were treated with mast cell
stimulator compound 48/80 for 3 days by subcutaneous injection, and
periostin protein expression in the injected site skin was evaluated by western
blotting analysis (n=4 mice per group); representative blots and quantitative
analysis of signal density on blots from four mice of each group are shown
(using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an internal
control). (¢) Values in a and b are shown as mean £ SD for three independent
experiments. Values in ¢ are shown as mean  SD for blot signals from four
mice. ***P<0.001; NS, no significance, compared with control (0 pm
histamine in a and b; WT-phosphate-buffered saline in ¢ by one-way analysis
of variance (ANOVA) followed by Dunnett’s test.
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Figure 4. Histamine receptor 1 (H1R) activation upregulates periostin expression via the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. (a) The
phosphorylation state was detected by R&D Systems Proteome Profiler Phospho-Kinase Array in normal human dermal fibroblasts, which were either untreated or
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Periostin, a recently characterized matricellular protein, has
been reported to have crucial roles in tooth and periodontium
development (Horiuchi et al., 1999), cancer proliferation and
invasion (Siriwardena et al., 2006; Baril et al.,, 2007; Kudo
et al., 2012), cardiac healing after acute myocardial infarction

(Shimazaki et al., 2008), idiopathic interstitial pneumonia
(Okamoto et al, 2011), and bone marrow fibrosis (Oku
et al, 2008). Furthermore, periostin is highly expressed in
connective tissue and at the remodeling tissue site after injury
or inflammation. This protein is secreted from fibroblasts via
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transforming growth factor beta stimulation (Horiuchi et al.,
1999). Periostin was shown to accelerate cardiac healing
after acute myocardial infarction (Dorn, 2007; Oka et al,
2007; Shimazaki et al, 2008) and during full-thickness
cutaneous wound repair (Nishivama et al., 2011; Elliott
et al, 2012; Ontsuka et al, 2012) by modulating fibroblast
differentiation.

Periostin has also been reported to be induced by other
factors, including bone morphogenetic proteins, vascular
endothelial growth factor, connective tissue growth factor,
vitamin K, IL-3, 1L-4, 1L-6, and IL-13 (Asano et al., 2005;
Takayama et al., 2006; lekushi et al, 2007; Blanchard et al.,
2008; Coutu et al., 2008; Banerjee et al., 2009; Norris et al.,
2009). Recently, the increased expression of periostin was
confirmed in various allergic diseases such as bronchial
asthma (Takayama et al., 2006), AD (Masuoka et al., 2012),
and eosinophilic chronic rhinosinusitis (Hur et al., 2012). As
an IL-4- and IL-13-inducible protein, periostin is associated
with tissue remodeling in bronchial asthma (Takayama et al.,
2006), allergic eosinophilic esophagitis (Blanchard et al.,
2008), AD (Masuoka et al., 2012), and allergic rhinitis (Hur
et al, 2012). In the present study, histamine was found to
directly induce periostin expression, whereas the expression
levels of transforming growth factor beta, IL-4, and IL-13 were
not altered by histamine stimulation (data not shown). Thus,
we postulate that periostin is involved in the initiation of tissue
remodeling in chronic allergic diseases.

AD is known to develop tissue remodeling, which is
characterized by epidermal thickening, hyperkeratosis and
fibrosis of the papillary dermis, increased fibroblast prolifera-
tion, and collagen accumulation, and these features are
caused by nonspecific stimuli, constant scratching, and rub-
bing (Lee et al, 2009). Tissue remodeling and repair are
thought to be the underlying causes of chronic allergic
inflammation, such as in asthmatic diseases and AD (Leung,
1995). Recently, increased expressions of periostin and the
inducers of periostin (IL-4, IL-13, and transforming growth
factor beta) were identified in a screening of AD-associated
genes in genome-wide association studies and quantitative
mRNA  expression analysis in lesion tissues (Hoffjan and
Epplen, 2005; Wood et al., 2009a, 2009b). Furthermore, in
the present study, elevated expression of periostin was found
in lesional skin of patients with AD. These results suggest that
periostin may be involved in AD and in asthma.

<

Figure 5. Periostin is essential in histamine-induced collagen production

in vitro. Primary dermal fibroblasts from wild type (WT) and periostin-
deficienct (PN™/7) mice were stimulated with histamine (100 pm) or
phosphate-buffered saline (PBS) (control) for 48 hours. The collagen type-|
alpha 1 (Col1a1) mRNA level was examined by quantitative real-time reverse
transcriptase-PCR (qRT-PCR) (a), and collagen protein expression was
evaluated by Sircol assay (b) and western blotting analysis; representative blots
and quantitative analysis of signal density on blots from three independent
experiments are shown (using glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) as an internal control) (c). Values are shown as mean +SD for three
independent experiments. ***P<0.001; NS, no significance, compared with
paired control (WT fibroblasts control or PN =/~ -fibroblasts control) by
Student’s t-test.
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In WT and PN~/~ mice, a mite extract-induced AD model
was established and analyzed. In contrast to WT mice, PN~/
mice showed amelioration of epidermal hyperplasia and
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inflammatory cell infiltration (Masuoka et al.,, 2012). Moreover,
periostin directly induces production of thymic stromal
lymphoprotein in keratinocytes (Masuoka et al., 2012). Thus,
periostin was suggested to have a critical role in the
amplification and chronicity of allergic skin inflammation.

The results of the present study demonstrate the role of
periostin in histamine-mediated collagen production. We
found that H1R-mediated phosphorylation of ERK1/2 had a
crucial role in histamine-induced collagen production. These
observations may open a new window of therapeutic oppor-
tunity against airway remodeling in asthma or dermal remo-
deling in AD, as histamine H1R anatagonists are expected to
ameliorate tissue remodeling.

As refractory chronic allergic symptoms are known to
impair the quality of life, work productivity, and overall
activity (Meltzer et al, 1999; Thompson et al, 2000;
Kawashima et al, 2002; Baiardini et al, 2003; Spector
et al, 2007), we believe that these studies will provide a
basis for exploring the fibrotic components of allergic diseases
in skin and other tissues.

MATERIALS AND METHODS

Mice

WT mice (C57BL/6 strain) were purchased from CLEA Japan (Osaka,
Japan). Periostin gene knockout (PN~’7) mice (C57BL/6 strain) were
generated as previously described.(Shimazaki and Kudo, 2008)
Histamine receptor 1 gene knockout (HTR™’7) mice (C57BL/6
strain) were purchased from Oriental Bio Service (Kyoto, Japan).
Mice were maintained in our pathogen-free animal facility. Animal
care and experimentation were performed in accordance with the
institutional guidelines of the National Institute of Biomedical
Innovation, Osaka, Japan and Osaka University, Osaka, Japan. Six-
week-old male mice were used in all experiments. All experiments
used four mice per group.

