Human Cancer Microarray Data Analysis

For human clinical samples, IL-17D gene expression was evaluated from
NCBI GEO data sets from studies comparing primary and metastatic tumors
(GDS2546) or low-grade versus high-grade glioma patient samples
(GDS4467, GDS1976, and GDS1816) as described previously (Pachynski
at al, 2012).

Generation of IL-17D-Deficient and Overexpressing Tumor Cell
Lines

Cell lines were generated as described in the Supplemenial Exparimental
Procedures,

Antibodies and FACS Analysis of Tumor Cells

For intracellular staining, cells were either incubated with or without 2 yM mon-
ensin (Sigma) and 1 pg/mi Brefeldin A (BD Biosciences) and then harvested by
trypsinization, washed once with PBS, stained, and analyzed for intraceliular
IL-17D signal as described in the Supplemental Experimental Procedures,

Tumor Transplantation and TIL Analysis

Subconfluent tumor cell lines were harvested and injected subcutaneously into
syngeneic recipient WT, RAG2™/~, or RAG2™~ x vc™~ mice at either 1 x 10°
cells/mouse (for all growth experiments) or 5-10 x 10° cells/mouse (for tumor-
infiltrating leukocyte [TIL] analysis), as previously described (Bui ot al., 20086).
Tumor rechallenge was performed 3 months after mice had rejected trans-
planted tumors by injecting 1 x 10° cells per mouse subcutaneously with
parental tumor cell lines. In vivo depletion of various immune subsets, doxycy-
cline administration, and intratumoral injection of IL-17D are described in the
Supplements! Experimental Procedures. Tumor growth and immune infiltration
were analyzed as described in the Supplemental Experimental Procedures,

Mouse Air Pouch Experiments

C57BL/6 x 129/8v F1 mice were injected subcutaneously with 3 mi of steril-
ized air filtered through a 0.2 um Millipore filter (Bellerica) to form air pouches
on day 0 and reinflated again on day 3. Onday 7, 1 mi of LPS (1 ug/mi), IL-17A
(5 pg/mi) (R&D Systems), IL-17D (6 pg/ml) (R&D Systems), IL-17D (5 pg/ml)
(Mayfield Lab), MCP-1 (5 pg/ml) (Peprotech), or IL-17D (5 pg/ml) + anti-
MCP-1 polyclonal antibodies (25 pg/ml) (R&D Systems) was injected into
mouse air pouches 8 hr before air pouch harvest. Air pouches were lavaged
with 2 m! PBS and centrifuged at 1,250 rpm for 5 min at room temperature.
Supernatant was harvested and analyzed for chemokine protein levels using
the mouse Chemokine FlowCytomix kit from eBioscience. Infiltrating air pouch
cells were resuspended in FACS stain buffer, counted on a hemocytometer,
and analyzed by cell-surface markers as described in the Suppiemental Exper-
imental Procedures.

Chemokine Secretion Assay

On days 7 and 14 posttransplantation, tumors were harvested and single-cell
suspensions were prepared as described for the TIL analysis. Filtered tumor/
immune cell suspensions were plated in triplicate wells at 40,000 cells per well
in 100 pl for 24 hr at 37°C. Supernatant was analyzed for chemokines using the
mouse chemokine flowcytomix kit from eBioscience.

Generation of cDNA and Quantitative PCR

Tumor cell lines were plated in triplicate at 6 x 10* cells/well in a six-well plate
and incubated for 48 hr at 37°C. Supernatant was aspirated and cells were
washed twice with PBS before addition of 1 ml TRizol reagent (Invitrogen).
CD31* and CD45" tumor-derived cell populations were washed twice with
PBS before addition of 1 ml TRIzol reagent (Invitrogen). Details describing
RNA extraction, cDNA preparation, quantitative PCR reactions, and analysis
are described in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at fig://dx.dolorg/
10,1018/ celrep.2014.03.073.
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Abstract

Because WT1 is expressed in leukemia cells, the development of cancer immunotherapy targeting WT1 has been an
attractive translational research topic. However, concern of this therapy still remains, since WT1 is abundantly
expressed in renal glomerular podocytes. In the present study, we clearly showed that WT1-specific cytotoxic T
lymphocytes (CTLs) certainly exerted cytotoxicity against podocytes in vitro; however, they did not damage
podocytes in vivo. This might be due to the anatomical localization of podocytes, being structurally separated
from circulating CTLs in glomerular capillaries by an exceptionally thick basement membrane.

