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immunohistochemistry decreased expression was observed
for MLH1, MSH2 and MSHG6 in a subset of initial low- and
high-grade astrocytomas, but DNA copy number status and
paired recurrences were not assessed [46]. A larger cohort
of paired samples will be needed to determine if loss of het-
erozygosity of MGMT and/or MMR genes in initial tumors
has predictive or prognostic value. Contrary to primary
GBM, where copy number loss of the entire chromosome
10 is a frequent event [4], we observed variability in the size
of the region lost in initial LGG and secondary GBM in our
cohorts [55]. MGMT hypermethylation and corresponding
impaired MGMT activity prior to TMZ treatment could also
be a predisposing factor, but we did not detect statistically
significant differences when analyzing MGMT methylation
level alone between the initial tumors of the TMZ-HM and
TMZ-non-HM subgroups. An alternative hypothesis is that,
because TMZ-HM tumors appear to derive from a very lim-
ited number of cells, MGMT methylation in a small num-
ber of cells in the initial tumor may allow positive selection
and hypermutation. Other studies with variable designs, and
predominantly examining HGGs, were also unable to iden-
tify a correlation between MGMT methylation and MMR
status [18, 36]. Similar to GBM [15, 21, 23], variation in
MGMT methylation levels among multiple regions of the
initial LGG of our patients was negligible, suggesting that
single samples of the initial and recurrent tumor may be suf-
ficient to elucidate temporal patterns. However, because the
TMZ-HM group had an increased level of MGMT methyla-
tion relative to more variable patterns in the other groups,
recurrences in the TMZ-HM group may exhibit greater
intratumoral heterogeneity if the initial tumor resection was
incomplete and sampling at recurrence included hypermu-
tated and non-hypermutated regions.

The results presented here and in prior studies [1, 5],
along with the well-established mechanisms of DNA repair
by MMR and MGMT, further suggest that compromised
DNA repair contributes to the onset of hypermutation and
subsequent malignant transformation. Taken together, the
data suggest a working model in which a hypermutated
tumor arises through clonal expansion of cells with high
levels of MGMT methylation, pre-existing loss of heterozy-
gosity of a key MMR gene and/or MGMT, and TMZ-asso-
ciated mutation in MMR genes. Tumor tissue and clinical
data from LGG patients participating in clinical trials with
TMZ treatment will be required to follow-up these initial
findings [59, 60] and to assess the clinical relevance of the
TMZ-associated hypermutator phenotype.

Data availability

Whole exome sequence data are uploaded to the Euro-
pean Genome-phenome Archive (EGA) for patients
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1-23 (accession number EGAS00001000579), and shal-
low whole-genome sequencing data of patients 90-296
(EGAS00001000643). Data of patient 24 was deposited to
the Japanese Genotype—phenotype Archive under accession
number JGAS00000000004.
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Integrated genomic and functional analyses reveal glyoxalase I
as a novel metabolic oncogene in human gastric cancer

F Hosoda', Y Arai', N Okada', H Shimizu', M Miyamoto', N Kitagawa', H Katai?, H Taniguchi®, K Yanagihara®, | Imoto™®, J Inazawa®,

M Ohki' and T Shibata’

Chromosomal abnormalities are good guideposts when hunting for cancer-related genes. We analyzed copy number alterations of
163 primary gastric cancers using array-based comparative genomic hybridization and simultaneously performed a genome-wide
integrated analysis of copy number and gene expression using microarray data for 58 tumors. We showed that chromosome 6p21
amplification frequently occurred secondary to ERBB2 amplification, was associated with poorer prognosis and caused
overexpression of half of the genes mapped. A comprehensive small interfering RNA knockdown of 58 genes overexpressed in
tumors identified 32 genes that reduced gastric cancer cell growth. Enforced expression of 16 of these genes promoted cell growth
in vitro, and six genes showing more than two-fold activity conferred tumor-forming ability in vivo. Among these six candidates,
GLO1, encoding a detoxifying enzyme glyoxalase 1 (GLO1), exhibited the strongest tumor-forming activity. Coexpression of other
genes with GLOT enhanced growth-stimulating activity. A GLO1 inhibitor, S-p-bromobenzyl glutathione cyclopentyl diester,
inhibited the growth of two-thirds of 24 gastric cancer cell lines examined. The efficacy was found to be associated with the mRNA
expression ratio of GLOT to GLO2, encoding glyoxalase Il (GLO2), another constituent of the glyoxalase system. GLOT
downregulation affected cell growth through inactivating central carbon metabolism and reduced the transcriptional activities of
nuclear factor kappa B and activator protein-1. Our study demonstrates that GLOT is a novel metabolic oncogene of the 6p21
amplicon, which promotes tumor growth and aberrant transcriptional signals via regulating cellular metabolic activities for energy