Compound 48/80 treatment

Compound 48/80 (Sigma, St Louis, MO) was dissolved in phosphate-
buffered saline at a concentration of 1 mgml~" and sterilized by
filtration. With the use of a 27-gauge needle, 100 ul of compound
48/80 or phosphate-buffered saline was subcutaneously injected into
the back side of mice each day for 3 days. One day after the final
injection, the skin at the injected site was removed and solubilized at
4°C in lysis buffer (0.5% sodium deoxycholate, 1% Nonidet P40,

<

Figure 6. Histamine receptor 1 (H1R)-mediated upregulation of periostin is
essential in histamine-induced collagen production. Wild-type (WT)
fibroblasts cultured with or without H1R antagonist preincubations were
stimulated with histamine (100 pm) alone or in the presence of recombinant
mouse periostin (rmPeriostin, 100 ng/ml~"). The collagen type-I alpha 1
(Col1aT) mRNA level was examined by quantitative real-time reverse
transcriptase~PCR (qRT-PCR) (a), and collagen protein expression was
evaluated by Sircol assay (b) and western blotting analysis; representative blots
and quantitative analysis of signal density on blots from three independent
experiments are shown (using glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) as an internal control) (c). Values are shown as mean £ SD for three
independent experiments. ***P<0.001; NS, no significance compared with
control (0 puM histamine) according to one-way analysis of variance (ANOVA)
followed by Dunnett’s test.
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0.1% sodium dodecyl sulfate, 100pgml ™" phenylmethylsulionyl
fluoride, 1 mm sodium orthovanadate, and protease inhibitor cocktail)
for western blotting analysis.

Cell culture

Murine primary dermal fibroblasts from the skin of four newborn WT
and four newborn PN™'" mice were isolated and cultured as
previously described (Terao et al, 20101 Human primary dermal
fibroblasts were purchased from DS Pharma Biomedical (Osaka,
Japan). After 24 hours of serum starvation, dermal fibroblasts at
confluence were treated with 0.1 to 100pm histamine (Sigma-
Aldrich, Tokyo, Japan) or 100ng ml ™" recombinant mouse periostin
(rmPeriostin, R&D Systems, Minneapolis, MN) for the indicated
periods of time before extraction of RNA and protein. Cells were
used at passage three. In each experiment, the obtained fibroblasts
were examined at the same time point and under the same culture
conditions (e.g., cell density, passage, and days after plating). For
inhibition experiments, fibroblasts were preincubated for 2 hours with
specific histamine receptor antagonists (Pyrilamine maleate,
Cimetidine, INJ7777120, 100 mm, Sigma-Aldrich) or ERK1/2 inhibitor
(U0126, 20 um, Cell Signaling Technology, Beverly, MA) before the
addition of histamine, We performed serial dilutions of each agent to
identify the most effective concentrations to be used in the experi-
ments, as determined by MTT assays and western blotting analyses.

Quantitative real-time and direct reverse transcriptase-PCR
analysis of mRNA

Total RNA was isolated from fibroblasts using the RNeasy Mini Kit
(QIAGEN, Tokyo, Japan) according to the manufacturer’s protocol.
First, 100ng of RNA was reverse-transcribed using the QuantiTect
Reverse Transcription Kit (QIAGEN). For quantitative real-time
reverse transcriptase-PCR analysis, standard curves for periostin,
collagen, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
were generated from serial dilutions of positively expressing cDNA.
Relative quantification of the PCR products was carried out using the
ABI prism 7000 (Applied Biosystems, Darmstadt, Germany) and the
comparative threshold cycle (Cp) method. The “fold-induction” was
calculated as the ratio to values of cells that were not incubated with
histamine or periostin. The primers used for real-time PCR were as
follows: periostin, sense 5'-GAACGAATCATTACAGGTCC-3', anti-
sense 5'-GGAGACCTCTTTTTGCAAGA-3'; collagen type-l alpha 1
(Col1-a1), sense 5'-GAGCCCTCGCTTCCGTACTC-3/, antisense
5. TGTTCCCTACTCAGCCGTCTGT-3'; and GAPDH, sense 5'-TGTC
ATCATACTTGGCAGGTTTCT-3/, antisense 5'-CATGGCCTTCCGTG
TTCCTA-3'. Each reaction was performed in triplicate. Variation
within samples was less than 10%. Statistical analysis was performed
with the Student’s paired t-test.

Western blotting analyses

For preparation of protein samples, cell pellets and skin samples were
extracted as described above, and 5 pg of extracted protein was used
for western blotting analysis, as described previously (Terao et al.,
2010). The primary antibodies were used at the following dilutions:
anti-type | collagen (Calbiochem, San Diego, CA) at 1:500, anti-
periostin (R&D Systems, Minneapolis, MN) at 1:500, anti-phospho-
ERK1/2 (Cell Signaling Technology) at 1:1,000, anti-total ERK1/2 (Cell
Signaling Technology) at 1:1,000, anti-phospho-CREB (Cell Signaling
Technology) at 1:1,000, anti-total CREB (Cell Signaling Technology)

Journal of Investigative Dermatology

at 1:1,000, and anti-GAPDH (Santa Cruz Biotechnology, Santa Cruz,
CA) at 1:500. Staining with the anti-GAPDH antibody was used as a
loading control. Signal intensity of bands was quantified using the
Image] densitometry software  (hitp://rsb.info.nih.gov/ij/index.html)
and normalized to GAPDH signal intensity.

Sircol collagen assay

The soluble collagen levels in culture supernatants were measured
using a Sircol Collagen Assay (Biocolor, Belfast, UK). This assay
measured total secreted collagen from cultured cells. Briefly, cells
were cultured for 48 hours with or without treatment, and then
supernatants were collected. One milliliter of Sirius red, an anionic
dye that specifically reacts with the basic side chain groups of
collagens, was added to 200ul of the supernatant and incubated
with gentle rotation for 30minutes at room temperature. After
centrifugation, the collagen-bound dye was resolubilized in 1 ml of
0.5M NaOH, and the absorbance at 540 nm was measured.

Phosphorylated kinase array

Phosphorylated kinase was profiled with the Proteome Profiler
Human Phospho-Kinase Array Kit (R&D Systems). The procedures
were performed according to the manufacturer’s protocol using
300 pg of protein lysate per array.

