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Table 2. Hazard ratios for breast cancer associated with BMI in the JACC Study

Age-adjusted Multivariate®

BMI Cases Person-years
Hazard ratio 95% Cl Hazard ratio 95% Cl
Premenocpausal women
<18.5 3 4799 0.89 (0.28-2.89) 0.82 (0.25-2.68)
18.5-19.9 6 10327 0.83 (0.35-1.97) 0.78 (0.33-1.84)
20-23.9 39 55363 1.00 Reference 1.00 Reference
24-28.9 13 25975 0.71 (0.38-1.33) 0.76 (0.40-1.43)
=229 1 2453 0.54 (0.07-3.97) 0.62 (0.08-4.58)
P for trend 0.97 0.82
Postmenopausal women
<18.5 7 19412 0.71 (0.33-1.55) 0.64 (0.30—1.40)
18.5-19.9 7 28831 0.47 (0.22-1.02) 0.46 (0.21-1.00)
20-23.9 77 146684 1.00 Reference 1.00 Reference
24-28.9 71 93372 147 (1.06-2.03) 1.50 (1.09-2.08)
229 10 10427 2.00 (1.03-3.89) 2.13 (1.09-4.16)
P for trend <0.0001 <0.0001

BMI, body mass index.

8Adjusted for age, height, age at menarche, age at menopause (among postmenopausal women only), years of education, parity, marital status,
use of exogenous female hormone, first-degree family history of breast cancer, smoking status, alcohol drinking, physical activity, and study area.

Table 3. Multivariate hazard ratios for breast cancer associated with baseline BMI and weight change among postmenopausal

women in the JACC Study

Baseline BMI <24

Baseline BMI 224

Weight change from age 20 years

Hazard ratio 95% Cl Hazard ratio 95% Cli
Premenopausal women
Loss, unchanged, or gain of <10kg 1.00 Reference 0.94 (0.35-2.55)
Gain of 210kg 0.53 " (0.07-3.96) 1.88 (0.85-4.16)
Postmenopausal women
Loss, unchanged, or gain of <10kg 1.00 Reference 1.34 (0.69-2.58)
Gain of 210kg 0.99 (0.24—4.19) 2.55 (1.47-4.42)

BMI, body mass index.

Adjusted for age, height, age at menarche, years of education, parity, marital status, use of exogenous female hormone, first-degree family history
of breast cancer, smoking status, alcohol drinking, physical activity, and study area.

5-kg/m? increment of BMI, after adjustment for potential
confounders.

An effect of weight gain between age 20 years and
baseline on breast cancer risk was observed only among
postmenopausal women. The HR (95% CI) for 1 increment of
weight gain was 1.04 (1.01-1.07). Among premenopausal
women it was 0.99 (0.94-1.04) and not significant.

The combinatorial effect of baseline BMI and weight
change between age 20 years and baseline was examined to
evaluate the effect of these factors separately (Table 3). In
premenopausal women, no significant HR or association was
found. Conversely, in postmenopausal women, only those
with a baseline BMI of 24 or higher and weight gain of at least
10kg from age 20 years to baseline had a significant HR
(2.55, 95% CI: 1.47-4.42), as compared with those with
a baseline BMI of less than 24 and a weight gain of less
than 10kg from age 20 years to baseline. These findings
indicate that weight gain after age 20 years and consequent
overweight/obesity are combined risk factors for breast cancer
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among postmenopausal women. This combined effect was
particularly strong in older women (HR: 4.08, 95% CL
1.88-8.88). In addition, weight at age 20 years was not a
significant predictor of breast cancer after adjustment for
height at baseline and other potential confounders among
premenopausal and postmenopausal women in this study.
Furthermore, similar results were obtained after excluding the
33 breast cancer cases that occurred during the first 2 years of
follow-up (data not shown).

DISCUSSION

To our knowledge, this is the first prospective report from
Japan on the association between obesity/weight gain and
breast cancer risk by age group. Our findings revealed
a significant association between BMI/weight gain and
postmenopausal breast cancer risk, particularly among older
women. For postmenopausal women, especially those aged 60
years or older, weight gain after age 20 years and consequent
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overweight/obesity were identified as combined risk factors
for breast cancer, after adjusting for potential confounders.
In other words, being overweight or obese at baseline was
a much greater risk factor among women who were
postmenopausal, were aged 60 years or older, and had
gained at least 10kg from age 20 years to baseline.

Our results for postmenopausal women are consistent
with those obtained in a number of studies worldwide. The
adjusted HR per 5-kg/m? increment in BMI in the present
study (1.68) was slightly higher than the summary risk ratios
from a meta-analysis* of studies conducted in the Asia-Pacific
(1.31), North America (1.15), and Europe and Australia
(1.09). Breast cancer prevention via weight control is
expected to be more effective among postmenopausal
women in the Asia-Pacific region. With regard to cancer
pathogenesis, the increased risk in overweight/obese
postmenopausal women is due to the fact that adipose
tissue is the major source of estrogenic hormones after
menopause.>*** Furthermore, our results conform with those
of an earlier report showing that adult weight gain might
be better than cross-sectional BMI as an adiposity index.*®

In contrast, we did not observe any significant association
between BMI/weight change and breast cancer risk among
premenopausal women. In our cohort, age at baseline was 40
years or older; thus, follow-up did not completely cover the
premenopausal period. A previous study reported an inverse
association between BMI and breast cancer risk among white
women. One hypothesis is that young overweight women are
more likely to have anovulatory cycles with less cumulative
exposure to endogenous estrogen.’®*”7 Another hypothesis
is that there is greater clearance of estrogen by the liver
in young overweight women.*® These hypotheses are
strengthened by results from studies suggesting that the
inverse associations are limited to women with tumors that
are estrogen receptor- and progesterone receptor-positive.?>28
Thus, the heterogeneity of pathologic types among
premenopausal breast cancer weakens the association and
possibly explains the inconsistent results among non-white
racial/ethnic groups. This heterogeneity of cancer etiology in
relation to BMI and receptor type makes cancer prevention
in premenopausal women difficult and of less practical
importance. Further investigations of cancer pathogenesis
are needed among non-white racial/ethnic groups.

A major advantage of the present study was its prospective
design, which may avoid the possibility of recall bias inherent
to case-control studies. Moreover, information on other breast
cancer risk factors was included, and potential confounding
factors were controlled in analyses of the association.

This study has some limitations that should be considered
when interpreting our results. First, because we did not
have updated information on menopausal status, which
would modify the association between BMI/weight change
and breast cancer, the possibility of misclassification of
menopausal status at breast cancer omset should be

considered. Such misclassification would be problematic in
premenopausal women, since recently menopausal women
would be misclassified as premenopausal during the follow-up
period. Such misclassification could partly explain the
inconsistent results from several studies of the association
between body size and breast cancer among premenopausal
women. Studies of younger women with updated infor-
mation on menopausal status should be initiated among
premenopausal women. However, this limitation is a minor
concern for postmenopausal women. Changes during follow-
up, especially those related to lifestyle, might alter the results.
However, many risk factors, such as marriage status, number
of children, and family history of breast cancer, would be
unlikely to change after age 40. To our knowledge, substantial
changes in risk factors for breast cancer related to BMI have
not been reported.