production and could be a potential therapeutic target in gastric cancer.

Oncogene (2015) 34, 1196-1206; doi:10.1038/onc.2014.57; published online 24 March 2014

INTRODUCTION

Gastric cancer is the second most common cause of cancer-related
death worldwide and shows the highest incidence in Eastern Asia.'
Previous investigations have identified multiple genetic/epigenetic
alterations that result in activation of the proto-oncogenes MET,
FGFR2, ERBB2 and KRAS and inactivation or silencing of the tumor-
suppressor genes p53, p73, APC, p16, RUNX3 and CDHT in gastric
cancer.>® In primary tumors and gastric cancer cell lines, many
copy number alterations (CNAs) have been identified using array-
based comparative genomic hybridization (aCGH) techniques.*™®
However, only a few studies have analyzed the genome-wide
correlations between CNA and transcriptional changes.” Molecular
characterization of CNA that is directly related to changes in gene
expression or gene structure is essential for understanding the
genetic basis of gastric cancer, which may eventually facilitate in
identification of critical genes in cancer development.

In the present study, to comprehensively identify novel
candidate oncogenes, we performed a genome-wide integrated
analysis of a total of 163 CNA profiles consisting of 79
differentiated and 84 undifferentiated adenocarcinomas and an
oligonucleotide expression microarray analysis of 58 tumors and
16 non-cancerous tissues. The analysis revealed many target
genes whose expression was significantly associated with changes

in copy number, including candidate genes of potential clinico-
pathological value in gastric cancer.

Among them, we focused on the chromosome 6p21 amplicon
and identified multiple candidate oncogenes with the ability to
enhance cell growth in vitro and in vivo by systematic functional
screening using RNA interference and enforced gene expression. We
find that GLOT gene encoding glyoxalase | (GLO1) exibits the
strongest oncogenic activity in the amplicon and also other six genes
cooperatively function with GLOT to stimulate cell growth. Inhibition
of the enzymatic activity and knockdown of mRNA expression
resulted in defect in gastric cancer cell growth. Metabolome analysis
indicated that GLOT knockdown affected key pathways for energy
production, such as glycolysis, the pentose phosphate pathway and
the tricarboxylic acid cycle. Furthermore, we find that GLOT7
downregulation caused suppression of the transcriptional activities
of nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1).

RESULTS
Genomic CNAs and correlation between DNA copy number and
mMRNA expression in gastric cancer

To identify a comprehensive pattern of genomic CNA in gastric
cancer, we performed aCGH analysis of 163 primary gastric
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adenocarcinomas, consisting of 79 well and moderately differ-
entiated tubular adenocarcinomas and 84 poorly differentiated
adenocarcinomas, using bacterial artificial chromosome arrays
covering the whole human genome with 0.6-megabase resolution
(Supplementary Figure S1). The regions with recurrent genomic
amplification (signal ratio >2.5) included 133 loci, and recurrent
homozygous deletions (signal ratio < 0.4) were detected at 30 loci
within the hemizygously deleted regions (signal ratio < 0.75)
(Supplementary Tables S5 and S6). Frequent amplification was
observed at the ERBB2 locus at 17q12 (12.9% of cases), the VEGFA
locus at 6p21.1 (8.6%), the CCNDT locus at 11q13.3 (7.4%), the
CCNET locus at 19912 (7.4%), the BCAST locus at 20q13.2 (7.4%)
and the MYC locus at 8q24.21 (5.5%).

