addition of imputation of the 19 SNPs in the 6 regions under
study here (28).
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Telomeres are specialized chromatin structures that shorten
during each round of cellular division in mammalian cells.
Prolonged erosion of telomere length can lead to genetic insta-
bility, cellular senescence and apoptosis.l Earlier studies,
mainly retrospective, on peripheral white blood cells (WBCs)
have suggested increased cancer risk associated with shorter
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telomere length.”™® These studies may suffer from disease bias
in which telomere shortening was a consequence of tumor
growth ‘and progression rather than a risk factor for tumori-
genesis. Recent, primarily prospective studies indicate that,
contrary to expectation, longer telomere length may be associ-
ated with cancer risk,” ™" particularly for lung cancer.”"®
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Telomere length has historically been measured in periph-
eral WBC by multiplex quantitative polymerase chain reac-
tion.'” A recent genome-wide association study (GWAS) on
telomere length has identified 7 loci robustly associated with
WBC telomere length® Although genetic variants at these
loci explain a small proportion of the total biological varia-
tion in telomere length, the age-related shortening per variant
risk allele was equivalent to 1.9-3.9 years of attrition in telo-
mere/single copy gene (T7/S) ratio, equating to ~57-117 base
pairs in telomere length per risk allele. Furthermore, the
authors demonstrated the utility of genetic risk scores (GRS)
of these variants to replicate a well-established association
between shorter mean peripheral WBC telomere length and
coronary artery disease. This suggests that by using telomere-
length associated GRS as an instrument to approximate telo-
mere shortening or lengthening, causal relationships with
telomere length can be investigated in etiologically complex
diseases that include environmental risk factors associated
with both disease risk and telomere length.

We herein report an investigation of the seven identified
telomere-length associated variants in a sample of lung can-
cer cases and controls from a population of never-smoking
Asian females. Our investigation uses data generated as part
of a previously reported genome-wide association study
(GWAS) conducted by the Female Lung Cancer Consortium
in Asia.*' Qur objectives are to (i) validate the utility of these
seven telomere-length associated variants discovered in a pri-
marily European population to predict measured telomere
length in an Asian population; (if) characterize overall and
individual associations of telomere-length associated variants
with lung cancer risk; (jii) investigate the ability of GRSs of

these variants to predict lung cancer risk; and (iv) describe -

the direction of the associations observed between telomere-
length associated variants and lung cancer risk.

Material and Methods ,

Study subjects were from a published GWAS investigating
lung cancer susceptibility risk in female Asian non-smokers
drawn from 14 studies from mainland China, South Korea,
Japan, Singapore, Taiwan, and Hong Kong.*' Cases had his-
tologically confirmed lung cancer. Each study was approved
by the Institutional Review Board of the investigator’s
institation, and all participants provided written informed
consent.

Lung cancer and telomere length

Genotyping was performed in the Cancer Genomics
Research Laboratory of the National Cancer Institute’s Divi-
sion of Cancer Epidemiology and Genetics (Gaithersburg,
MD); Gene-Square Biotech, Inc. (Beijing, China); GeneTech
Biotech Co. (Taiwan); deCODE Genetics (Iceland); Memorial
Sloan-Kettering Cancer Center (New York, NY); and
Genome Institute of Singapore (Singapore). Genotyping was
carried out on commercially available Illumina Infinium Bea-
dArray human assays (Ilumina 370k, Mumina 610Q, and
Mumina 660W SNP microarrays) following standard proce-
dures. The methods and quality control metrics applied to
genotyping with SNP microarrays have been previously pub-
lished.*" Briefly, samples were excluded with low completion
rates, extreme heterozygosity values, gender discordance, low
Asian ancestry (<86%), and first degree relatives were
removed. After quality control filtering, a total of 5,510 cases
and 4,544 controls had genetic data available for analysis.

To address potential population substructure, principal
components were calculated using the GLU struct.pca mod-

.ule  (http://code.google.com/p/glu-genetics/) using 33,165

SNPs with low pairwise correlation (R* < 0.01).