Second, because we used simple questionnaires at baseline
only, we have data at only 2 time points, ie, age 20 years
and baseline. We did not have data on the time period of
weight gain, which would provide useful information for
recommendations. Lack of information on weight gain around
menopause would also weaken the association among
premenopausal women. Furthermore, weight at age 20 years
is retrospective information and may be systematically biased
among women at extremes of body size. However, these data
were obtained before breast cancer diagnosis, and therefore
any misclassification is not likely to be differential.

The accuracy of cancer identification in the present study
was not ideal. We estimated that 36.5 cases of incident breast
cancer were not included in our follow-up, and this number
is not inconsiderable. However, these cases would be
independent of body size; thus, estimated HRs would tend
toward the null.

In summary, our findings support the hypothesis that a
weight gain of 10kg or more and consequent overweight/
obesity (BMI >24) are combined risk factors for breast cancer
among Japanese postmenopausal women, particularly those
aged 60 years or older. Thus, to prevent breast cancer, weight
gain after age 20 years should be avoided and weight control
should be increasingly emphasized with increasing age. The
association between body size and premenopausal breast
cancer was not clear in the present study and varies across
studies; thus, optimal weight for breast cancer prevention
cannot be specified at this time.
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B-RAF mutation and accumulated gene
methylation in aberrant crypt foci (ACF),
sessile serrated adenoma/polyp (SSA/P) and
cancer in SSA/P
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Background: Sessile serrated adenomas/polyps (SSA/Ps) are a putative precursor of colon cancer with microsatellite instability
{MSI). However, the developmental mechanism of SSA/P remains unknown. We performed genetic analysis and genome-wide
DNA methylation analysis in aberrant crypt foci (ACF), SSA/P, and cancer in SSA/P specimens to show a close association between
ACF and the SSA/P-cancer sequence. We also evaluated the prevalence and number of ACF in SSA/P patients.

Methods: ACF in the right-side colon were observed in 36 patients with SSA/Ps alone, 2 with cancers in SSA/P, and 20 normal
subjects and biopsied under magnifying endoscopy. B-RAF mutation and MSI were analysed by PCR-restriction fragment length
polymorphism (RFLP) and PCR-SSCP, respectively, in 15 ACF, 20 SSA/P, and 2 cancer specimens. DNA methylation array analysis
of seven ACF, seven SSA/P, and two cancer in SSA/P specimens was performed using the microarray-based integrated analysis of
methylation by isochizomers (MIAMI) method.

Results: B-RAF mutations were frequently detected in ACF, SSA/P, and cancer in SSA/P tissues. The number of methylated genes
increased significantly in the order of ACF<SSA/P<cancer. The most commonly methylated genes in SSA/P were PQOLCI,
HDHD3, RASL108B, FLI1, GJA3, and SLC26A2. Some of these genes were methylated in ACF, whereas all genes were methylated in
cancers. Immunohistochemistry revealed their silenced expression. Microsatellite instability and MLHT methylation were observed
only in cancer. The prevalence and number of ACF were significantly higher in SSA/P patients than in normal subjects.
A significant correlation was seen between the numbers of SSA/P and ACF in SSA/P patients.

Conclusions: Our results suggest that ACF are precursor lesions of the SSA/P-cancer sequence in patients with SSA/P, where ACF
arise by B-RAF mutation and methylation of some of the six identified genes and develop into SSA/Ps through accumulated
methylation of these genes.

Recently, the serrated pathway to colorectal cancer, in which polyps are categorised into three main subtypes: hyperplastic
serrated polyps develop into cancers, has received much attention  polyps, sessile serrated adenoma-polyps (SSA/P), and traditional
as an alternative pathway in colorectal carcinogenesis. Serrated serrated adenoma, according to the latest World Health
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Organization (WHO) classification (Snover et g, 2010). Of these,
SSA/P is reported to develop predominantly in the proximal colon
and caecum (right-side colon), and also to harbour frequent B-RAF
mutations (Kambara et al, 2004; Higuchi et al, 2005; Spring et al,
2006). Moreover, it has been reported that MINT or pl6 genes,
markers of a CpG island methylator phenotype (CIMP), are
methylated in SSA/P (O’Brien et al, 2006; Kim et al, 2011). As
right-side colon cancers frequently show a microsatellite instability
(MSI) phenotype owing to methylation of the MLHI gene, SSA/P
is a putative precursor lesion for MSI cancer (Cunningham et al,
1998; Huang et al, 2011; Bettington et al, 2013). However, only
several genes, most of which are CIMP markers, have been
investigated for methylation analysis in SSA/P tissues. Recently
Gaiser ef al (2013) performed genome-wide methylation analysis of
colorectal polyps including SSA/P specimens and cancers, but they
did not show any specific methylated genes that might be involved
in SSA/P development. Moreover, it remains unknown whether or
not the epi-driver genes are silenced by aberrant methylation and
thereby contribute to the development of SSA/P.

Aberrant crypt foci (ACF), methylene blue-stainable crypts in
the colorectum, are the earliest precancerous lesion in rodent
models of colorectal carcinogenesis (Bird, 1987). We previously
observed human ACF using magnifying endoscopy; a significant
correlation between the number of adenomas and number/size of
rectal ACF in adenoma patients was demonstrated, and the ACF
were frequently positive for K-RAS mutation (Takayama et al,
1998, 2001, 2005). Moreover, we and other investigators have
shown that the number of rectal ACF is significantly higher in
patients with colorectal adenomas and cancers than in normal
subjects, suggesting that ACF are a precursor lesion of adenomas
and cancers (Takayama et al, 1998; Hurlstone ef al, 2005; Seike
et al, 2006; Kim et al, 2008), although some contradictory studies
have also been reported (Cho et al, 2008; Mutch et al, 2009). To
date, there have been only a few studies on ACF in the right-side
colon (Shpitz et al, 1998, Drew et al, 2014). However, no studies
have investigated ACF in the right-side colon in patients with
serrated polyps including SSA/P, and the relationship between
ACF and SSA/P is currently unknown.

In this study, therefore, we performed analyses of B-RAF and
K-RAS mutations, MSI, and genome-wide DNA methylation array
using ACF in the right-side colon, SSA/P, and cancer in SSA/P
specimens to clarify the molecular mechanism of the assumed
ACF-SSA/P-cancer sequence. We also investigated the prevalence
and number of ACF in the right-side colon of SSA/P patients
compared with normal subjects to show a close association
between SSA/P and ACF in the right-side colon.

Subjects and study design. This study was approved by the ethics
committee of Tokushima University Hospital (Tokushima, Japan).
We first enrolled 20 patients with SSA/P (without cancer) and 2
patients with cancers in SSA/P from January 2012 through March
2013. All the patients had been known or suspected to have SSA/P
lesions in the colon and were referred to our hospital for
endoscopic removal. We investigated the number of ACF in the
ascending colon and caecum (defined as the right-side colon in this
study) and biopsied them under magnifying endoscopy, after
removal of the SSA/P lesions by endoscopic mucosal resection
(EMR). The histological diagnosis of SSA/P was made indepen-
dently by two pathologists (TF and KS) according to the criteria of
WHO (Snover et al, 2010). Only lesions diagnosed as SSA/P
concordantly by the pathologists were used. We also investigated
B-RAF and K-RAS mutations, and MSI in 15 ACF, 20 SSA/P, and 2
cancer in SSA/P specimens, and performed genome-wide DNA

methylation array analysis of seven ACF, seven SSA/P, and two
cancer in SSA/P specimens. An additional 16 patients with SSA/P
and 20 normal subjects were enrolled from August 2013 through
February 2014 for assessment of ACF. Normal subjects were
defined as subjects who were referred to our hospital for
colonoscopy because of symptoms such as abdominal discomfort,
distention, or a feeling of tightness on defecation, but with no
apparent lesions of the colon observable by colonoscopy. Witten
informed consent was obtained from all patients who had been
known or suspected to have SSA/P before colonoscopy. For normal
subjects, consent was obtained before colonoscopy to undergo ACF
observation if no apparent lesion was identified. The baseline
characteristics of patients with SSA/P are shown in Supplementary
Table 1. The mean age and sex ratio (male/female) among patients
with SSA/P and normal subjects were 62.1 £ 13.0 years and 21 out
of 17 vs 62.5+10.4 years and 11 out of 9, respectively.

