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Trans-ancestry mutational landscape of hepatocellular
carcinoma genomes
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Diverse epidemiological factors are associated with hepatocellular carcinoma (HCC) prevalence in different populations.
However, the global landscape of the genetic changes in HCC genomes underpinning different epidemiological and ancestral
backgrounds still remains uncharted. Here a collection of data from 503 liver cancer genomes from different populations
uncovered 30 candidate driver genes and 11 core pathway modules. Furthermore, a collaboration of two large-scale cancer
genome projects comparatively analyzed the trans-ancestry substitution signatures in 608 liver cancer cases and identified
unique mutational signatures that predominantly contribute to Asian cases. This work elucidates previously unexplored
ancestry-associated mutational processes in HCC development. A combination of hotspot TERT promoter mutation, TERT focal
amplification and viral genome integration occurs in more than 68% of cases, implicating TERT as a central and ancestry-
independent node of hepatocarcinogenesis. Newly identified alterations in genes encoding metabolic enzymes, chromatin
remodelers and a high proportion of mTOR pathway activations offer potential therapeutic and diagnostic opportunities.

HCC is the third leading cause of cancer deaths worldwidel2.
Epidemiologically, the incidence of HCC shows marked variance
across geographical regions and ancestry groups and between the
sexes®. HCC incidence predominates in East Asia and Africa, and
rapid increases in prevalence have occurred in Western countries?.
Multiple etiological cofactors are associated with liver cancer, and
their contributions might additionally differ according to ancestry.
Hepatitis B virus (HBV) infection is dominant in East Asia and Africa,
whereas hepatitis C virus (HCV) infection among HCC cases is fre-
quent in Japan. Aflatoxin B1 exposure is a strong risk factor of HCC
in China and Africa, whereas alcohol intake is a major etiological
factor for HCC in Western countries3->. The average male/female
ratio for HCC incidence is greater than two, which could be owing to
different environmental exposures or hormone levels®. Overlapping
but partially distinctive epidemiological backgrounds, such as liver

fluke infection, were associated with intrahepatic cholangiocarcinoma
(IHCC), another type of liver cancer®. Here we conducted the first
trans-ancestry HCC genome sequencing research under the umbrella
of the International Cancer Genome Consortium (ICGC)” and The
Cancer Genome Atlas (TCGA)3. Thus far, this study represents the
largest genomic profiling of liver cancers (608 cases) and compares
ancestry groups (Japanese, Asian and European) with distinctive
etiological cofactors. This genome data set also uncovers an extensive
landscape of driver genetic alterations in HCC.

RESULTS

Whole-exome and oncovirome sequencing of liver cancers

As an ICGC liver cancer project, we collected 503 pairs (413 cases in
the Japanese cohort and 90 cases in the US cohort) of liver cancers
(488 HCC and 15 IHCC) and matched non-cancerous liver tissues
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Figure 1 Multiple types of TERT alterations
in HCC. Mutual exclusivity of HBV genome
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as WNT pathway mutations. TERT promoter
mutation significantly co-occurred with WNT
pathway mutation in HBV-negative cases
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cases. The US cohort contained European-
ancestry (55%), Asian (defined as US-Asian
hereafter; 16%) and African-American (12%)
cases. The clinical backgrounds for this cohort
are shown in Supplementary Table 1.

The exons and surrounding noncod-
ing genomic regions of protein-coding genes were captured in 452
pairs of tumor and non-cancerous liver tissues. Oncoviral genomes,
including for HBV, human papillomavirus (HPV-16 and HPV-18)
and human T-lymphotrophic virus 1 (HTLV1) (91 kb in total;
Supplementary Table 2), were also captured in 198 cases. Whole-
genome sequencing was conducted in 22 HCC pairs, including
9 exome-sequenced cases, and targeted resequencing of liver cancer
genes was carried out for 38 cases. To minimize multicenter study
bias due to differences in exome sequencing platform or data analysis
pipeline, we optimized the somatic mutation detection algorithms
and filtering conditions for three centers using Japanese cohort
samples. High concordance (>87%) with a validation rate of >97% in
somatic mutation detection was achieved, and substitution patterns
among the three centers were consistent (Supplementary Figs. 1
and 2). We also confirmed that similar mutation spectra were
observed in the same cases in whole-genome sequence and whole-
exome sequence (Supplementary Fig. 3).