*Genotype imputation was performed to ensure complete
data existed for all seven telomere-length associated variants.
The IMPUTE2 program (http://mathgen.stats.ox.ac.uk/
impute/impute_v2.html) was used with the March 2012
release of the 1,000 Genomes Project data® and the DCEG
Imputation Reference Set™ as merged references for imputa-
tion. The DCEG reference set serves as a supplement to the
1,000 Genomes reference and includes 2.8 million autosomal
polymorphic SNPs for 1,249 individuals, of which 162 indi-
viduals are of Asian ancestry. Because the genotyping data
was on NCBI Build 36, all genotyped variant coordinates
were converted to NCBI Build 37 using UCSC’s liftOver util-
ity  (http://hgdownload.cse.ucsc.edu/downloads.html) before
performing genotype imputation. Recommended IMPUTE2
default settings were used and all imputed SNPs (1s7675998,
rs8105767, rs755017, rs11125529) achieved INFO scores
>0.99. There was no evidence for significant departures from
Hardy-Weinberg proportions (p value > 0.05).

A group of subjects included in previous nested case-
control studies of various cancers in the prospective Shanghai
Women’s Health Study (N=1,536) had both. genotyping
data and experimentally measured peripheral WBC telomere
length that we used to validate the telomere-length associated
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Table 1. Age distribution, by study, of lung

744 541

CAMSCH

Mainland China

FLCS Mainland China 522 196

203 8%

326 2% 7%

les in Asia

21%

33%

28%

39% 38%

GELAC Taiwan 2,043 1,065

978 3%

13% 31% 33%

HKS Hong Kong 342 132

210 6%

13% 23% 29%

SKLCS South Korea 557 334

- 223 3%

11% 23% 41%

SWHS Mainland China 161 88

Mainland China

9,950 5,457

4,493 6%

15% 30% 33% 16%

1CAMSCH: Chinese Academy of Medical Sciences Cancer Hospital Study; CNULCS: Chonnam National University Lung Cancer Study; FLCS: Fudan
Lung Cancer Study; GDS: Guangdong Study; GELAC: Genetic Epidemiological Study of Lung Adenocarcinoma (in Taiwan); GEL-S: Genes and Environ-
ment in Lung Cancer, Singapore study; HKS: Hong Kong Study; JLCS: Japanese Female Lung Cancer Collaborative Study; SKLCS: South Korea Multi-
Center Lung Cancer Study (includes Seoul National University Study; Korean University Medical Center Study; and Kyungpook National University
Hospital Study); SLCS: Shenyang Lung Cancer Study; SWHS: Shanghai Women'’s Health Study; TLCS: Tianjin Lung Cancer Study; WLCS: Wuhan Lung

Cancer Study; YLCS: Yunnan Lung Cancer Study.

variants in an Asian population. Multiplex quantitative poly-
merase chain reactions were used to quantify telomere length.
T/S values were extracted for the analysis and log trans-
formed to improve normality.

All plotting and statistical analyses were performed on a 64-
bit Windows build of R version 3.0.1 "Good Sport."** Only sub-
jects with complete genotyping, histology and covariate infor-
mation were included in the analysis (5,457 cases and 4,493
controls). Models investigating lung cancer risk were adjusted
for study indicator variable, 10-year age group indicator varia-
bles (<40, 40-49, 50-59, 60-69 and 70+), and significant prin-
cipal components (EV1, EV2 and EV4), unless otherwise noted.
Likelihood-ratio and SNP-set kernel association test (SKAT)
linear kernel tests’>*® were used to assess statistical significance
of aggregations of telomere-length associated variants on lung
cancer risk by comparing null models to fitted models contain-
ing combinations of the 7 telomere-length associated variants.
The SKAT linear kernel test aggregates a set of SNP score test
statistics and efficiently computes an overall p value.”®

Both unweighted and weighted genetic risk scores (GRS)
were calculated for telomere-length associated variants. To
calculate GRS for the ith subject from the seven telomere-
length associated variants the following formula was used:

) .
GRS; =Y wixj 1)

=1

Here x; is the number of risk alleles for the jth SNP in
the ith subject (x; =0, 1 or 2) and w; is the weight or coeffi-
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cient for the jth SNP. Unweighted genetic risk scores simply
counted the number of alleles associated with longer telomere
length an individual carried across all seven telomere-length
associated variants, thus giving an equal weight to all risk
alleles (w; =1). Weighted genetic risk scores were calculated
likewise, with the addition of assigning previously published
telomere-length associated beta estimates® as w; for each
telomere-length associated SNP allele count. Weighting nor-
mally results in more specificity of the GRS by assigning
more weight to variants with stronger effects.

Results

Our dataset consisted of a sample of 5,457 lung cancer cases
and 4,493 controls from a population of never-smoking
Asian females (Table 1). The participants were drawn from
14 contributing studies with collection areas in mainland
China, South Korea, Japan, Singapore, Taiwan, and Hong
Kong. Age, a major factor associated with telomere attrition,
was available in 10-year age-groups for all participants. Most
participants were between 50 and 70 years of age (63%) with
6% of subjects younger than 40 years of age.

Measured and imputed genotypes were available for the
seven telomere-length associated variants (Table 2). Alleles
associated with longer telomere length were denoted the risk
allele and risk allele frequencies from our dataset were com-
pared to those previously reported by Codd et al.? Risk allele
frequency differences between our Asian lung cancer study
and the Codd et al. study of a population of primarily




Table 2. Relationship between genetic risk alleles, previously reported measured telomere length in peripheral white blood cells from a large study in a European population, and risk of

lung cancer among never-smoking females in Asia

(1.01-1.14) 0.014

1.08

0.451

0.431

2.54 X 1071

0.748 0.097  (0.081-0.113)

T

169,492,101 TERC C

3

rs10936599

(0.97-1.14)

05

1

0.833

0.826

4.35 % 107

(0.056-0.092)

0.074

0.783

G

NAF1

4

157675998

0.202

164,007,820

0.066

(1.00-1.16)

1.07

0.178

4.48 X 1078  0.166

(0.036-0.076)

0.056

0.142

A

" ACYP2

2 54,475,866

rs11125529

Data extracted from Table 1 of the Codd et al.?°

?Risk allele is the allele associated with longer telomere length.

3Association adjusted for age group, contributing study, and significant eigenvectors.

Abbreviations: Chr: chromosome; RAF: risk allele frequency.

Lung cancer and telomere length

European descent likely reflect differences in ancestral allele
frequencies.

To ensure the telomere-length associated variants, discov-
ered in a population of primarily European ancestry, were a
valid surrogate for telomere length in our Asian population,
we carried out an analysis on a set of 1,536 Asian females
with both measured telomere length and genotype data from
the prospective Shanghai Women’s Health Study. When test-
ing for an association of each of the seven telomere length
associated variants with measured telomere length, only the
TERT variant (rs2736100) had a significant association with
measured telomere length (p value =0.03); however, our
sample size was substantially smaller than the Codd ef al
analysis (N = 48,423), and although insignificant, six of the
seven variants had beta estimates in the correct direction. A
weighted GRS with all seven telomere-length associated var-
iants was calculated and the association with telomere length
was also investigated. In the overall sample, the telomere-
length associated GRS was significantly associated with meas-
ured telomere length (p value = 0.001, Fig. 1a), the estimated
effect was in the positive direction (beta=0.15), and
explained the same percent of total telomere length variance
as in Codd et al. (R*=0.01).2° For the cancer cases in this
sample, the mean time between blood sample collection and
cancer diagnosis was 5.34 years with 75% of cases having
blood collected >3 years prior to cancer- diagnosis. When
restricting the analysis to controls (N = 533), the association
remained significant (p value = 0.04) with similar effect size
and variance explained (Fig. 1b). Together, this provides evi-
dence the weighted GRS of telomere-length associated var-
iants has utility in predicting measured telomere length in
Asian populations.