Statistical analysis

All experiments reported in this paper were repeated at least three
times, yielding similar results, and data are presented as mean = SD.
The Student’s two-tailed ttest (Microsoft Excel software, Redmond,
WA) was used for comparison between two groups. When analysis
included more than two groups, one-way analysis of variance
(ANOVA) followed by Dunnett’s test was used. P-values less than
0.05 were considered statistically significant.
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xtra [ llular efﬂux of the drug However, the prease mechamsms unde

pared with platinum-sensitive tumors, prognosis is poorer for
tumors that are (or become) platinum-resistant; for these
tumors, other chemotherapeutic drugs also tend to be less
effective. For example, an efficacy of 81% has been demon-
strated for chemotherapy regimens that include platinum
drugs for treatment of ovarian serous adenocarcinoma
(SAC), the most common subtype of ovarian carcinoma;
however, the efficacy of these regimens is only 18% for ovar-
ian clear cell carcinomas (CCC), which are frequently resist-
ant to multiple drugs.” Compared with advanced SAC, the
clinical prognosis of patients with similarly advanced CCC is
markedly worse largely because of the considerably higher
rate of recurrence after CCC treatment.” ' Therefore, deter-
mining the mechanism underlying platinum resistance may
aid in identification of therapeutic targets for platinum-
resistant tumors such as CCC. Studies using proteomic
screening approaches have previously demonstrated overex-
pression of Annexin A4 (Anx A4) protein in ovarian CCC,
which is frequently a highly platinum-resistant tumor com-
pared with SAC."* Similar findings have been reported in a
study comparing SAC and CCC using a genomic screening
approach.'” Anx A4, a previously understudied member of
the Annexin protein family, binds to phospholipids in a

a®"-dependent manner, self-associates on phospholipid
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Although platinum-based drugs are often used in chemotherapy, resistance to these drugs is frequently a problem. The pro-
tein Annexin A4 (Anx A4) is known to be involved in platinum efflux in ovarian tumours; however, its precise mechanism of
action has been unclear. In this study, the authors demonstrated that the strong platinum-resistance in Anx A4-
overexpressing cells involves the transporter protein ATP7A, both in vitro and in vivo. This suggests that Anx A4 may be a
highly useful therapeutic target in Anx A4-expressing carcinomas.

. 2 -
membrane surfaces and causes membrane aggregation,'>'*™”

Enhanced expression of Anx A4 has recently shown to
increase tumor chemoresistance to carboplatin (a key drug
for treating gynecological cancers) via increased extracellular
efflux of the drug.”> Another study showed that Anx A4 sup-
presses NF-xB transcriptional activity, which is significantly
upregulated early after etoposide treatment. Anx A4 translo-
cates to the nucleus together with p50 and imparts greater
resistance to apoptotic stimulation by etoposide treatment.'®
Anx A4 may also be associated with drug resistance in other
types of tumors; enhanced expression of Anx A4 has been
reported in colon, renal, lung and pancreatic cancers.'**
However, the details of Anx A4-mediated extracellular efflux
of platinum drugs remain unclear.

HECI is an endometrial carcinoma cell line with low Anx
A4 expression levels. In our study, Anx Ad4-overexpressing
derivative HEC1 cell lines were established and their chemo-
sensitivity toward platinum drugs was analyzed both in vitro
and in vivo. Anx A4-conferred platinum chemoresistance was
shown to be mediated by the copper transporter ATP7A.%*2®

Material and Methods

Cell lines

The human endometrial carcinoma cell lines HEC1, HECI1A,
HEC6, HEC88nu, HEC108, HEC116 and HEC251; SNGII
and SNGM cells, the human ovarian SAC cell line OVSAHO
and the ovarian CCC cell lines OVISE and OVTOKO were
obtained from the Japanese Collection of Research Bioresour-
ces (Osaka, Japan); A2780 cells from the human ovarian SAC
cell line were obtained from the European Collection of Ani-
mal Cell Culture (Salisbury, Scotland). The identity of each
cell line was confirmed by DNA fingerprinting via short tan-
dem repeat profiling, as described previously.”® HECI,
HECI1A, HEC6, HEC88nu, HEC108, HEC116 and HEC251
cells were maintained in Dulbecco’s modified Eagle’s medium
(D-MEM) (Wako Pure Chemical Industries, Osaka, Japan)
supplemented with 10% fetal bovine serum (FBS) (HyClone
Laboratories, Logan, UT) and 1% penicillin-streptomycin
(Nacalai Tesque, Kyoto, Japan) at 37°C under a humidified
atmosphere of 5% CO,. SNGII and SNGM cells were main-
tained in Ham’s F12 medium (Invitrogen, Carlsbad, CA) sup-
plemented with 10% FBS and 1% penicillin-streptomycin.
OVSAHO, A2780, OVISE and OVTOKO cells were main-
tained in Roswell Park Memorial Institute 1640 medium
(Wako Pure Chemical Industries) supplemented with 10%
FBS and 1% penicillin-streptomycin.

Int. J. Cancer: 134, 1796-1809 (2014) © 2013 UICC

Generation of Anx A4 stably transfected cell lines

To generate cell lines that stably expressed Anx A4, HECI
cells were transfected with the pcDNA3.1-Anx A4 expression
plasmid, as described previously.'* Transfected cells were
selected with 600 pg/ml of Geneticin (Invitrogen). Clones
were maintained in 250 pg/ml of Geneticin for stability of
expression. Four stable Anx Ad4-expressing cell lines were
established and designated HEC1-A25, HEC1-A43, HEC1-
A63 and HECI1-A77. A control cell line of HEC1 was also
established and stably transfected with an empty vector. This
cell line was designated as HEC1-CV.

Western blotting

Cells were lysed in radioimmunoprecipitation assay buffer
[10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40,
0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 1%
protease-inhibitor cocktail (Nacalai Tesque) and 1%
phosphatase-inhibitor cocktail (Nacalai Tesque)]. After cen-
trifugation (13,200 rpm, 4°C, 15 min), soluble proteins in the
supernatant were separated using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, as described previously.?
Additional information can be found in Supporting Informa-
tion Material and Methods.

Measurement of IC5, values after treatment with cisplatin

or carboplatin

Cells were suspended in D-MEM medium supplemented
with 10% FBS and were seeded in 96-well plates (2,000 cells
per well) (Costar; Corning, Corning, NY) for 24 hr. They
were then exposed to various concentrations of carboplatin
(0-500 pM), cisplatin (0-100 uM) or 5-fluorouracil (5-FU)
(0-50 pM) for 72 hr. Cell proliferation was evaluated using
the WST-8 assay (Cell Counting Kit-SF; Nacalai Tesque) after
treatment at the time points indicated by the manufacturer.
The absorption of WST-8 was measured at a wavelength of
450 nm (reference wavelength: 630 nm) using a Model 680
microplate reader (Bio-Rad Laboratories, Hercules, CA).
Absorbance values for treated cells indicative of proliferation
rates were expressed as percentages relative to results for
untreated controls, and the drug concentrations resulting in a
50% inhibition of cell growth (ICso values) were calculated.