ACF observation by magnifying endoscopy. A magnifying
endoscope (model EC-L590ZW, FUJIFILM Holdings Corp.,
Tokyo, Japan) that magnifies objects by a factor of 135, equipped
with an autofocusing device, was used throughout the examination.
All subjects underwent total colonoscopy. In patients with SSA/P,
after the SSA/P lesion was removed, the right-side colon was
examined for ACF as previously described (Takayama et al, 1998,
2001). It was washed thoroughly with water, sprayed with 0.25%
methylene blue solution, washed again thoroughly with water, and
ACF were carefully identified using magnifying endoscopy. In
normal subjects, after total colonoscopy, the right-side colon was
examined for ACF using the same procedure. Regarding the
accuracy of our ACF counting method, we previously reported that
the inter-rater agreement rates and Cronbach’s alpha were
sufficiently high (Takayama et al, 2011). All procedures were
recorded on videotape and evaluated by two independent observers
who were unaware of the subjects’ clinical histories. ACF were
defined as minute lesions identifiable under magnifying chro-
moendoscopy in which crypts were more darkly stained with
methylene blue than normal crypts (Roncucci et al, 1991;
Takayama et al, 1998).

Two-PCR and RFLP for detection of B-RAF codon 600 and
K-RAS codon 12 and 13 mutations. B-RAF codon 600 and
K-RAS codon 12 and 13 mutations were detected using a 2-step
PCRRFLP method, as previously described (Miyanishi et al, 2001;
Dote et al, 2004; Nagasaka et al, 2004). In brief, cellular DNA was
extracted from EMR or biopsy specimens of SSA/P or ACF and
used as a template for PCR. The PCR products were amplified
using mismatched primers and analysed by RFLP to detect point
mutations in B-RAF codon 600 and in K-RAS codons 12 and 13.
The cancer portion of the cancer in SSA/P tissue was macro-
dissected and DNA was extracted for PCR-RELP analysis.

MSI analysis. Microsatellite instability analysis was performed
using cellular DNA as a template for PCR. The pentaplex PCR
system that includes primer pairs for five microsatellite targets
(BAT-25, BAT-26, D2S123, D5S346, and D17S250) was used
according to the method of You et al (2010) with minor
modification. Tumours with instability at >2 markers were
classified as high-degree microsatellite instability (MSI-H), at 1
marker as low-degree microsatellite instability (MSI-L), and at 0
markers as microsatellite stable (MSS).

DNA methylation array analysis. A genome-wide DNA methyla-
tion array analysis was performed using the microarray-based
integrated analysis of methylation by isochizomers (MIAMI)
method, as previously described (Hatada et al, 2006; Horii et al,
2009; Kobayashi et al, 2012). In brief, this method utilises two
isochizomers, Hpa II and Msp I, which recognise the same DNA
sequence (CCGG). Genomic DNA was first digested with Hpa II,
a methylation-sensitive restriction enzyme that only cleaves
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unmethylated DNA, and then adaptor-ligated and amplified by
PCR with the primers for adaptor sequences. They were then
digested with Msp I, a methylation-insensitive enzyme that digests
CCGG sites irrespective of their methylation status, followed by
amplification with the same set of primers (Hpa II-Msp I
treatment). The second digestion with Msp I only yielded products
from unmethylated DNA fragments. Therefore, only Hpall-
cleavable unmethylated DNA fragments were amplified. The
amplified products were labelled with Cy3 or Cy5 and co-
hybridised to a microarray spotted with 38172 oligonucleotides
covering the vicinity of the transcription start sites of 15883 genes
(Agilent ChIP-on-Chip Custom Microarray, Agilent Technologies,
Santa Clara, CA, USA). After hybridisation, the membranes were
scanned, and the fluorescence intensities were quantified and
normalised. The same samples were digested first with Msp I
instead of Hpa II (Msp I—Msp I treatment) and analysed on a
duplicate array to correct for false-positives.

Methylation-specific PCR. The bisulphite-modified DNA sam-
ples were used as a template for methylation-specific PCR (MSP).
The methylation status of the sites in the PQLCI, HDHDS3,
RASL10B, FLI1, GJA3, and SLC26A2 genes identified by methyla-
tion array analysis was investigated by MSP, as previously
described (Brinkhuizen et al, 2012). The primers used for MSP
are described in Supplementary Table 2.

Immunohistochemistry. Immunohistochemical staining was per-
formed using the streptavidin-biotin-peroxidase method with
labelled streptavidin-biotin (LSAB, Dako, Kyoto, Japan), according
to the manufacturer’s instructions. Briefly, paraffin-embedded
sections were deparaffinised in xylene and hydrated in graded
ethanol solutions and phosphate-buffered saline. Endogenous
peroxidase was inactivated by incubation with 0.3% H,0,-MeOH.
Subsequently, the slides were heated in 0.01M citrate buffer in a
water bath at 95 °C (pH = 6.0) for 15 min. Rabbit anti-human FLI1
polyclonal antibody (Kubo et al, 2003) (diluted 1: 150, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), rabbit anti-human GJA3
polyclonal antibody (Banerjee et al, 2010) (diluted 1:100,

Funakoshi Co., Ltd Tokyo, Japan), and goat anti-human SLA26A2
polyclonal antibody (Haila et al, 2001) (diluted 1:250, Sigma-
Aldrich), rabbit anti-human PQLCl polyclonal antibody
(HPAO51666) (diluted 1:150, Sigma-Aldrich, St Louis, MO,
USA), rabbit anti-human HDHD3 polyclonal antibody
(HPA024158) (diluted 1:100, Sigma-Aldrich) and rabbit anti-
human RASL10B polyclonal antibody (HPA046842) (diluted
1:100, Sigma-Aldrich) were used as primary antibodies. Detailed
data for the HPA antibodies are listed at the website http://
www.proteinatlas.org/. The sections were incubated with primary
antibodies, washed with PBS, and incubated with secondary
biotinylated antibody from an LSAB+ peroxidase kit (Dako).
Subsequently, the sections were incubated with streptavidin-
horseradish peroxidase (HRP) conjugate and visualised with
DAB chromogen (3’, 3-diaminobenzidine, Dako). Finally, the
sections were counterstained with Mayer’s hematoxylin.

Statistics. All data were analysed using STATA version 8 software
(Stata Corp., College Station, TX, USA). ANOVA was used to
assess differences in the number of methylated genes among ACF,
SSA/P, and cancer in SSA/P specimens. Scheffe’s test was used to
compare the numbers of methylated genes between the groups.
The correlation between the number of SSA/P and the number of
ACF was evaluated by Spearman’s test. A P-value <0.05 was
considered significant.