To determine the correlation between gene copy number and
mRNA expression in tumors, we performed genome-wide gene
expression analysis of 58 tumors (tub 1, 24; tub 2, 18; por 1, 16)
that had been analyzed by aCGH. By calculating the Pearson
correlation coefficient (r) between the aCGH signal ratio detected
using the nearest neighbor bacterial artificial chromosome clone
and the expression signal value for each gene in the same
samples, we identified genes whose expression was correlated
with CNA. All the genes showing r>0.5 are listed (Supplementary
Table S5) and well-known oncogenes, such as EGFR (r=0.96),
FGFR2 (r=0.94), CCNET (r=0.86), CCND1 (r=0.76) and ERBB2
(r=0.76), exhibited significant concordance with increased gene
copy number. These analyses help us to identify bona fide
pathogenetic oncogene in gastric cancer.

Chromosome 6p21 genomic amplification in gastric cancer
Chromosomal ampllﬁcatlon at the 6p21 locus has been detected
in gastric cancer®”~® and in other tumors.'®'* In this study, we
also detected frequent gains (signal ratio > 1.3, up to 32.5% of
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tumors) and high-level amplifications (signal ratio > 2.5, up to 8.6%
of tumors) in the chromosomal band. Most of the 6p21 copy
number gains/amplifications in primary cases were spread over a
rather broad region, and high-level amplifications occurred
intensively in the region of 6p21.2-p21.1 (Figure 1a). Multivariate
analysis using the Cox proportional hazards model revealed that
copy number gain detected by RPCI11-89L17 at 6p21.1 was an
independent factor related to overall survival of gastric cancer, in
addition to the depth of invasion and the status of lymph node
and extranodal metastasis (Table 1). This observation strongly
suggested that chromosome 6p21 gain/amplification has an
important role in the pathogenesis of gastric cancer.

In the 6p21 region, most genes showing significant correlations
between expression patterns and copy number ‘gains were
located within the more proximal region of 6p21.2-p21.1
(Figure 1b). Fifty-nine (49.2%) out of the 120 genes in this region
showed significant correlation with increased copy number. The
list included candidate genes that have been reported as targets
for 6p21 amplification or as cancer-related genes in various
tumors (Supplementary Table S7).

Loss-of-function assay shows that multiple genes at the 6p21
locus are associated with gastric cancer cell growth

To isolate potential oncogenes at this locus, we used functional
assays. We first tested endogenous growth-promoting activity
using comprehensive small interfering RNA (siRNA) knockdown on
two gastric cancer cell lines HSC58 and HSC60 with moderate
copy number increase (signal ratio =1.3) at the 6p21 locus
(Supplementary Figure S2). Downregulation of 58 out of the 59
candidate genes in the 6p21 locus was successful using specific
siRNAs. This screening identified 45 and 40 siRNAs, which
inhibited cell growth at < 70% compared with the control siRNA
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Figure 1.

Chromosome 6p21 amplification in gastric cancer. (@) Chromosome 6p21 shows frequent copy number gains and high-level

genomic amplifications. Horizontal line: 37 bacterial artificial chromosome clones mapped around chromosome 6p21. Vertical line (left):
number of tumor samples with high-level amplification (signal ratio > 2.5) shown as a black bar. Vertical line (right): frequency of copy number
gain (signal ratio > 1.3) shown as a line graph. (b) Tight correlations are observed between CNA and gene expression at the 6p21 locus.
Horizontal line: 189 genes mapped at the 6p21 locus. Vertical line: the Pearson correlation coefficient (r) of each gene calculated using the
gene copy number and gene expression value. Gene showing r > 0.5 is shown as a red bar.