Small interfering RNA transfection
Two commercial small interfering RNAs (siRNAs) against
ATP7A and a nonspecific control siRNA were obtained from
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Qiagen (Venlo, The Netherlands) and designated ATP7A
siRNA4 and ATP7A siRNAG, respectively. For gene silencing,
a specific sense strand 5-GCAGCUUGUAGUAUUGAA
ATT-3' was used for ATP7A siRNA4, and an antisense
strand 5-UUUCAAUACUACAAGCUGCTA-3' was also
used. For ATP7A siRNAS6, a specific sense strand 5'-GCGUA
GCUCCAGAGGUUUATT-3' was used, and an antisense
strand 5-UAAACCUCUGGAGCUACGCAG-3’ was also
used. Cells were transfected with siRNA using Lipofectamine
2000 reagent (Invitrogen) according to the manufacturer’s
instructions. Selective silencing of ATP7A was confirmed by
Western blot analysis.

In vivo model of cisplatin resistance

All animal experiments were conducted in accordance with
the Institutional Ethical Guidelines for Animal Experimenta-
tion of our National Institute of Biomedical Innovation
(Osaka, Japan). Four-week-old, female Institute of Cancer
Research (ICR) nu/nu mice were obtained from Charles River
Japan (Yokohama, Japan). For subcutaneous xenograft experi-
ments, 2.5 X 10° HEC1, HEC1-CV, HECI-A63 and HECI-
A77 cells were suspended in 100 pl of 1/1 (v/v) phosphate-
buffered saline (PBS)/Matrigel (Becton Dickinson, Bedford,
MA) and injected subcutaneously into the flanks of the ICR
nu/nu mice (n =5 per group). One week after xenograft estab-
lishment, tumors measured ~100 mm’. Mice were then ran-
domly divided into two groups and administered cisplatin (3
mg/kg) or PBS ip. twice weekly for 4 weeks. Tumor volumes
were determined twice weekly by measuring length (L), width
(W) and depth (D). Tumor volume was calculated using the
formula: tumor volume (mm®)=W X L X D. At 56 days
after tumor implantation, tumors were removed and weighed.

Quantification of intracellular platinum accumulation
Cisplatin accumulation in cells was analyzed according to a
previously established method, with certain minor modifica-
tions. In brief, 6 X 10° cells (HEC1, HEC1-CV, HECI-A25,
HEC1-A43, HEC1-A63 and HECI1-A77 cells) were seeded
into two 150-mm tissue culture dishes and incubated for 24
hr. The cells were then exposed to 1 mM cisplatin for 60
min at 37°C and then washed twice with PBS. After 3 hr of
incubation in cisplatin-free D-MEM medium (supplemented
with 10% FBS), whole extracts were prepared and the con-
centration of intracellular platinum was determined using an
Agilent 7500ce inductively coupled plasma mass spectrometer
(ICP-MS; Agilent, Santa Clara, CA). The absolute concentra-
tion of platinum in each sample was determined from a cali-
bration curve prepared with a platinum standard solution.

Preparation of crude membrane fractions

To investigate the localization of Anx A4, crude membrane
fractions (CMFs) of cells treated in various ways were pre-
pared. Cells were divided into three groups: those that
received no treatment, those pretreated with 10 pM cisplatin
for 4 hr and those pretreated with 50 pM carboplatin for 4

Annexin A4-conferred platinum resistance

hr. CMF were prepared as described elsewhere,® with modi-
fications. Prepared proteins were investigated using Western
blot analysis. Additional information can be found in Sup-
porting Information Material and Methods.

Biotinylation of HEC1 cell membrane surface proteins after
cisplatin or carboplatin exposure

To investigate the localization of ATP7A after exposure to
platinum drugs, treated or mock-treated HEC1 cells were
surface-biotinylated and the presence of ATP7A was investi-
gated by Western blot analysis. Additional information can
be found in Supporting Information Material and Methods.

Immunofluorescence for ATP7A and Anx A4
Immunofluorescence staining was performed 2 days after cells
had been seeded on cover slips. Before staining, cells in the
treatment groups were pretreated with 10 pM cisplatin or 50
uM carboplatin for 4 hr. Cells were then analyzed for localiza-
tion of Anx A4 and ATP7A. Additional information can be
found in Supporting Information Material and Methods.

Statistical analysis

Statistical analyses were performed using one-way analysis of
variance (ANOVA) followed by Dunnett’s analysis to evalu-
ate the significance of differences. In all analyses, p < 0.05
was considered to be statistically significant.

Results

Expression of Anx A4 in endometrial carcinoma cell lines

To investigate Anx A4 expression in nine common endome-
trial carcinoma cell lines, Western blot analyses were per-
formed. Expression of Anx A4 was strongest in SNGM cells
compared with the other eight cell lines (Fig. 1a). Thus,
enhanced expression of Anx A4 was confirmed in this endo-
metrial carcinoma cell line.

Anx A4 and platinum resistance in HEC1 cell lines

From control HEC1 cells (low Anx A4 expression levels),
four stable lines of Anx A4-overexpressing cells (HEC1-A25,
HECI1-A43, HEC1-A63 and HEC1-A77 cells) and one line of
empty vector transfected cells (HEC1-CV cells) were estab-
lished. Overexpression of Anx A4 was confirmed using West-
ern blot analysis and was compared with CCC cell lines
(OVTOKO and OVISE) used as positive controls (Fig. 1b).
Significantly higher ICs, values for cisplatin were observed in
HECI1-A25 (32.1 uM, p < 0.01), HEC1-A43 (238 uM, p <
0.01), HEC1-A63 (34.9 pM, p < 0.01) and HECI1-A77 cells
(17.3 pM, p < 0.01) compared with HEC1 (9.8 pM) and
HEC1-CV cells (8.4 uM) (Fig. 1l¢). Similarly, ICs, values for
carboplatin were significantly increased in HEC1-A25 (194.6
UM, p < 0.01), HECI1-A43 (153.3 puM, p < 0.01), HEC1-A63
(371.5 pM, p < 0.01) and HEC1-A77 cells (158.1 uM, p <
0.01) compared with HECI (59.1 puM) and HECI-CV cells
(60.9 uM) (Fig. 1c). Thus, Anx A4 overexpression conferred
platinum resistance in HEC1 cell lines.