Endoscopic appearance of SSA/P and ACF. Figure 1A shows a
representative endoscopic view of SSA/P with a sessile isochro-
matic appearance in the ascending colon. Histological examination
of this lesion revealed distorted and dilated crypts near the base
with serrated architecture and no cytological dysplasia, consistent
with SSA/P (Figure 1B) (Higuchi et al, 2005; Snover et al, 2010).
Figure 1C shows a representative endoscopic view of ACF in the
right-side colon of the same case. ACF could be identified as a

Figure 1. Endoscopic and histologic features of SSA/P (A and B) and ACF (C and D) in the right-side colon. (A) Representative endoscopic view of
SSA/P with 10mm diameter. The size was estimated using biopsy forceps. {B) Histological examination showed serration in the lower crypt, and
distorted, dilated, or anchorishaped crypts (H&E staining). (C) Representative endoscopic view of ACF in the right-side colon from the same patient
(case 7). ACF were identified by methylene blue staining under magnifying endoscopy. ACF consisted of larger and more darkly stained crypts
than normal crypts. (D) Histological examinations showed serration and distortion of the crypts (H&E staining).
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focus consisting of abnormal crypts darkly stained with methylene
blue. Histological examination revealed a serrated structure and
distortion in some of the crypts but no cytological dysplasia
(Figure 1D).

B-RAF and K-RAS mutations in ACF, SSA/P, and cancer
in SSA/P. As B-RAF mutations at codon 600 are frequently
positive in SSA/P tissues (Kambara et al, 2004; Spring et al, 2006),
we first examined B-RAF mutations in 15 ACF, 20 SSA/P, and
2 cancer in SSA/P specimens. B-RAF codon 600 mutations were
detected in 16 out of 20 (80%) SSA/P specimens, consistent with
previous reports (Kambara et al, 2004; Spring et al, 2006). They
were also detected in 10 out of 15 (66.7%) ACF and 2 out of
2 (100%) cancer in SSA/P specimens (Figure 2A). Thus, B-RAF
mutations were frequently present in ACF, SSA/P, and cancer in
SSA/P specimens, raising the possibility that the ACF in patients
with SSA/P are precursor lesions of the SSA/P-cancer sequence.

We next examined K-RAS mutations at codon 12 and 13
because these mutations are frequently seen in rectal ACEF,
adenoma, and cancer (Takayama et al, 1998, 2001). However, K-
RAS mutations at codon 12 were only detected in 2 out of 15
(13.3%) ACF, 2 out of 20 (10.0%) SSA/P, and 0 out of 2 (0%)
cancerous portions in SSA/P specimens (Figure 2B). No K-RAS
mutations at codon 13 were detected in any of the ACF, SSA/P, or
cancer in SSA/P specimens (Supplementary Figure 1).

MSI in ACF, SSA/P, and cancer in SSA/P. As colorectal cancers
with MSI develop predominantly in the right-side colon, we next
examined MSI status in 15 ACF, 20 SSA/P, and 2 cancer in SSA/P
specimens. All 15 ACF specimens were MSS, and there were no
. MSI-L, or MSI-H phenotypes. Of the 20 SSA/P specimens, 17 were
MSS and 3 were MSI-L; however, none were MSI-H. While one of

the cancer in SSA/P specimens was MSI-H (case 36) and the other
was MSS (case 18). The latter cancer was positive for p53 mutation
(Supplementary Figure 2). These results for the cancer in SSA/P
specimens were consistent with previous reports (Jass et al, 2006;
Fujita et al, 2011; Maeda et al, 2011; Ban et al, 2014). The
representative results of MSI analysis in ACF, SSA/P, and cancer in
SSA/P are shown in Supplementary Figure 3.

DNA methylation array analysis of ACF, SSA/P, and cancer in
SSA/P. Genome-wide DNA methylation analysis of 7 ACF, 7 SSA/
P, and 2 cancer in SSA/P specimens was performed using the
MIAMI method in comparison with the corresponding normal
colonic epithelia. As a majority of these three lesions were positive
for B-RAF mutations, in this particular methylation analysis, all

lesions with B-RAF mutations were analysed except for one ACF

sample. Representative scatter plots of the signals from each probe
in ACF (case 5), SSA/P (case 3), and cancer in SSA/P specimens
(case 18) are shown in Figure 3. The values for log ((Hpall
intensity) lesion/(Hpall intensity) normal) are plotted on the x-
axis, representing the relative methylation changes of each lesion.
The values for the log ((Msp I intensity) lesion/(Mspl intensity)
normal) are plotted on the y-axis, representing the control for the
enzyme effects at sample digestion. The threshold values were
determined according to the original MIAMI method described by
Hatada et al (Hatada et al, 2006). Dots located within the upper
and lower green lines (* log 2, respectively) and on the right side
of the yellow line at log 5 of the horizontal distance from the
regression line of the plots represent hypermethylated genes in
each lesion compared with paired normal colorectal epithelium: 9
genes were determined to be methylated in the ACF specimen.
Likewise, 32 genes and 165 genes were methylated in SSA/P and
cancer in SSA/P specimens, respectively. The mean number of

A B-RAF codon 600 mutation
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Figure 2. Analysis for B-RAF codon 600 and K-RAS codon 12 mutations in ACF, SSA/P, and cancer in SSA/P. Point mutations of B-RAF codon 600
and K-RAS codon 12 were examined using the 2-step PCR-RFLP method. (A) B-RAF mutations in ACF, SSA/P, and cancer in SSA/P. The HT-29
colon cancer cell line, which is known to have a B-RAF mutation, was used as a positive control. Normal colonic mucosa was used as a negative control.
(B) K-RAS mutations in ACF, SSA/P, and cancer in SSA/P. The LS174T colon cancer cell line, which is known to have a K-RAS mutation, was used as
a positive control. A1 represents ACF from case 1. 51 and C18 represent SSA/P and cancer in SSA/P from case 1 and case 18, respectively.
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Figure 3. Scatter plots of signals for each probe based on the microarray-based integrated analysis of methylation by isochizomers (MIAMI)
method in ACF (A), SSA/P (B), and cancer in SSA/P (C). Green lines represent y= * log2, blue lines represent x= * log5, and yellow lines are
located at+ log5 horizontal distance from the regression line (red line) of the plots in accordance with the original MIAMI method of Hatada et al
(2006). Dots located within the two green lines and on the right side of the yellow line were determined to be hypermethylated.

methylated genes in ACF, SSA/P, and cancer in SSA/P specimens
were 11.3+7.7, 37.0 £ 17.3, and 193 £ 39, respectively, showing a
significant stepwise increment from ACF to SSA/P and then to
cancer in SSA/P (Figure 4, P<0.05).

On the basis of the results of the methylation array analysis, we
searched for common methylated genes among the seven SSA/P
tissues and found that PQLCI and HDHD3 genes were the most
commonly methylated genes; they were methylated in six out of
seven cases (86%) (Figure 5). In addition, RASLIOB gene was
methylated in five out of seven cases (71%) and FLI1, GJA3, and
SLC26A2 genes were methylated in four out of seven cases (57%)
respectively. All six genes were commonly methylated in the two
cancer in SSA/P cases. In ACF tissues, PQLCI was methylated in
three out of seven cases (43%); SLC26A2, RASL10B and FLII genes
were methylated in two out of seven cases (29%); and GJA3 was

methylated in one out of seven cases (14%). The methylation status
of these genes, and B-RAF, K-RAS mutations and MSI status in
each lesion are summarised in Figure 5.