© 2015 Macmillan Publishers Limited

Oncogene (2015) 1196-1206



GLOT is a novel oncogene in gastric cancer
F Hosoda et al

1198

Table 1. Multivariate analysis of influencing factors for overall survival
and recurrence
Variable Hazard ratio 95% Confidence interval P-value
For overall survival (n=141)
Copy number changes detected by RPCI11-89L17
Neutral 1
Gain 2.506 1.230-5.102 0.0114
Depth of invasion
T1-T2 1
T3-T4 2481 1.342-4.587 0.0037
Lymph node metastasis :
(=) 1
+) 5.076 1.157-22.222 0.0313
Extranodal metastasis
(=) 1
(+) 1.742 1.055-2.882 0.0301
For recurrencé n=115)
Lymph node metastasis
(=) 1
(+) 2.967 0.952-9.259 0.0606
" Extranodal metastasis
(=) 1
(+) 1.976 1.138-3.436 0.0157

in HSC58 and HSC6O cells, respectively. In total, downregulation of
36 genes caused concordant reduction of cell growth in both cell
lines (Figure 2a).

Multiple genes at the 6p21 locus confer colony-forming activity
in vitro and tumorigenicity in vivo

To further evaluate the oncogenic activities attributable to their
overexpression, we introduced the candidate genes on the 6p21
amplicon into HEK293 epithelial cells and tested whether their
overexpression enhanced colony-forming activity in vitro. Sixteen
of the 51 genes examined enhanced the colony-forming activity:
(1) PPILT, (3) MTCH1, (5) TBC1D22B, (10) GLOT, (11) Céorf64, (13)
C6orf130, (20) CCND3, (25) TBCC, (30) GNMT, (32) MEAT, (38) PTK7,
(40) C6orf108, (45) POLR1C, (48) GTPBP2, {51) VEGFA and (58) AARS2
{Figure 2b). Reproducible colony-forming activities of NIH3T3
fibroblast cells were observed at similar stimulation rates in almost
all of them (Table 2).

We then attempted to examine whether the six genes showing
more than two-fold enhancement of in vitro cell growth could
confer in vivo tumorigenicity by transplanting polyclonal cells
expressing them into mice. Overexpression of the six genes led to
tumor development in vivo with frequencies ranging from 17% to
83% within 12 weeks (Supplementary Figure S3). The results
indicated that at least these six genes upregulated in the 6p21
amplicon had the individual potential to stimulate cell growth and
form tumors in vivo (Table 2). Among them, GLOT showed the
strongest tumor-forming ability, with the tumors developing at
the earliest time (4-5 weeks after injection), growing more
quickly and attaining a larger size than the others.

GLOT exhibits a stimulated oncogenic activity in cooperation with
other genes on 6p21

Integration of copy number analysis, gene expression analysis and
three different kinds of functional analyses identified GLOT as the
most likely oncogene. However, each 6p21 amplicon in primary
cases usually lies within a wide range and is accompanied by
coamplification of multiple potential oncogenes (Supplementary
Figure S1b), we hypothesized that there might be cooperative
tumorigenic activity between GLO7 and other genes within
the 6p21 amplicon. We double-transfected seven genes into

Oncogene (2015) 1196 -1206

a GLOT-expressing clone (HEK293-GLO1-Zeo) and tested their
growth-stimulatory activities. Significant enhancement of colony
formation was detected for all the genes examined, except for
PPILT (Figures 2c and d), indicating that GLOT confers a broad
synergistic effect on tumor formation with other genes on 6p21.

In addition to the high-level amplification of the GLOT gene, we
searched for somatic mutation of the GLOT gene in our gastric
cancer cohort (72 tumors) and 23 cell lines. However, we detected
germline variations only in the 5'-untranslated region of exon 1, in
intron 1 and in the coding exon 4 (Supplementary Figure S4).
GLO1 is a ubiquitous detoxifying enzyme of methylglyoxal (MG)
that is a potent glycating agent and induces oxidative stress and
apoptosis.”® A recent report has demonstrated that upregulation
of GLOT expression occurs in response to oxidative stress, by
binding a stress-responsive transcription factor Nrf2 to the ARE
(antioxidant-response element) in 5’-untranslated region of exon 1
(from — 19 to — 10, numbered from the start codon).’® Whether the
variations found in this study relate to the regulation by Nrf2
remains unknown.