Int. ). Cancer: 134, 1796-1809 (2014) © 2013 UICC
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Figure 1. Enforced expression of Anx A4 in HEC1 cells confers platinum resistance in vitro. (@) Western blot analysis of nine endometrial
carcinoma cell lines. Anx A4 was expressed in one cell line. (b) Establishment of an Anx A4-stably-expressing HEC1 cell line by transfection
with the pcDNA3.1-Anx A4 expression plasmid into a HEC1 cell line with low Anx A4 expression levels. Enforced expression of Anx A4 was
confirmed by Western blot analysis. (¢) The ICso sensitivity to cisplatin or carboplatin was investigated in HEC1, HEC1-CV, HEC1-A25, HEC1-
A43, HEC1-A63 and HEC1-A77 cells. (d) Intracellular platinum accumulation was investigated after treatment with 1 mM cisplatin for 60
min and further incubation with cisplatin-free medium for 180 min and was determined by ICP-MS analysis.
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Intracellular platinum accumulation in Anx A4-
overexpressing cells

To elucidate the mechanism underlying platinum resistance
induced by Anx A4, intracellular platinum accumulation of
HEC1, HEC1-CV, HEC1-A25, HEC1-A43, HEC1-A63 and
HEC1-A77 cells after cisplatin exposure was analyzed. Signifi-
cantly less platinum had accumulated in HEC1-A25, HEC1-
A43, HEC1-A63 and HEC1-A77 cells compared with HEC1
and HECI-CV cells (0.036 pg/cell, p<0.01; 0.04 pg/cell,
p<0.01; 0.03 pg/cell, p<0.01; 0.065 pg/cell, p<0.05 and
0.154 and 0.150 pg/cell, respectively) (Fig. 1d). Thus, intracel-
lular platinum accumulation was decreased in Anx A4-
overexpressing cells.

Anx A4-overexpressing cells and cisplatin in xenograft
models
To determine the involvement of Anx A4 in platinum resist-
ance in vivo, HEC1, HEC1-CV, HECI1-A63 and HEC1-A77
cells were subcutaneously injected into nude mice. After the
tumor xenograft had been established, cisplatin or PBS was
given twice a week for 1 month. On Day 56, average tumor
volumes were 11,496 +950 mm’ in PBS-treated HEC1-CV
control mice and 3,554 = 872 mm’ in cisplatin-treated HEC1-
CV controls. A significant antitumor effect of cisplatin was
therefore observed in HECI1-CV-xenografted mice compared
with the PBS-treated group. The parent HEC1 and HEC1-CV
xenografts responded similarly to cisplatin (Fig. 24; p < 0.01).
In HECI1-A63-xenografted mice, the average tumor volume
on Day 56 was 8,245 = 160 mm® in the PBS-treated group and
only slightly less (7,078 =257 mm?®) in the cisplatin-treated
group (Fig. 2a; p=0.42). A similar response to cisplatin was
observed in the HEC1-A63 and HEC1-A77 xenografts. On Day
56, no significant differences in tumor weight were found in
HECI1-A63-xenografted mice between the PBS treatment
(4.66 = 042 g) and the cisplatin treatment groups (4.43 = 0.16
g) (Fig. 2b). Similar results were observed in HEC1-A77 xeno-
graft models. In contrast, a significant decrease in tumor weight
was observed in HEC1-CV-xenografted mice between the PBS
mock treatment (5.95* 1.16 g) and the cisplatin treatment
groups (3.20 =0.76 g p < 0.05) (Fig. 2b). Similar results were
observed for the HEC1 and HECI1-CV xenografts. No signifi-
cant differences in tumor weight in the PBS treatment group
were observed among HEC1-CV-xenografted (595 1.16 g),
HECl-xenografted (7.48 £0.34 g), HECI-A63-xenografted
(4.66 £ 042 g) and HEC1-A77-xenografted mice (4.82 = 1.08
g) (Fig. 2b). These results indicated that overexpression of Anx
A4 in HECI endometrial carcinoma cell lines conferred signifi-
cant platinum resistance to the cells as tumors growing in vivo.

Translocation of Anx A4 and ATP7A after platinum

exposure

In our study, platinum transporters were the focus of an
investigation of the molecular mechanisms of chemoresist-
ance induced by Anx A4. In previous research, intracellular

Annexin A4-conferred platinum resistance

platinum levels were decreased after enhanced expression of
Anx A4, and ATP7A and ATP7B are well known as efflux
transporters of platinum drugs.””***' However, the relation-
ship of Anx A4 with ATP7A and ATP7B has not been previ-
ously examined. The results of our study demonstrated no
change in expression of ATP7A at the protein levels owing
to enforced overexpression of Anx A4 (Fig. 3a) and no
ATP7B expression in HEC1 cells (data not shown). There-
fore, the effects of Anx A4 expression on ATP7B in these
cells were not investigated.

Because Anx A4 is normally localized to the cytoplasm,
we theorized that exposure to platinum drugs may induce
translocation of Anx A4 to the cellular membrane, resulting
in an increase in chemoresistance owing to the influence of
ATP7A. To investigate the possibility of induced transloca-
tion of Anx A4 and ATP7A by platinum drugs, CMFs were
prepared. By Western blot analysis, Anx A4 expression in
CMF of HECI and HECI-CV cells before and after treat-
ment with cisplatin or carboplatin was barely detectable
because of its low endogenous expression in these cells (Fig.
3b). In contrast, Anx A4 expression was increased in CMF of
HEC1-A63 cells and HEC1-A77 cells treated with cisplatin
and carboplatin compared with untreated cells (Fig. 3b).
Biotinylation-based cell surface membrane protein enrich-
ment revealed a marked increase in biotinylation of ATP7A
after exposure to cisplatin or carboplatin in HEC1, HECI-
CV, HEC1-A63 and HECI1-A77 cells (Fig. 3¢). In the biotin-
ylated samples, no Anx A4 expression was detected on the
cell surface, although it had been previously detected in the
cell CMF (data not shown). These results suggested that
exposure to cisplatin or carboplatin induced massive translo-
cation of Anx A4 to CMF, including the inner surface of the
cell membrane (inaccessible to biotinylation). Before exposure
of the cell to cisplatin or carboplatin, ATP7A was not
expressed in biotinylated samples but after exposure, strong
ATP7A expression was detected. These results suggested that
exposure to cisplatin or carboplatin induced massive translo-
cation of ATP7A to the outer surface of the cell (accessible
to biotinylation). '