Validation of methylation array analysis by MSP. To validate the
results of methylation array analysis, we assessed the methylation
status of the six genes by MSP. Bands of 500 bp representing
methylation of PQLCI gene were detected in SSA/P tissues from
cases 1-4, 6, and 7; ACF tissue from cases 5-7; and cancer tissues
from cases 1 and 2 (Figure 6). However, no methylation bands
were detected in SSA/P specimens that did not exhibit methylation
in the methylation array analysis (data not shown). Thus, the
methylation of PQLCI gene was validated by MSP. Likewise,
methylation bands of HDHD3 gene (450bp), RASLIOB gene
(600bp), FLII gene (550bp), GJA3 gene (360bp), and SLC26A2
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gene (350 bp) were confirmed in the corresponding specimens that
exhibited methylation in the methylation array analysis. These data
indicate that the methylation of all six genes was validated by MSP.

Expression of six genes in SSA/P tissues. To determine whether
the expression of the six genes was silenced by aberrant
methylation, we performed immunohistochemical staining on
SSA/P tissues that showed methylation of the six genes; three SSA/
P tissues were stained for expression of each gene. Representative
staining patterns are shown in Figure 7. PQLCI, an unknown
protein, showed staining in the cytoplasm and nucleus of normal
epithelial cells. However, its staining was clearly diminished in the
SSA/P cells (Figure 7A). HDHD3, also an unknown protein, was
appreciably stained in the cytoplasm of normal epithelial cells, but
its staining was markedly reduced in the SSA/P cells (Figure 7B).
RASL10B, a small GTPase protein, was intensely stained in the
cytoplasm of normal epithelial cells, but no such staining was
present in the SSA/P cells (Figure 7C). FLI1 stained mainly the
membrane of normal epithelial cells, whereas it was not stained in
the SSA/P cells (Figure 7D). GJA3, a membrane protein, was
stained predominantly in the membrane of normal epithelial cells,
but was almost negative in the SSA/P tissue (Figure 7E). SLC26A2,
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Figure 4. Number of methylated genes in ACF, SSA/P, and cancer in
SSA/P tissues. The number of methylated genes detected using the
MIAMI method in seven ACF, seven SSA/P, and two cancer in SSA/P
specimens were plotted.

an anion transporter, was present in the luminal side of normal
epithelial cells. However, its staining was essentially negative in the
SSA/P cells (Figure 7F). Thus, protein expression of the six genes
was markedly decreased or silenced in all SSA/P tissues examined.
These results strongly suggest that aberrant methylation of these
genes cauges silencing or a decrease of protein expression by
inhibition of transcription.

Prevalence and number of ACF in patients with SSA/P and
normal subjects. We also investigated the prevalence and number
of ACF in the right-side colon of 38 SSA/P patients compared with
20 normal subjects using magnifying endoscopy to strengthen the
hypothesis that ACF are a precursor lesion of the SSA/P-cancer
sequence. The prevalence of ACF in SSA/P patients was 37out of
38 (97.4%), which was significantly higher than that in normal
subjects (2 out of 20, 10.0%). The mean number of ACF in SSA/P
patients was 3.79 £ 2.11, which was significantly higher than that in
normal subjects (0.10:+0.33) (P<0.01). Moreover, there was a
significant positive correlation between the number of ACF and the
number of SSA/P (P<0.05) (Supplementary Figure 4). These data,
in combination with epigenetic and genetic findings of ACF,
suggest that ACF in the right-side colon are precursor lesions of
the SSA/P-cancer sequence.

In this study, we found frequent B-RAF mutations in ACF of the
right-side colon, SSA/P, and cancer in SSA/P, and also a stepwise
increment of methylated genes in this order. Moreover, the
number of methylated genes in ACF of right-side colon was
11.3£7.7 (range, 4-28), whereas it was only 1.3 £ 1.0 (range, 0-2)
in rectal ACF (Supplementary Table 3). Previously, we and other
investigators showed that rectal (and sigmoidal) ACF are
frequently positive for K-RAS mutations but not B-RAF mutations.
These results suggest that ACF in the right-side colon is genetically
distinct from rectal ACF and is a putative precursor lesion of the
SSA/P-cancer sequence. Our results also suggest that B-RAF
mutation is an early event associated with DNA methylation in
colon carcinogenesis via SSA/P.

One out of the two cancer (in SSA/P) tissues showed an MSI-H
phenotype with MLHI methylation, whereas the other one showed
an MSS phenotype with p53 mutation. Although the number of
cancer in SSA/P tissues examined was small, these results were
consistent with previous reports indicating that there are two
mechanistic pathways involved in the SSA/P-(dysplasia-) cancer
sequence; one through MLHI methylation and the other through
P53 mutation (Jass et al, 2006; Fujita et al, 2011; Maeda et al, 2011;
Ban et al, 2014).

Our methylation array analysis revealed that six novel genes
(PQLC1, HDHD3, RASL10B, FLI1, GJA3, and SLC26A2) were most
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Figure 5. Commonly methylated genes in SSAP tissues. The most commonly methylated genes in seven SSA/P tissues were PQLC1, HDHD3,
RASL10B, FLI1, GJA3, and SLC26A2. The methylation status of these six genes, and B-RAF, K-RAS mutations and microsatellite instability (MSI)
status in seven ACF, seven SSA/P, and two cancer in SSA/P specimens are summarised. MSS, microsatellite stable; MSI-H, MSI-high.
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Figure 6. Analysis for DNA methylation in PQLC1, HDHD3, RASL10B, FLI1, GJA3, and SLC26A2 by methylation-specific PCR. P, commercially
obtained positive control of methylated DNA. N, commercially obtained negative control of methylated DNA. N.M,, normal colonic mucosa.
M, methylated, U, unmethylated.

Figure 7. Immunohistochemical staining for PQLC1, HDHD3, RASL10B, FLI1, GJA3, and SLC26A2 in SSA/P tissues. Representative staining
patterns of PQLCT (A) HDHD3 (B) RASL10B (C) FLIT (D) GJA3 (E) and SLC26A2 (F) are shown. Original magnification; x 100. High-magnification
images of each boxed area are shown in the inset (x 400).
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frequently methylated, and their protein expression was suppressed
in SSA/P tissues. The statistical power calculation revealed
significant positivity of methylation in PQLCI (P<0.01), HDHD3
(P<0.01), and RASLIOB (P<0.05) by Fisher’s exact test. Similarly,
there was marginal positivity of methylation in FLII, GJA3, and
SLC26A2 (P=10.069). Moreover, all six genes were methylated in
cancers in SSA/P tissues (100%), whereas, only some of them were
methylated in ACF tissues. These results suggest that epigenetic
silencing of these six genes has an important role in the
development of SSA/P. Thus, our findings suggest an ACF-SSA/
P-cancer sequence where ACF arise by B-RAF mutation and
methylation of some of the six identified genes, then develop into
SSA/Ps through accumulated methylation of these genes, and
probably progress to cancer by additional epigenetic or genetic
alterations. Interestingly, the expressions of these six genes were
frequently suppressed in the right-side colon cancers with no
apparent SSA/P as well, whereas they were not suppressed in most
of the left-side colon cancers and adenomas as revealed by
immunohistochemistry (Supplementary Figure 5). These results
raise the possibility that these six genes have an important role in
the right-side colon carcinogenesis.