GLOT is a novel metabolic oncogene affecting gastric cancer cell
growth by regulating energy producing pathways

We tried to decrease the expression of GLOT stably in eight gastric
cancer cell lines (HSC41, HSC43, HSC44, HSC45, HSC58, HSC60,
MKN28 and NUGC3) using a lentiviral short hairpin RNA (shRNA)
and were able to isolate seven of them (with the exception of
HSC58) exhibiting reductions of expression ranging from 11% to
69% relative to the negative control. Remarkable reduction of cell
growth was detected in HSC43, HSC44, HSC45, HSC60, MKN28 and
NUGC3 (Figure 3a) but not in HSC41 (data not shown). GLOT stably
knockdown HSC60 clones exhibited the most severe growth
retardation and ceased proliferating within a month after isolation.
Together with the failure to establish HSC58-GLOT-knockdown
clones, the data indicated that the growth of some gastric cancer
cells is strongly dependent on GLOT function, whereas the
dependency is less marked in others.

Because GLO1 is an enzyme that detoxifies MG generated dur-
ing glycolysis, we assumed that downregulation of GLOT would
reduce glycolytic activity by accumulation of MG.'” The intracel-
lular metabolites of key pathways for energy production were
analyzed by capillary electrophoresis time-of-flight mass spectro-

-metry (CE-TOFMS), which enables comgrehensive and quantita-

tive analysis of charged metabolites.'® The CE-TOFMS system
identified and quantified 239 and 228 candidate compounds
comparable in NUGC3-shGLOT vs NUGC3-scr and MKN28-shGLOT
vs MKN28-scr, respectively. Unexpectedly, lower concentration of
almost all the intermediates that are included in glycolysis, the
pentose phosphate pathway and tricarboxylic acid cycle were
detected in both NUGC3-shGLO7 - and MKN28-shGLOT cells
compared with their respective reference cells (Table 3 and
Supplementary Figure S5). In addition, we found relative lower
levels of glutamine/glutamic acid than that of the other amino
acids. It might indicate glutaminolysis activation to compensate
for reduced central carbon metabolism as a secondary effect, in
which glutamine converts to lactic acid via tricarboxylic acid
cycle.’®

Suppression of gastric cancer cell growth by S-p-bromobenzy!

glutathione cyclopentyl diester (BBGC), a glyoxalase | inhibitor

We further tested whether a GLO1 inhibitor, BBGC, was able to
exert an anti-growth effect on gastric cancer. We treated 24 gastric
cancer cell lines with a range of BBGC concentrations and found
that 16 cell lines showed reproducible reduction of growth (the
IC50 value=44-13.1pum, Figure 3b). Previous studies have
demonstrated that sensitivity to BBGC is correlated with GLOT
overexpression/amplification in cell lines.?®? Because of the
relatively low-level copy number gain at the GLOT locus in the cell
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Figure 2. Effects of 6p21 genes in cell growth in vitro. (@) Multiple 6p21 genes affect gastric cancer cell growth by knockdown of expression.
Horizontal lines: target genes in the 6p21 amplicon. Vertical lines: effects of gene knockdown on cell growth. Growth retardation with < 70%
growth in comparison with that elicited with a non-targeting control is shown. Experiments were carried out in triplicate and repeated at least
twice. Downregulation of 36 genes caused concordant reduction of cell growth in both cell lines HSC58 (orange) and HSC60 (green). (b) Multiple
6p21 genes promote cell growth by enforced expression. The individual gene cloned into the pcDNA3.1D/V5-His-TOPO expression vector was
transiently transfected into HEK293 cells, and after 12 days of incubation, the number of colonies was counted. Horizontal lines: candidate genes
in the 6p21 amplicon showing growth-promoting activities. Vertical lines: efficiency of colony formation relative to the pcDNA3.1D/V5-His-LacZ
plasmid used as a negative control. Growth promotion of more than 2.0-fold is shown as a red bar, that between 1.1 and 2.0 as a dark pink bar
and that between 1.0 and 1.1 as a grey bar. Three independent experiments were carried out in triplicate. Data represent means +s.e.m.
(¢) Synergistic effects on growth stimulation in a HEK293 clone stably expressing GLOT. HEK293-GLO7-Zeo clone was transfected with the
respective gene and cultured for 12 days. The relative efficiencies of colony formation in double transfectants were significantly enhanced (solid
red bar) in comparison with the single transfectants (shaded bar), except for PPILT (solid gray bar). Data represent means + s.e.m. All recombinant
expression plasmids carried cDNA with V5-His tag fused to its carboxyl terminus. Expression of the fusion protein was confirmed by western
blotting analysis using part of the cell culture at 24 h after transfection (data not shown). (d) Colony formation of HEK293-GLO1-Zeo cells after
transfection of the indicated gene. Three independent experiments were carried out in triplicate and summarized in panel (c).
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lines (signal ratios 1.20~ 1.34), we were unable to identify any
correlations between higher sensitivity to BBGC and increased
GLOT gene dosage (Figure 3¢, left). We measured GLO1 activity
and mMRNA expression levels of GLOT and GLOZ2, encoding
glyoxalase Il (GLO2), another constituent of the glyoxalase
system.”® No correlation between the BBGC sensitivity and GLO1
activity (Figure 3¢, middle) or GLOT mRNA quantity (data not
shown) was evident. We found that the expression ratio of GLO1/
GLOZ mRNA is high in BBGC-insensitive compared with BBGC-
sensitive cells (1.238 vs 0.478). The difference was statistically
significant at'P=0.0162 (Figure 3¢, right).