The average mutation rate was 2.8 mutations per megabase, and T>C
and C>T substitutions were dominant in this cohort (Supplementary
Fig. 4). Eight (1.7%) outlier tumors harboring more than 4.3 muta-
tions per megabase showed substitution patterns distinctive from
those of other cases and had somatic nonsense or missense muta-
tions in mismatch repair (MSH3, MSH4, MSH5 and MSH6), DNA
polymerase (POLA1, POLK, POLE and POLL) or nucleotide excision
repair (ERCCI and ERCC2) genes (Supplementary Fig. 5).

Panoramic view of ploidy, copy number and virus integration

We evaluated copy number alteration (CNA) by comparing the
sequence depth for paired samples and allelic imbalance in the
captured area (Supplementary Fig. 6). This digital assessment of
CNA and allelic imbalance was consistent with SNP array data in
cases analyzed by both methods (Supplementary Fig. 7). We also
imputed deviation in the allele frequency of heterozygous single-
nucleotide variation to predict the tumor purity and ploidy for
each sample (H.U,, S.Y,, K.T. and H.A., unpublished data). A large
fraction of cases (28.9%) represented whole-genome duplication with
gross chromosomal loss (average ploidy was 3.87, and the average
number of CNAs was 11.58) (Supplementary Fig. 8), whereas the
remainder showed more stable copy number status (average ploidy
was 2.08, and the average number of CNAs was 7.56). Tetraploidy was
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more frequently observed in higher-grade tumors (P = 0.039, Fisher’s
exact test; Supplementary Fig. 9).

We observed recurrent arm-level gains (1q, 5p, 6p and 8q) and
losses (1p, 4q, 6q, 8p and 17p), as previously described for HCC®
(Supplementary Fig. 10). Recurrent focal amplifications were
detected in 25% of cases, including for TERT and CCNDI-FGFI9.
Homozygous deletions were less frequent events (detected in 17.4%
of cases). Recurrent homozygous deletion was observed for 28 genes,
including CDKN2A-CDKN2B, MAP2K3 and PTEN (Supplementary
Figs. 11 and 12).

Using paired-end reads mapped to the HBV viral and human
genomes, respectively, we detected 628 HBV virus integrations in
68 HBV-positive cases from which viral genomes were captured
(9.2 integrations per case) (Supplementary Table 3), reflecting a detec-
tion rate that was 2-4 times more sensitive than in previous whole-
genome sequencing studies'®!1. Genes close to (less than 10 kb away
from) the recurrent HBV integrations included TERT (n = 17 cases),
KMT2B (MLL4; n = 6 cases), and ALOX5, ZFPM2, SENP5, MYO19
and RGS22 (n =2 cases each). Recurrent non-genic HBV integrations
were observed near the centromere, especially on chromosomes 1p, 8p
and 10q. A significant fraction of HBV integrations were colocalized
with (less than 500 kb away from) DNA copy number breakpoints
(10.7%; P < 1 x 1075, randomization test) (Supplementary Figs. 13
and 14). Despite intimate association between HBV genome integra-
tion and CNA breakpoints, the frequency of CNA was not different
among the viral subtypes (P = 0.29, ANOVA test; Supplementary
Fig. 15 and Supplementary Table 4).