Our clinical study revealed numerous ACF in the right-side
colon of SSA/P patients, whereas there were only few ACF in the
right-side colon of normal subjects. There was also a significant
correlation between the number of ACF and the number of SSA/P
in SSA/P patients. These results support the hypothesis that ACF
in the right-side colon are a precursor lesion of the SSA/P-cancer
sequence. It has been hypothesised that SSA/Ps develop through
hyperplastic polyps, particularly through microvesicular hyper-
plastic polyps (MVHPs). As histological examination of ACF in
the right-side colon revealed microvesicles in the crypts
(Figure 1D), which is one of the characteristics of MVHP, we
may assume a pathway from ACF to MVHP and subsequently to
SSA/P. In the present study, however, we did not investigate ACF
in the right-side colon from patients with other types of polyps
including adenomas and traditional serrated adenomas. There-
fore, it is not yet clear whether ACF in the right-side colon are
specific to SSA/P or not. It will be important in the future to
investigate ACF in these patients in comparison with ACF in
patients with SSA/P.

It has been reported that marker genes for a CIMP such as
MINT1, MINT3, FGFBP3, or SLIT2 are methylated in SSA/P
tissues (Kambara et al, 2004; O’Brien et al, 2006; Kaji et al, 2012;
Beggs et al, 2013). In our study, however, methylation of these
genes was seen in only one to two of the two SSA/P specimens,
suggesting that these genes do not have a pivotal role in the
development of SSA/P. In addition, the methylation sites of two
genes identified (PQLCI and SLC26A2) were inside the CpG
islands (defined as CpG observed/expected >60%); interestingly,
however, those of the remaining four genes were outside the CpG
islands (Supplementary Figure 6). It is plausible that gene
methylation at sites other than CpG islands are also involved in
gene silencing in SSA/P tissues.

Of the six genes identified, PQLCI and HDHD3 are not yet well
characterised; their tissue distribution and function are unknown.
The significance of epigenetic silencing of these genes in SSA/P as
well as in colon tumours should be elucidated in detail in the
future. RASL10B protein is a small monomeric GTPase with
tumour suppressor potential, and epigenetic silencing of RASL10B
in human HCC and breast cancer has been reported (Zou et al,
2006; Lin and Chuang, 2012). Although reduced expression of
RASL10B in colonic tumours has not yet been reported, it is
presumed to function in normal colon epithelial cells as an
oncosuppressive factor, as in HCC and breast cancer. FLI1 is an
ETS family member and EWS/FLI1 fusion gene (11;22 transloca-
tion) that is known to have oncogenic activity in Ewing’s sarcoma
(May et al, 1993). However, recently FLI1 expression was

reportedly reduced by aberrant methylation in its promoter region
in colorectal adenoma and cancer (Oster et al, 2011). Therefore,
FLII epigenetic silencing may provide an advantage for cell growth
in SSA/P cells. GJA3, same as connexin 46, is a gap junction
protein (Hsieh et al, 1991). In general, expression of the connexin
gene family is downregulated in cancer cells in association with
the promotion of cell proliferation, or enhanced invasiveness.
Although the expression of GJA3 in colorectal tumours has not yet
been reported, silencing of GJA3 may contribute to promotion of
cell proliferation and gap junction impairment resulting in crypt
serration in SSA/P. Alternatively, it may be associated with mucin
production because some connexins (e.g. connexin 30) are
reportedly closely associated with mucin expression (Sentani
et al, 2010). SLC26A2, also called diastrophic dysplasia sulphate
transporter (DTDST), is an anion transporter and its epigenetic
silencing in colon cancer cell lines has been reported recently by
Yusa et al (2010). They also showed that knockdown of SLC2642
in a colon cancer cell line increased proliferation. Therefore,
silencing of SLC26A2 presumably promotes cell proliferation in
SSA/P cells. However, there have been no reports to date indicating
that patients with homozygous SLC26A2-inactivating germline
mutation (diastrophic dysplasia) are predisposed to cancer. It is
plausible that a single gene alteration without B-RAF mutation may
not be sufficient for the development of SSA/P and subsequent
cancer, although the possibility stil remains that SLC26A2
silencing might be a simple consequence of the process of SSA/P
formation. Thus, epigenetic silencing of these six genes may
provide an advantage for cell growth, formation of serrated
architecture, or mucin production, all of which are characteristic
findings of SSA/P. )

In this study, we employed the MIAMI method, which
has lower resolution and sensitivity compared with the
most recent comprehensive methods using next generation
sequencing technology, and successfully identified several
candidate genes. The use of such the newest technologies
for genome-wide screening of methylated genes (sites) will
be able to identify additional genes that are differentially
methylated in SSA/P. Therefore, further experiments using these
technologies will be needed to provide a more detailed analysis
of the underlying mechanisms of carcinogenesis via SSA/P in
the colon.

In conclusion, our results suggest that ACF are precursor lesions
of the SSA/P-cancer sequence in patients with SSA/P. Our data also
suggest that the B-RAF mutation and accumulated aberrant
methylation of the six novel genes (PQLCI, HDHD3, RASLI10B,
FLII, GJA3, or SLC26A2) are closely associated with development
of SSA/P.

We are grateful to Drs Shunto ] and Kataoka K for referring SSA/P
patients to our hospital, and Kajimoto M and Nakanishi Y for their
expert technical assistance.
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Abstract

Anti-epidermal growth factor receptor (EGFR) antibodies
have been widely utilized as a standard treatment for meta-
static colorectal cancer (CRC). Anti-EGFR antibodies bind
competitively to EGFRs to inhibit receptor activation and
subsequent signal transduction of the RAS/RAF/MEK path-
way and PI3K/AKT pathway. By inhibiting EGFR-mediated
signal transduction, anti-EGFRantibodies inhibit cell growth,
invasion, metastasis and angiogenesis, and they induce
apoptosis. The IgG1-type antibody cetuximab is also capable
of inducing antibody-dependent cellular cytotoxicity. Sev-
eral studies have shown that KRAS mutation is a useful bio-
marker for predicting the efficacy of anti-EGFR agents, and
the major guidelines for the treatment of CRC recommend
the use of anti-EGFR antibody only for the cancers with wild-
type KRAS. Alterations of other genes, including BRAF, NRAS,
PTEN and AKT, and EGFR expression/gene copy number have
also been reported to be candidate biomarkers for predict-
ing the efficacy of anti-EGFR agents. The predictive values of
these biomarkers are still controversial and further investiga-
tions are required. ©2014 5. Karger AG, Basel

Introduction

It is well recognized that epidermal growth factor re-
ceptor (EGFR), a receptor tyrosine kinase, is overex-
pressed in colorectal cancers (CRCs) and plays a pivotal
role in CRC development. Anti-EGFR antibodies includ-
ing cetuximab (Erbitux®) and panitumumab (Vectibix®)
have recently been developed and are currently used as
standard first-, second- or third-line chemotherapy for
the treatment of metastatic CRCs. However, it has been
reported that these agents are effective only for CRC with
wild-type KRAS and not for KRAS mutation, indicating
that KRAS mutation can serve as a useful biomarker for
predicting the efficacy of anti-EGFR agents. Aside from
KRAS mutation, BRAF, NRAS and PIK3CA mutations
have also been identified as candidate biomarkers for pre-
dicting anti-EGFR antibody efficacy. In this review, the
mechanism of action of anti-EGFR agents and their role
as candidate biomarkers for predicting the efficacy of an-
ti-EGFR agents are summarized.