GLOT regulates the transcriptional activities of NF-xB and AP-1 in
gastric cancer cells
A recent study has demonstrated that overexpression of GLOT
suppresses basal and tumor necrosis factor-induced NF-kB activity
in HEK293 cells.®® As activation of NF-kB has been shown to
have critical oncogenic roles in a variety of solid tumors including
gastric cancer,”**® we examined the transcriptional activities of
NF-kB, AP-1 and signal transducer and activator of transcription
factor 3 (STAT3) using a stably GLOT-overexpressing HEK293 clone.
The GLOT activity of HEK293-GLOT cells was increased by 1.8-fold,
and the transcriptional activities of NF-kB and AP-1 were increased
by 2.0-fold and 1.9-fold relative to the basal levels, respectively
(Figures 4a and b). In contrast, no increase of STAT3 transcriptional
activity was seen. On the other hand, cells stably expressing GLO1-
shRNA showed decreased GLO1T activity (14-36% of the negative
control) (Figure 4c), and the basal activities of NF-kB and AP-1
were significantly suppressed in GLOT-downregulated HSC44,
NUGC3 and MKN28 cells (Figure 4d). These results are consistent
with the reverse observations in HEK293 GLOT-overexpressing
cells, indicating that GLOT expression and/or GLO1 activity is
positively linked to the transcriptional activities of NF-kB and AP-1.
To confirm NF-kB activation by GLOT overexpression, we
searched for NF-kB target genes upregulated in the GLOT-
overexpressing tumors. This was carried out by comparing the
expression level for each gene among the three tumor groups

divided by the expression level of GLOT: GLOI-high, averaged
expression level =2139 (n=18); GLOT-medium, averaged expres-
sion level=1080 (n=26, P=1x107%); and GLOI-low, averaged
expression level =785 (n=14, P=4x107"%, Twenty-one NF-KB
target genes showed differential gene expression between
GLO1 highly expressing tumors and others among the 463
NF:-xB target genes (Supplementary Table S8). The upregulated
gene list includes apoptosis/anti-apoptosis-related genes, tumor
invasion/metastasis-related genes, oncogenes £2F3 and MCTS1, an
NF-kB activator RIPK2 and a glycolytic enzyme PGKT. We confirmed
that some of these NF-kB target genes were almost down-
regulated in gastric cancer cells stably expressing GLOT shRNA
compared with those expressing non-targeting shRNA (Figure 4e).