Keywords: Immunotherapy, WT1, Podocytes, Cytotoxic T lymphocytes

Findings

Because WT1 is expressed in leukemia cells, including
leukemia stem cells, the development of cell-mediated
immunotherapy targeting WT1 has been an attractive
translational research topic [1,2]. However, concern still
remains about adverse events resulting from damage to
normal tissues mediated by cytotoxic T lymphocytes
(CTLs), since WT1 is also expressed in some lineages of
normal cell as well as leukemia cells.

It is well known that WT1 is abundantly expressed in
renal glomerular podocytes (or visceral epithelial cells)
and that dysfunction of podocytes results in severe renal
failure [3]. In addition, it has been recently reported
that podocytes have functions of professional antigen-
presenting cells [4]. Therefore, it seems important
to clarify whether WT1-specific CTLs do not exert
cytotoxicity against podocytes. In the present series of
experiments, we examined in detail the cytotoxic effect
of WT1-specific CTLs against podocytes using in vitro
and in vivo systems.
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Methods

WT1-specific and HLA-A*24:02-restricted CTLs were
generated by T-cell receptor (TCR) gene transfer using
the novel retrovirus vector [5] into peripheral blood
CD8" T cells, as described previously [6]. We used a
mouse podocyte cell line, MPC-5 [7], as the target cells,
since there is a high homology between the human and
mouse WT1 amino acid sequences, and WT1lyzs_o43
(CYTWNQMNL), which is the epitope of our WT1-
specific CTLs, is completely conserved between the
two species. The MPC-5 cells were transfected with the
HILA-A*24:02 gene, as described previously with a slight
modification [8]. As shown in Figure 1A, HLA-A*24:02
gene-transduced mouse podocytes expressed HLA-A24:02
molecules on their surface. We named this cell line
MPC-5-A24.

HLA-A*24:02-transgenic mice were produced as re-
ported previously [9]. All in vivo experiments were
approved by the Ehime University animal care commit-
tee. As shown in Figure 1B, HLA-A24:02 molecules were
expressed in the tissues of these transgenic mice, includ-
ing glomeruli. HLA-A*24:02-transgenic mice were subse-
quently injected intravenously with 2.5 x 10° WT1-specific
and HLA-A*24:02-restricted CTLs or non-gene-modified
CD8" T cells (control CTLs). As we reported previously

© 2014 Asai et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http:/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication

waiver (httpy//creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.
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Figure 1 Cytotoxicity of WT1-specific and HLA-A*24:02-restricted CTLs against podocytes. (A) Expression of HLA-A24:02 on the HLA-A*24:02
gene-transduced mouse podocyte cell line, MPC-5 (MPC-5-A24). Flow cytometric analysis was performed using anti-HLA-A24:02 monoclonal
antibody (One Lambda, Canoga Park, CA, USA). (B) Expression of HLA class | in the glomerulus of a HLA-A*24:02-transgenic mouse (original
magnification x400). Immunohistochemistry was performed using an anti-HLA class | framework monoclonal antibody (Abcam, Cambridge, UK).
(C) Expression of WT1 in the HLA-A*24:02 gene-transduced mouse podocyte cell line, MPC-5-A24. MPC-5-A24 cells and LCL were stained with a
rabbit anti-human and mouse WT1 polyclonal antibody (Santa Cruz Biotechnology, Dallas, TX, USA) (original magnification x400). Notably, WT1
is abundantly expressed in MPC-5-A24 cells but not LCL. (D) Expression of WT1 in the glomerulus of a HLA-A*24:02-transgenic mouse (original
magnification x400). Immunchistochemistry was performed using a rabbit anti-human and mouse WT1 polyclonal antibody (Santa Cruz
Biotechnology). (E) Cytotoxicity of WT1-specific and HLA-A*24:02-restricted CTLs against MPC-5, MPC-5-A24, and HLA-A*24:02-positive LCLs
in the presence or absence of WT1 peptide at various effector:target cell ratios.