Mechanism of Anti-EGFR Antibodies

The EGFR is a 170-kDa transmembrane glycoprotein
containing a tyrosine-specific kinase. Ligands known to
bind with the EGFR include epidermal growth factor
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(EGF), TGF-a, amphiregulin, epiregulin or heparin-
binding EGF-like growth factor. Ligand binding to the
EGFR induces dimerization of the receptor, which results
in the autophosphorylation of tyrosine residue in the in-
tracellular domain, and subsequently downstream signal
transduction via the RAS/RAF/MEK (MAP kinase) path-
way and PI3K/AKT pathway (fig. 1). EGFRs are expressed
in 60-80% of CRCs [1). Cancer cells secrete TGF-a, which
binds to EGFRs on the surface of cancer cells and pro-
motes their growth by activating signal transduction in an
autocrine manner. The activation of EGFR signal trans-
duction not only promotes cancer growth but also inva-
sion, metastasis and neovascularization (angiogenesis) of
cancer tissue.

Cetuximab and panitumumab are used clinically as
EGEFR antibodies. Their primary mechanism of antitu-
mor action involves competitive binding to the extracel-
lular domain of EGFRs, which leads to inhibition of EGFR
activation and subsequent signaling via the RAS/RAF/
MEK/ERK and PI3K/AKT pathways. Moreover, anti-
EGEFR antibodies induce EGFR downregulation through
dimerization and internalization of the receptor. It has
also been reported that cetuximab activates proapoptotic
molecules in vitro [2]. Thus, anti-EGFR antibody drugs
inhibit growth, invasion, metastasis and angiogenesis,
and induce apoptosis in CRC. A secondary mechanism of
action of cetuximab involves its ability to induce anti-
body-dependent cellular cytotoxicity (ADCC), since it is
an IgG1 subclass antibody, unlike panitumumab, which
is an IgG2 subclass antibody. Experimental evidence has
demonstrated that cetuximab acts by an indirect mecha-
nism on the immune system through a cytotoxic effect
mediated by ADCC and effector cells such as monocytes
and natural killer cells [3].

Predictive Biomarkers

It is well accepted that KRAS mutation is a predictive
marker for the efficacy of anti-EGFR agents in the treat-
ment of CRC. Treatment guidelines for CRC published
by the National Comprehensive Cancer Network
(NCCN), European Society for Medical Oncology
(ESMO) and Japanese Society for Cancer of the Colon
and Rectum (JSCCR) recommend the use of anti-EGFR
antibodies only for CRCs with wild-type. Several other
gene alterations aside from KRAS have been identified as
candidate biomarkers for predicting the efficacy of anti-
EGFER treatment (table 1). Seven biomarkers are consid-
ered in turn in the following sections.

Biomarkers of CRC

Color version available online

Fig. 1. EGFR signal transduction of the downstream pathway.

KRAS

KRAS is a small (21 kDa) GTP-binding protein. KRAS
mutation is found in roughly 35-45% of CRCs; two
hotspots - codons 12 and 13 — account for about 95% of
all mutations (~80% for codon 12 and 15% for codon 13).
Mutations in other regions, such as codons 61, 146 and
154, occur less frequently.

The predictive value of KRAS was first reported by
Leivre et al. [4] who showed that KRAS mutant cancers
were unresponsive to cetuximab and had a poorer overall
survival (OS) compared with the KRAS wild-type can-
cers. Similarly, panitumumab was demonstrated to be ef-
fective only for KRAS wild-type cancers. Large random-
ized multicenter phase ITI clinical trials demonstrated the
predictive value of KRAS for anti-EGFR therapy. van
Cutsem et al. [5] performed a phase III trial to compare
irinotecan, infusional fluorouracil and leucovorin (FOL-
FIRI) plus cetuximab versus FOLFIRI alone as a first-line
chemotherapy for CRCs (CRYSTAL trial). The response
rate for cetuximab treatment was 59.3% (102/172) in the
KRAS wild-type group, which was significantly higher
than that in the KRAS mutant group (36.2%, 38/105, p =
0.03). The median progression-free survival (PFES) in the
KRAS wild-type group tended to be better than in the
KRAS mutant group (9.9 vs. 7.6 months, p = 0.07). Boke-
meyer et al. [6] preformed a phase III trial to compare
folinic acid-fluorouracil-oxaliplatin (FOLFOX) plus ce-
tuximab versus FOLFOX alone as first-line chemothera-
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Table 1. Predictive markers for anti-EGFR antibody agents

Marker Therapy Association with efficacy Ref.
RR, % p value ~ PFS, months p value
wild mutant wild mutant
Recommended
KRAS mutation FOLFIRI + Cmab 59.3 36.2 <0.004 9.9 7.6 <0.02 [5]
FOLFOX + Cmab 61 33 <0.0027 7.7 5.5 <0.0064 [6]
FOLFOX + Pmab 55 40 <0.07 9.6 7.3 <0.02 [71
Candidates
BRAF mutation  Cmab + CT 38 8.3 <0.0012 4.5 2.0 <0.0001 [11]
Cmab + CT 48 39 0.43 114 6.5 0.0001 [12]
PIK3CA mutation
Exon 9/20 Cmab/Pmab or 23 0 0.038 0.0035 [13]
Cmab/Pmab + CT
Cmab or Cmab + 29.6 35.7 0.758 6 4.5 0.760 [14]
irinotecan
Exon 9 Cmab + CT 36.3 28.6 0.47 6 5.9 0.65 [11]
Exon 20 37 0 0.029 6 2.9 0.013
NRAS mutation  Cmab + CT 38.1 7.7 0.013 6.5 35 0.06 [11]
expression loss expression loss
PTEN expression Cmab + irinotecan ~ 62.5 (10/16)  0(0/11) 0.001 N.D. N.D. [15]
or CAPOX
Cmab + CT 46.1 (41/89) 45.5 (10/22) 1 7.8 7.5 0.28 [17]
high GCN  low GCN high GCN  low GCN
EGFR GCN Cmab + irinotecan 60 9 0.02 7.7 2.9 0.04 [25]
Cmab+=CT 71 37 0.015 8.5 7.0 0.28 [17]

RR = Relative risk; Cmab = cetuximab; Pmab = panitumumab; CT = chemotherapy; GCN = gene copy number; N.D. = not deter-

mined.

py for CRCs (OPUS trial). The trial found significant dif-
ferences in response rate (p = 0.011) and PES (p = 0.0163)
between KRAS wild-type and mutant groups. Similarly,
in a phase ITI trial to compare FOLFOX plus panitumum-
ab versus FOLFOX alone as a first-line chemotherapy
(PRIME trial) [7], significant differences in the response
rate (p = 0.02) and PFS (p = 0.02) were noted between
KRAS wild-type and mutant groups. A meta-analysis of
11 studies recently published showed that KRAS status
was closely associated with the response rate (p < 0.001)
and PFS (p = 0.005) [8].

Recently, De Roock et al. [9] reported that KRAS co-
don 13 mutants (G13D) treated with cetuximab showed
significantly longer PES and OS as compared with KRAS
codon 12 mutants. However, this finding remains contro-
versial and warrants further study.