Overall association tests were conducted to investigate if,
in aggregate, all seven telomere-length associated variants
were associated with lung cancer risk. A likelihood ratio test
comparing a null model adjusting for 10-year age group, con-
tributing study, and significant principal components to the
same moadel plus all seven telomere-length associated variants
indicated that in aggregate the telomere-length associated
variants were significantly associated with lung cancer risk (p
value = 9.64 X 107%°). Purthermore, a linear SKAT found a
highly significant association between the seven telomere-
length associated variants and lung cancer (p value = 3.19 X
1072,

Each telomere-length associated variant from Codd et al.
was tested for an individual association with lung cancer risk.
All seven telomere-length associated variants were included
in the same logistic regression model and covariates were
included to adjust for 10-year age-group, contributing study,
and significant principal components. Two of the seven
telomere-length  associated ~ variants ~ (rs2736100  and
rs10936599) exhibited association p values <0.05, signifi-
cantly <0.4 variants expected by chance (p value=0.04)
(Table 2). The rs2736100 variant, located in the first intron
of the TERT gene, has previously been associated by GWAS
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Figure 1. Relation of telomere-length associated variants with measured telomere length in peripheral white blood cell DNA from 1,536
women included in previous nested case-control studies of various cancers in the Shanghai Women’s Health Study. A best-fit line (solid
gray line) is drawn for the relationship of measured log-transformed telomere length with telomere-length associated weighted genetic risk
score for (a) cancer cases and controls (R? = 0.01, p value = 0.001) and (b) controls (N = 533) only (R?= 0.01, p value = 0.04). [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

with lung cancer risk>” Interestingly, five of the seven
telomere-length associated variants show effects in the same
direction for both the Codd et al telomere-length associa-
tion®® and lung cancer association suggesting enrichment for
variants that are associated with both longer telomere length
and increased lung cancer risk (Table 2).

Both unweighted and weighted GRSs were calculated as
measures of predicted telomere length for each study partici-
pant and association with lung cancer risk was tested by
logistic regression models that adjusted for 10-year age
group, contributing study, and significant principal compo-
nents. The unweighted telomere-length associated GRS was
significantly associated with lung cancer risk (p value = 1.90
X 107'%), indicating scores associated with longer telomere
length were also associated with increased lung cancer risk.
The odds ratio comparing individuals in the upper quartile
of GRS to those in the lower quartile of GRS was 1.47 (95%
CI = 1.31-1.65). The beta weighted telomere-length associ-
ated GRS demonstrated greater specificity for the lung cancer
association with greater evidence for association between lon-
ger telomere length and lung cancer risk (p value =4.54 X
107™). A higher odds ratio of 1.51 (95% CI = 1.34-1.69) was
observed for individuals in the upper quartile of the weighted
GRS compared to those in the lower quartile. The association
of the weighted GRS across contributing study was homoge-
neous (homogeneity p value = 0.34) and produced an overall
meta-analysis odds ratio of 1.51 (95% CI=1.34-1.71, p val-
ue =153 X 10~ ") comparing individuals in the upper quar-
tile of weighted GRS to those in the lower quartile of GRS
(Fig. 2). When investigating deciles of the weighted GRS, the
effect of weighted GRS on lung cancer risk appeared to be
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Figure 2. Adjusted odds ratios for risk of lung cancer among never-
smoking females in Asia comparing upper quartile to lower quartile
of weighted telomere length genetic risk scores, by study. Lung
cancer risk was positively associated with increasing weighted GRS
(p value = 1.53 X 107" with no significant evidence for heteroge-
neity of effect (p value = 0.34).

monotonic with no threshold indicating a substantial change
in risk (Fig. 3). Furthermore, to assess if rs2736100 was the
only SNP accounting for the association between the
weighted GRS and lung cancer risk, the weighted GRS was
recomputed with the exclusion of rs2736100, and rs2736100
used as a separate covariate in the regression model. The
weighted GRS minus rs2736100 remained significantly associ-
ated with increased lung cancer risk, although the p value
was greatly attenuated (p value =4.81 X 1073).
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