Anx A4 and ATP7A localization

By immunofluorescence analysis, Anx A4 was localized in
the perinuclear and cytoplasmic regions of untreated cells,
whereas ATP7A was localized mainly in the perinuclear and
cytoplasmic regions and slightly less in the cellular mem-
brane in HECI, HEC1-CV, HEC1-A63 and HEC1-A77 cells
(Figs. 4a-4d). After 4-hr exposure to cisplatin or carboplatin,
Anx A4 and ATP7A were found to be colocalized to the cel-
lular membrane in HEC1-A63 cells (Fig. 4c). Similar findings
were observed in HEC1-A77 cells (Fig. 4d). Because of the
low expression of Anx A4 in HECI and HEC1-CV cells, no
Anx A4 was detected in the cellular membranes in these cells
(Figs. 4a and 4b). Thus, the results of the immunofluores-
cence analysis were in accordance with those of both West-
ern blot analysis of CMF preparations and biotinylation
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Figure 2. Enforced expression of Anx A4 in HEC1 cells confers platinum resistance in vivo. Analysis of Anx A4 as a platinum-resistant pro-
tein in vivo. (a) To determine the resistance of Anx A4-stably-expressing HEC1 cells to platinum in vivo, parent HEC1, HEC1-CV, HEC1-A63
and HEC1-A77 cells were subcutaneously injected into nude mice (n = 5 per group). After tumor xenografts were established, cisplatin (3
mg/kg) or PBS was administered i.p. twice weekly for 1 month. Figure shows the average (points) for five animals = SD (bars). (b) Fifty-six
days after implantation, tumors were removed and weighed. Values shown are the means (+SD) of five mice. NS: not significant (*p <
0.05; **p < 0.01; one-way ANOVA, followed by Dunnett’s analysis).
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Figure 3. Localization of Anx A4 and ATP7A was investigated using Westemn blot analysis. The localization of Anx A4 and ATP7A was investigated
using two techniques: orthogonal crude membrane fractions and biotinylation of cell surface proteins. (a) No significant change in expression lev-
els of ATP7A was observed in HEC1, HEC1-CV, HEC1-A63 or HEC1-A77 cells. (b) In both HEC1-A63 and HEC1-A77 cells (but not in HEC1 and
HEC1-CV cells), the drug-induced translocation of Anx A4 into the crude membrane fraction was shown by Western blot analysis after exposure
to 10 pM cisplatin or 50 puM carboplatin for 4 hr. TCL: total cell lysate. Epidermal growth factor receptor was used as the control for cell surface
protein labeling. (¢) In HEC1, HEC1-CV, HEC1-A63 and HEC1-A77 cells, translocation of ATP7A to the cell surface was shown by Westem blot
analysis. Cells were treated with 25 pM cisplatin or 150 pM carboplatin for 4 hr, and cell surface proteins were biotinylated with 500 uM sulfo-
NHS-SS-biotin. Biotinylated surface proteins were enriched with UltraLink Immobilized Neutroavidin (Thermo Fisher Scientific, Waltham, MA) and
analyzed by Western blot analysis using anti-ATP7A. Levels of epidermal growth factor receptor, a surface protein, are shown as loading controls.

assays (Figs. 3b and 3c). Anx A4 and ATP7A were localized
in the cytoplasm before cisplatin or carboplatin exposure;
Anx A4 and ATP7A were then translocated to the cellular
membrane after cisplatin or carboplatin exposure. Thus, Anx
A4 and ATP7A are colocalized to the cellular membrane in
platinum-treated HEC1-A63 and HEC1-A77 cells but not in
HECI1 and HEC1-CV cells.

Effect of ATP7A expression on resistance to platinum

drugs

The mechanism of platinum resistance conferred by Anx A4
overexpression was explored further by suppression of
ATP7A expression using siRNA. The suppression of ATP7A
was confirmed using Western blot analysis (Fig. 54). Anx A4
expression was unchanged by silencing ATP7A (Fig. 5a). The
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figure 4. Immunofluorescence staining for ATP7A and Anx A4. HEC1, HEC1-CV, HEC1-A63 and HEC1-A77 cells were divided into three groups: the
no treatment, cisplatin exposure and carboplatin exposure groups. (a) HEC1 cells, (b) HEC1-CV cells, (c) HEC1-A63 cells and (d) HEC1-A77 cells.
Cells were incubated with anti-Anx A4 antibody (red) or anti-ATP7A antibody (green). Nuclei were stained with DAPI (blue). In the no treatment
group for each cell, Anx A4 was localized in perinuclear and cytoplasmic regions and ATP7A was strongly localized in perinuclear regions. In HEC1
and HEC1-CV cells, after exposure to cisplatin or carboplatin, ATP7A was relocalized in the cellular membrane, although some ATP7A remained in
the cytoplasm; however, no change in location of Anx A4 was observed. In HEC1-A63 and HEC1-A77 cells, Anx A4 and ATP7A were newly colocal-
ized in the cellular membrane as well as remaining in the cytoplasm. In a comparison of HEC1 and HEC1-CV cells with HEC1-A63 and HEC1-A77
cells, expression of Anx A4 in HEC1-A63 and HEC1-A77 cells was stronger in the cytoplasm and cellular membrane. Scale bar= 30 pm.
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figure 4. (Continued)

control and commercial siRNAs against ATP7A were trans-  significantly lower for the two kinds of ATP7A-silenced
fected and the ICs, values of cisplatin and carboplatin were HECI1-A63 cells (ATP7A siRNA4, IC5o = 11.0 uM, p < 0.01;
determined for each cell line. The ICs, value for cisplatin was ~ ATP7A siRNAG6, IC50=11.2 pM, p < 0.01) compared with
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Figure 5. Knockdown of ATP7A expression improves platinum chemosensitivity in Anx A4-overexpressing cells. (@) Knockdown expression of
ATP7A by siRNA in HEC1, HEC1-CV, HEC1-A63 and HEC1-A77 cells by Western blot analysis. (b) 1C5o values are shown for cisplatin in HEC1,
HEC1-CV, HEC1-A63 and HEC1-A77 cells transfected with negative control siRNA and two types of siRNA targeting ATP7A. A significant
decrease in 1Cso value for cisplatin was observed for the two types of ATP7A-silenced HEC1-A63 and HEC1-A77 cells but not for the HEC1
and HEC1-CV cells. () IC5 values are shown for carboplatin in HEC1, HEC1-CV, HEC1-A63 and HEC1-A77 cells transfected with negative
control siRNA and two kinds of siRNA targeting ATP7A. A significant decrease in 1Cs, value for carboplatin was observed for the two types
of ATP7A-silenced HEC1-A63 and HEC1-A77 cells but not for the HEC1 and HEC1-CV cells. (d) Intracellular platinum content after treatment
with 1 mM cisplatin for 60 min and further incubation with cisplatin-free medium for 180 min in D-MEM medium in HEC1-A63 cells and
HEC1-A77 cells transfected with negative control siRNA and ATP7A-targeting siRNA, as determined by ICP-MS analysis. Significantly higher
intracellular platinum accumulation was observed in HEC1-A63 cells and HEC1-A77 ATP7A-silencing cells than in control siRNA-transfected
HEC1-A63 cells and HEC1-A77 cells. () No significant differences in 1C5o values for 5-FU were noted between HEC1, HEC1-CV, HEC1-A63
and HEC1-A77 cells. Similar results were observed in ATP7A-silenced cell lines for HEC1, HEC1-CV, HEC1-A63 and HEC1-A77 cells (*p <
0.05; **p < 0.01; one-way ANOVA followed by Dunnett’s analysis).
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the HEC1-A63 control siRNA-transfected cells (ICs = 32.2
uM) (Fig. 5b).