20 Digestion 2014;89:18-23
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BRAF

BRAF, a member of the serine/threonine kinase fami-
ly, is directly downstream of KRAS in the MAP kinase
cascade. Approximately 5-15% of CRCs are positive for
BRAF mutation. More than 90% of the mutations are lo-
cated at codon 600, where amino acid valine is substitut-
ed by glutamic acid (V600E) [10].

De Roock et al. [11] performed a retrospective analysis
of 370 patients treated with cetuximab and found that
BRAF mutation was present in 24 of 340 KRAS wild-type
patients (6.5%). The response rate in patients with BRAF
mutation was only 8.3%, which was significantly lower
than the rate in patients without BRAF mutation (38%,
p < 0.01). In addition, patients with BRAF mutation
showed significantly worse PES and OS than those with

- wild-type KRAS and BRAF. These results indicate that
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BRAF mutation is capable of serving as a predictive and
prognostic marker. However, Tol et al. [12] performed a
retrospective analysis of BRAF mutation in a randomized
controlled trial of patients receiving chemotherapy with
(n=227) or without cetuximab (n = 332) as first-line treat-
ment. BRAF mutation was identified in 8.7% of all pa-
tients. The response rate for each group was not described
in the study; however, in patients with BRAF mutation,
there were no significant differences in PFS or OS between
thosetreated with or without cetuximab (6.5 vs. 5.7 months
for PES and 12.9 vs. 12.8 months for OS). In contrast, the
patients with BRAF mutation showed significantly worse
PES and OS than those with wild-type KRAS and BRAF
irrespective of cetuximab treatment. The evidence to date
indicates that BRAF mutation can serve as a prognostic
biomarker, but its potential as a predictive biomarker for
efficacy of anti-EGFR agents remains controversial.

PIK3CA (Exons 9 and 20)

The a-catalytic subunit of the phosphoinositol-3-ki-
nase (PIK3CA) gene encodes the catalytic p110-a subunit
of PI3K. It has been reported that PIK3CA mutation oc-
curs in 10-20% of CRCs and can occur with KRAS or
BRAF mutations. More than 80% of PIK3CA mutations
occur in exon 9 (60-65%) or exon 20 (20-25%). Sartore-
Bianchiet et al. [13] performed a retrospective analysis of
110 patients treated with anti-EGFR agent-based regi-
mens and found PIK3CA mutations in 13.6% (15/110).
None of the 15 patients with the PIK3CA mutation
achieved an objective response with anti-EGFR agents
compared with a relative risk of 23% in the 95 patients
with wild-type PIK3CA (p = 0.0337). However, Prenen et
al. [14] analyzed 200 patients treated with cetuximab and
showed that 5 of 39 responders (13%) and 18 of 160 non-
responders (11%) had PIK3CA mutations (p =0.781). Re-
cently, De Roock et al. [11] performed a retrospective
analysis of 743 patients treated with cetuximab and found
PIK3CA mutationsin 14.5% (108/743); 68.5% (74/108) in
exon 9 and 20.4% (22/108) in exon 20. They showed that
PIK3CA exon 9 mutation had no effect, whereas exon 20
mutations were associated with a worse outcome com-
pared with wild-types: i.e. respectively, a response rate of
0.0% (0/9) versus 36.8% (121/329, p = 0.029), a median
PES of 11.5 weeks versus 24 weeks (p = 0.013) and a me-
dian OS of 34 weeks versus 51 weeks (p = 0.0057). Thus,
only PIK3CA mutations in exon 20 may be an effective
marker for predicting treatment efficacy. However, since
the incidence of PIK3CA exon 20 mutation is very low
(2-5%), further investigations are required.

Biomarkers of CRC

NRAS (Codons 12, 13 and 61)

NRAS mutation accounts for only 3-5% of CRCs and
mutation at codon 61 is the most commonly observed.
NRAS mutation is exclusively detected to KRAS muta-
tion, as is BRAF mutation. There has only been one study
that investigated the relationship between NRAS muta-
tion and the efficacy of anti-EGFR antibodies, conducted
by De Roock et al. [11], in which NRAS mutation was ob-
served in 4.3% (13/302 KRAS wild-type samples). NRAS
mutants had a significantly lower response rate than wild-
types [7.7% (1/13) vs. 38.1% (110/289), p = 0.013]. How-
ever, there were no significant differences between NRAS
mutants and wild-types with respect to median PFS (14
vs. 26 weeks, p = 0.055) and median OS (38 vs. 50 weeks,
p = 0.051). To date, there have been no studies of NRAS
in a sizeable patient cohort.

PTEN and AKT

Several studies have investigated the relationship be-
tween PTEN and/or AKT protein expressions and the ef-
ficacy of treatment with anti-EGFR antibodies. Several
studies have shown that PTEN loss is associated with re-
sistance to cetuximab in patients with metastatic CRC [15,
16], although the studies were not uniform in evaluating
the PTEN protein expression. Conversely, a study by Lau-
rent-Puig et al. [17] reported that the loss of PTEN protein
expression, which was detected in about 20% (22/111) of
KRAS wild-type tumors, was not associated with tumor
response or PFS, but it was associated with slightly worse
OS (p=0.013). Based on these studies, which differed with
respect to the assay methodologies used, PTEN expression
does not appear to have a clinically robust ability to pre-
dict the therapeutic response to cetuximab. Moreover,
further standardization of PTEN expression assessment is
a necessary challenge to confirm these data.

None of the four studies reported a statistically signif-
icant association between AKT expression and tumor re-
sponse or survival [18, 19]. However, because these stud-
ies involved small sample numbers, further investigation
is needed to determine the association between AKT ex-
pression and tumor response to anti-EGFR antibodies.

EGER Expression

For initial clinical trials of anti-EGFR antibodies, only
patients with metastatic CRC proven to be EGFR positive
by immunohistochemistry were enrolled. However, the
level of EGFR protein expression is not associated with
sensitivity to anti-EGFR monoclonal antibodies [20, 21].
In fact, a therapeutic response to cetuximab has been ob-
served in patients with EGFR-negative tumors, which in-
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dicates that determination of EGFR positivity by immu-
nohistochemical evaluation is not a reliable marker for
predicting the efficacy of anti-EGFR monoclonal anti-
body therapy [22]. Licitra et al. [23] analyzed data from
the EXTREME and CRYSTAL trials and determined that
even in patients with KRAS wild-type tumors, immuno-
histochemical determination of EGFR expression was not
predictive of the efficacy of cetuximab in combination
with chemotherapy.

The EGFR gene copy number evaluated by quantita-
tive PCR does not appear to correlate with the clinical
outcome of patients, whereas the results of analysis by
fluorescence in situ hybridization, FISH, appears to be as-
sociated with higher than usual treatment response [17,
24, 25]. Although promising results have been seen with
EGFR amplification, technical challenges, including the
reproducibility of methods to assess gene copy number
and interlaboratory scoring system variability, have lim-
ited its role as a predictive biomarker [26]. Therefore, fur-
ther studies are required to assess increased EGFR gene
copy number as a predictive biomarker of anti-EGFR
therapy. ‘

Amphiregulin, Epiregulin

The overexpression of the EGFR ligands amphiregulin
(AREG) and epiregulin (EREG) may promote tumor
growth and survival by an autocrine loop mechanism.
Khambata-Ford et al. [27] reported that metastatic CRC
patients with high expression of AREG and EREG who
were treated with cetuximab showed a statistically longer
PFS period. Jacobs et al. [28] observed that patients with
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