DISCUSSION

In this study, we identified a set of 808 genes whose over-
expression correlated with copy number gain from 107 gain/
amplification loci (Supplementary Table S5) and a set of 83 genes
whose underexpression correlated with copy number loss from 41
hemizygous/homozygous deletion loci (Supplementary Table S6)
in gastric cancer. In particular, genes showing strong correlation
(r=0.7) appeared to be potential targets for frequent gene
amplification, for example, FAM84B and PVT1 at the 8q24.2 MYC
locus and C200rf43 and RAB22A at the 20q13.2 BCAST locus, by
analogy with the patterns of well-known oncogenes.

The frequency of high-level 6p21 amplification encompassing a
stretch of 8 megabases was second only to the ERBB2 locus, and
the copy number gains at chromosome band 6p21.1 was an
independent prognostic factor of overall survival of gastric cancer
patients (Table 1). We expected that there would be multiple
pathogenetic genes for gastric cancer in this region, because a
tight and strong correlation between CNAs and gene expression
was observed in almost half of the genes mapped (Figure 1b).
Gene knockdown analysis using siRNA revealed that down-
regulation of 36 genes inhibit the growth in both HSC58 and
HSC60 cells (Figure 2a). The results clearly demonstrated that
many of the upregulated 6p21 genes have a role in the viability of

Table 2. In vitro growth-promoting activities and in vivo tumor-forming activities of the six candidate target genes for 6p21 amplification
Gene Gene Full name In vitro growth-promoting activity In vivo tumor-forming activity
no. symbol
Colony-forming activity in Colony-forming activity in Tumors Protein Tumor-forming
HEK293 (folds of negative NIH3T3 (folds of negative  developed/sites  expression efficiency (%)°
control) control) injected confirmed
10 GLO1 Glyoxalase | 2.0 20 5/6 5/5 83
11 Céorf64 Chromosome 6 open reading frame 64 " 3.0 37 4/6 4/4 67
13 C6orf130 Chromosome 6 open reading frame 130 2.0 5.1 1/6 171 17
25 TBCC Tublin folding cofactor C 2.8 20 1/6 17 17
30 GNMT  Glycine-N-methyltransferase 23 25 3/8 3/3 38
48 GTPBP2 GTP binding protein 2 2.3 23 3/6 2/3 33
*Tumor-forming efficiency was calculated by dividing the number of tumors expressing the exogenous protein by the number of sites injected.

Figure 3.

b

Stable knockdown of GLOT using shRNA and inhibition of enzymatic activity by a GLO1 inhibitor, BBGC, result in growth inhibition of

gastric cancer cells. (a) (Left) Growth curves of HSC43, H5C44, HSC45, HSC60, MKN28 and NUGC3 cell clones expressing GLOT shRNA (blue)
and expressing non-targeting shRNA (black). (Right) Expression of GLOT mRNA in GLOT shRNA-expressing cells (blue) and in non-targeting
shRNA-expressing cells (white). Data represent means + s.e.m. A representative growth curve of HSC58 expressing GLO7 siRNA by a transient
transfection is also shown. (b) Assessment of cell viability after 24 h incubation with various concentration of BBGC. Dose-dependent
cytotoxicity curves for 16 gastric cancer cell lines sensitive to BBGC (left) and for eight gastric cancer cell lines insensitive to BBGC (right).
Experiments were performed in triplicate and were repeated more than three times. (¢) GLOT/GLO2 expression ratio, but not GLOT copy
number and/or activity, is associated with sensitivity to BBGC in gastric cancer cells. Statistical analysis was performed using the Student's
t-test. (Left) Differences of genomic copy number at GLOT locus detected by RPCI11-174E21 in BBGC-insensitive cells {n =8) and BBGC-sensitive
cells {n=13) are not significant. (Middle) Differences of GLO1 activity in BBGC-insensitive cells (n=8) and BBGC-sensitive cells (n=16) are not
significant. (Right) Differences of GLOT/GLOZ mRNA expression ratio in BBGC-insensitive cells (n=8) and BBGC-sensitive cells (n=14) are
significant.
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