In addition to cisplatin, improved chemosensitivity associ-
ated with ATP7A silencing was observed with carboplatin.
Significantly lower ICso values for carboplatin were observed
in both types of ATP7A-silenced HEC1-A63 cells (siRNA4,
ICso=859 UM, p < 0.01; siRNA6, ICso=92.8 UM, p <
0.01) compared with the HECI-A63 control siRNA-
transfected cells (ICs, = 300.7 pM) (Fig. 5c¢). Similar results
were found for HEC1-A77 ATP7A-silenced cells, where a sig-
nificantly lower ICs, value for cisplatin was observed
(siRNA4, ICso=8.9 M, p < 0.05; siRNA6, ICso = 6.2 pM,
p < 0.01) compared with that for HEC1-A77 control siRNA-
transfected cells (ICso = 23.3 pM). ICs, values for carboplatin
were also significantly lower for the two kinds of ATP7A-
silenced HEC1-A77 cells (siRNA4, ICso = 49.8 pM, p < 0.05;
siRNA6, ICs0=319 uM, p < 0.05) compared with the
HEC1-A77 control siRNA-transfected cells (IC5o = 152.1 uM,
p < 0.01) (Fig. 5¢). In contrast, siRNA treatments targeting
ATP7A were ineffective in HEC1 and HEC1-CV cells treated
with cisplatin or carboplatin (Figs. 5b and 5c¢). Intracellular
platinum accumulation after cisplatin exposure was signifi-
cantly increased in HECI1-A63 cells treated with ATP7A
siRNA (0.060 pg/cell, p < 0.01 to 0.113 pg/cell, p < 0.01)
compared with control siRNA-transfected cells (0.030 pg/cell)
(Fig. 5d). Similarly, a significant increase in intracellular plati-
num accumulation was observed in HECI-A77 cells treated
with ATP7A siRNA (0.133 pg/cell, p < 0.01 to 0.146 pg/cell,
p < 0.01) compared with control siRNA-transfected cells
(0.065 pg/cell) (Fig. 5d).

To investigate the relationship between resistance to
drugs other than platinum drugs and Anx A4 or ATP7A
expression, ICsy values for 5-FU were determined for each
cell line. No significant change in ICsq values for 5-FU was
observed in HEC1 (ICsp = 0.96 pM), HECI-CV (ICso = 1.00
pM), HEC1-A63 (ICs=0.83 puM) or HECI-A77 cells
(IC50 = 1.01 uM) (Fig. 5e). Similar results were observed in
the ATP7A-silenced cell lines for HEC1, HEC1-CV, HEC1-
A63 and HEC1-A77 cells as well as in ATP7A-silenced cell
lines (Fig. 5e). These results suggested that platinum resist-
ance induced by enforced expression of Anx A4 was mainly
dependent on the platinum transporter ATP7A and that
expression of Anx A4 and ATP7A was unrelated to resist-
ance to 5-FU.

Discussion
In our study, overexpression of Anx A4 in HECI cells
decreased cell sensitivity to platinum drugs in vitro. Increased

drug efflux was the mechanism underlying this change. In .

addition, an association between Anx A4 and platinum resist-
ance was demonstrated for the first time in vivo. The mecha-
nism of Anx A4-induced drug efflux may prove to be a
promising therapeutic target because blockage of that mecha-
nism may improve the prognosis of patients with Anx A4-
associated platinum-resistant tumors.

Annexin A4-conferred platinum resistance

Anx A4 itself is not a drug transporter, but it does bind
to phospholipids in a Ca®*”-dependent manner and self-
associates onto phospholipid membrane surfaces, causing
membrane aggregation.'>"*™'” Thus, we assumed an indirect
mediating effect of Anx A4 on drug efflux through an associ-
ation between an unidentified drug transporter and Anx A4.
Recently, MRP2 (an ABC ATPase-like multidrug-resistant
protein) and ATP7A and ATP7B (two P-type Cu-transport-
ing ATPases) were identified as platinum efflux transporters
strongly associated with platinum resistance.”>*® In an analy-
sis of clinical gynecological samples, expression of MRP2
failed to predict tumor response to chemotherapy and did
not correlate with overall survival>*7¢ In contrast, poor sur-
vival rates were associated with overexpression of ATP7A in
patients with ovarian cancer.”’” Similarly, a correlation was
found between ATP7B overexpression in endometrial carci-
nomas and an unfavorable clinical outcome in patients
treated with cisplatin-based chemotherapy.”” Therefore, we
focused on the platinum transporters ATP7A and ATP7B
and investigated their relationships with expression of Anx
A4. In normal, unchallenged cells, ATP7A and ATP7B are
localized in the Golgi apparatus and are involved in copper
homeostasis, using ATP hydrolysis to transport copper ions
across cellular membranes. They function in both the export
of excess copper and its delivery to copper-dependent
enzymes. ATP7A and ATP7B are also known to be efflux
transporters of platinum drugs.®>*7***%* In one study,
only a slight increase in expression of transfected ATP7A
was seen in a human ovarian cancer cell line; however, that
small increase was sufficient to confer significant resistance
to cisplatin or carboplatin®’ In a similar study in another
human cisplatin-resistant ovarian cancer cell line, silencing of
ATP7B by siRNA transfection resulted in a 2.5-fold decrease
in cisplatin ICs, levels and a significant increase in DNA-
platinum adduct formation.*! Preparing CMF of treated cells
facilitated the localization of Anx A4 expression in cells
before and after exposure to platinum drugs. The abundance
of AnxA4 in the membrane fraction along with the transloca-
tion to the membrane was increased. Using the orthogonal
method of cell surface protein labeling to monitor proteins
appearing on the cell surface, biotinylated ATP7A was
increased after cisplatin or carboplatin exposure both in
HEC1 and HEC1-CV cells (cells expressing low levels of Anx
A4) and HEC1-A63 and HEC1-A77 cells (cells overexpress-
ing Anx A4). Taken together, these results suggest that plati-
num drug exposure causes relocalization of Anx A4
expression to the membrane fraction and relocalization of
ATP7A transporters (to a minimum) to the external surface
of the cellular membrane. Unfortunately, no similar analysis
of ATP7B was possible because it is not expressed in HEC1
cells (data not shown). However, in cells that express both
ATP7A and ATP7B proteins, other immunofluorescence
studies have shown similar changes in localization of
both proteins after cisplatin exposure.** After cisplatin or
carboplatin exposure in HECI1-A63 and HEC1-A77 Anx
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A4-overexpressing cells, immunofluorescence showed that
Anx A4 expression was relocated from the perinuclear and
cytoplasmic Golgi regions to the cellular membrane. This
relocalization was not observed in HEC1 and HEC1-CV cells,
in which overexpression of Anx A4 does not occur.