Specific lysis (%)

[6,10], the dose of TCR gene-engineered T cells used in the
present study is enough to show anti-leukemia effect
in vivo. Mice that had received WT1-specific CTLs and
control CTLs were sacrificed after 7 days, and the presence
of tissue damage was examined morphologically. Traffick-
ing of WTl-specific CTLs in HLA-A*24:02-transgenic
mice was examined using luciferase gene-transfected CTLs
in a bioluminescence imaging assay as reported previously
[10]. Serial acquisition of luciferase photon counts using
luciferin was carried out on days 1, 3, and 6 using

AEQUORIA (Hamamatsu Photonics, Hamamatsu, Japan),
and analyzed using AQUACOSMOS software (Hamamatsu
Photonics).

Results

As shown in Figure 1C, WT1 appeared to be abundantly
expressed in the HLA-A*24:02 gene-transduced mouse
podocyte cell line, MPC-5-A24. We also confirmed that
WT1 was abundantly expressed in podocytes of HLA-
A*24:02-transgenic mice. (Figure 1D). Figure 1E shows
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the cytotoxicity of WT1-specific and HLA-A*24:02-
restricted CTLs against various target cells. WT1-specific
CTLs showed strong cytotoxicity against WTlyzs o43
peptide-loaded but not -unloaded HLA-A*24:02-positive
LCLs. Notably, WT1-specific CTLs apparently exerted
cytotoxicity against MPC-5-A24, and their cytotoxicity
against WT 135243 peptide-loaded MPC-5-A24 appeared
to be higher than that against WT1 peptide-unloaded
MPC-5-A24. In contrast, WT1-specific CTLs did not show
cytotoxicity against WT1 peptide-loaded or -unloaded
MPC-5. These results showed that WT1-specific CTLs
can lyse podocytes in an HLA-restricted manner through
recognition of the WT1 epitope that is naturally processed
from WT1 protein in podocytes and presented on the cell
surface in the context of HLA class I molecules.

We monitored in detail the renal function of HLA-
A*24:02-transgenic mice following transfer of WT1-
specific CTLs. Body weight loss and severe proteinuria
were not observed in mice that had received WT1-
specific CTLs (data not shown). As shown in Figure 24,
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lymphocyte infiltration or glomerular injury was not
detectable morphologically in WT1-specific CTL-transferred
mice. Also, damage of other organs, including pleura,
was not detectable (data not shown). Finally, we examined
the kinetic distribution of WT1-specific CTLs in HLA-
A*24:02-transgenic mice. As shown in Figure 2B, WT1-
specific and HLA-A*24:02-restricted CTLs did not
accumulate in kidneys.

Discussion

The present in vitro and in vivo studies clearly showed
that WT1-specific CTLs indeed exerted cytotoxicity
against renal glomerular podocytes in an HLA-restricted
manner; in vivo, however, podocytes were able to escape
from the cytotoxicity of WT1-specific CTLs. This might
be due to the anatomical localization of podocytes, being
located outside the capillaries of the glomerulus. Because
podocytes are completely separated from capillaries in
which CTLs are circulating by a thick glomerular base-
ment membrane which can inhibit the pass of blood

A WT1-specific and HLA-A*24:02

)

including the kidneys.

-restricted CTL-transferred mouse

Day 3

Figure 2 Monitoring of renal damage in HLA-A*24:02-transgenic mice following transfer of WT1-specific and HLA-A¥24:02-restricted
CTLs. (A) Histopathology of the glomeruli of HLA-A*24:02-transgenic mice that had received WT1-specific and HLA-A*24-restricted CTLs and
control CTLs. (hematoxylin-eosin stain; original magnification x400). Notably, lymphocyte infiltration and tissue damage are not detectable in the
glomerulus of the WT1-specific CTL-transferred mouse. (B) Trafficking of WT1-specific and HLA-A*24:02-restricted CTLs in HLA-A*24:02-transgenic
mice. Four mice were transferred with WT1-specific and HLA-A*24:02-restricted CTLs. Notably, CTLs have not accumulated in specific organs,

~

Control CTLs-transferred mouse

Day 6
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cells and even serum protein, CTLs cannot come into
contact with podocytes under normal condition, However,
in the patients with glomerulonephritis, the permeability of
the glomerular basement membrane increases, resulting in
proteinuria; therefore, CTLs may infiltrate through the
basement membrane and damage podocytes. Therefore, in
conclusion, adoptive transfer of WTl-specific CTLs in
patients without renal failure is likely safe; however, it should
be performed cautiously in patients with proteinuria.
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