ATP7A also relocates from the perinuclear and cytoplas-
mic regions to the cellular membrane after cisplatin or carbo-
platin exposure. However, this occurs both in HECI and
HEC1-CV cells (cells expressing low levels of Anx A4) and
HEC1-A63 and HEC1-A77 cells (cells overexpressing Anx
A4). Although no direct interaction between ATP7A and
Anx A4 was detected by coimmunoprecipitation analysis
(data not shown), immunofluorescence analysis showed
colocalization of ATP7A and Anx A4 at least within the cel-
lular membrane in Anx A4-overexpressing cells. These results
suggested that Anx A4 is not required for ATP7A transloca-
tion and that ATP7A translocation is unrelated to expression
of Anx A4.

Translocation of Anx A4 to plasma membranes is report-
edly mediated by an increase in intracellular free Ca®", which
is increased by exposure to platinum drugs.*>** In addition
to the translocation of ATP7A and Anx A4 to the plasma
membrane, our results also showed translocation of ATP7A
to the nucleus in HEC1 and HECI1-CV cells. Translocation
to the nucleus and colocalization of both ATP7A and Anx
A4 were also observed in HECI1-A63 and HECI-A77 cells
after exposure to cisplatin or carboplatin in the immunofluo-
rescence staining analysis in our study (Fig. 4). Anx A4
translocates to the nucleus after etoposide treatment and sup-
presses NF-xB transcriptional activity, which induces expres-
sion of Bax, a proapoptotic Bcl-2 family protein.'® In
addition, a correlation has been reported between nuclear
staining of Anx A4 and poor survival in patients with ovar-
ian cancer.”® However, the role of ATP7A in the nucleus and
its relationship with NF-xB transcriptional activity has not
been investigated. Further investigation is needed to elucidate
the role of nuclear colocalization of Anx A4 and ATP7A in
platinum resistance.

In our study, translational silencing of ATP7A in HECI
and HEC1-CV (Anx A4-nonexpressing cells) and HEC1-A63
and HECI-A77 cells (Anx A4-overexpressing cells) was per-
formed. Western blot analysis demonstrated no detectable
changes in protein expression of Anx A4 when ATP7A was
silenced in any of these four cell lines.

In HEC1 and control HEC1-CV cells (low Anx A4
expression levels), ICs, values for cisplatin or carboplatin
cells after the knockdown of ATP7A expression caused no
improvement in the sensitivity of these cells to cisplatin or
carboplatin. Similar results were observed in a previous study
in which no improvement in sensitivity to cisplatin resulted
from silencing of ATP7A in platinum-resistant or -sensitive
ovarian cancer cell lines.*! However, Mangala et al. reported
improved sensitivity to cisplatin in both platinum-resistant
ovarian cancer cells and parental cells expressing ATP7B as a
result of silencing of ATP7B expression.*’ An important
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discovery related to ATP7A was communicated in our study:
in cells overexpressing both Anx A4 and ATP7A, silencing of
ATP7A significantly improved sensitivity to cisplatin and car-
boplatin, thus restoring them to sensitivity levels comparable
to those of HEC1 and HECI1-CV cells. These results were
supported by a quantitative analysis of the accumulation of
intracellular platinum, demonstrating that siRNA silencing of
ATP7A in Anx Ad4-overexpressing HECI-A63 and HECI-
A77 cells resulted in greater intracellular platinum accumula-
tion than HECI-A63 and HEC1-A77 cells transfected with a
control siRNA. On the other hand, the analysis of ICs, values
for 5-FU showed no relationship between overexpression of
Anx A4 and resistance to 5-FU. In addition, no improvement
in sensitivity to 5-FU was observed as a result of ATP7A
silencing. These results suggested a specific relationship of
Anx A4 with ATP7A and resistance to platinum drugs but
with to nonplatinum drugs such as 5-FU. Differences in effi-
cacy and improvement in drug sensitivity of ATP7A silencing
were observed between cell lines (HEC1, HEC1-CV, HECI-
A63 and HECI-A77 cells). These variations may be related
to the colocalization of Anx A4 and ATP7A in the cellular
membrane after cisplatin or carboplatin exposure. Colocaliza-
tion of Anx A4 and ATP7A after exposure to platinum drugs
was specific to changes in Anx A4-overexpressing cells, which
are probably related to drug efflux. These results suggest that
in conjunction with higher Anx A4 expression levels, ATP7A
had a positive effect on efflux of platinum drugs, resulting in
significantly increased platinum resistance. Because overex-
pression of Anx A4 had no effect on ATP7A expression and
because no direct interaction between ATP7A and Anx A4
was detected in the coimmunoprecipitation analysis, Anx A4
seems to promote ATP7A activity in a manner which is cur-
rently unexplained.

In addition to the effects of Anx A4 on drug resistance in
ovarian cancer, similar findings have been reported for other
overexpressed members of the Annexin family such as
Annexin A3 (Anx A3).**% Intracellular platinum concentra-
tions of cisplatin and levels of platinum DNA binding in that
study were significantly lower in Anx A3-overexpressing cells
than in control cells, suggesting a more general involvement
of the Annexin family in platinum resistance.*® From the
results of these related reports and those of our study, we
conclude that the Annexin family may potentially enhance
the activity of numerous drug transporters. Identifying these
enhancement mechanisms may be extremely useful for devel-
oping additional therapeutic targets for drug-resistant
tumors.

In summary, our study demonstrated that enhanced
expression of Anx A4 induces chemoresistance by promoting
platinum drug efflux via ATP7A. These findings suggested
that Anx A4 is a potential therapeutic target for chemosensi-
tization, particularly in tumors with higher expression of
both Anx A4 and ATP7A. Thus, our study provides a clear
example of applied genotoxicology. However, platinum resist-
ance induced by overexpression of Anx A4 may occur as a
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result of multiple processes, including regulation of apoptosis
and efflux of platinum drugs. Thus, other unknown chemore-

sistant mechanisms may be induced by overexpression of

Anx A4, Because overexpression of Anx A4 has been
reported in several other types of clinically important cancers,
such as rectal, renal, lung and pancreatic cancer,
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