Multiple types of TERT genetic alteration in HCC

Somatic mutations in the transcriptional regulatory region of the TERT
gene have been reported in a range of cancers, including HCC1213, By
combining captured noncoding sequence data with capillary sequenc-
ing validation, we detected TERT promoter mutations in 254 cases of
the 469 cases analyzed (54% in total). The frequency of these muta-
tions was highest in HCV-positive cases (121/188; 64%), with lower
frequencies in non-viral cases (88/149; 59%) and HBV-positive cases
(44/120; 37%) (Supplementary Table 5). As reported!3, the muta-
tion located 124 bp upstream of the ATG start site (c.~124C>T, on
the opposite strand; 93%) was more frequent than the ¢.-146C>T
(4.3%) and c.~57A>C (1.6%) mutations (Supplementary Table 6).
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to induce telomerase-independent telomere
maintenancel!®, Altogether, more than 68% of
the HCC cases had alterations in either TERT
or ATRX, representing the most frequent
molecular event reported (Supplementary
Table 5). In contrast, no TERT promoter mutations were detected
in 13 THCC cases (Fig. 2). TERT promoter mutations significantly
co-occurred with WNT pathway gene alterations, such as CTNNBI,
AXINI or APC, in HCV-positive and non-virus cases, suggesting a
cooperative oncogenic activity between TERT promoter mutation and
the WNT pathway!® in these subgroups (Fig. 1).
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Significantly altered genes in HCC

To identify significantly altered genes in HCC, we used a combination
of MutSigCV', an aggregated somatic alteration method that aggre-
gates somatic substitutions, short indels, homozygous deletions and
focal amplifications, and an inactivation bias method that calculates

ARTICLES

@ Missense mutation
In-frame indel

M Identical missense mutation
@ Frameshift indel
B Homozygous deletion

O TERT promoter or 5" UTR mutation

B Nonsense mutation [ Splice site

M Focal amplification

inactivating mutation bias (Supplementary Fig. 16, Supplementary
Tables 7-10 and Supplementary Note). Furthermore, we eliminated
mutated genes that exhibited sequencing center bias and subclone
bias as sources of possible false discovery (Supplementary Tables 11
and 12). These steps led to a final list of 30 candidate driver genes
(Fig. 2, Supplementary Fig. 17 and Supplementary Tables 13-15),
including 13 that were not recurrently mutated in previous cohorts!8-20
(Supplementary Table 16). These 13 genes included BRD7, a compo-
nent of the SWI/SNF nucleosome-remodeling machinery, and MENT,
a putative tumor suppressor somatically mutated in neuroendocrine
tumors—neither of which has been reported in HCC. Mutations in
TSC2, SRCAP and NCORI have been reported as singletons in other
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Figure 3 Oncogenic network in HCC. (a) Major signaling pathways involving genetic alterations in HCC. Key genes in each pathway are indicated by
rectangles, with the percentages of somatic mutations and CNAs shown in the left and right portions of each rectangle, respectively. Significantly
altered genes (SG; MutSigCV, P < 0.05 or GISTIC, g value < 0.1; percentages are underlined for alterations meeting either criterion) are bounded by
solid lines, whereas other key genes in each pathway are bounded by dashed lines. (b) Mutual exclusivity plot of genes relevant to the WNT signaling
pathway. The plot indicates that somatic mutations in WNT-related genes might contribute to the activation of WNT signaling in over half of all HCCs.
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Alterations of drug target kinases were
rarely found in HCC; low-level recurrent
mutations of FGFR2 (mutated in 1.8% of cases), KIT (1.3%), FGFR3
(0.9%), FGFR1 (0.9%), JAK1 (0.9%) and EGER (0.4%) and focal ampli-
fication of MET (0.5%) were detected. The specific mutations in these
receptor tyrosine kinases were not generally observed in other can-
cers, with the exception of two JAKI mutations (encoding p.Ser7031le
and p.Leu910Pro substitutions), which were previously observed
in a liver cancer sequencing study?®. The liver has a central role in
many metabolic processes. Our study identified recurrent mutations
of metabolic enzyme genes in HCC (Fig. 2b and Supplementary
Tables 7 and 13). These included CYP2EI (2.0%); ADHIB (1.8%),
encoding alcohol dehydrogenase 1B; and G6PC (1.8%), encoding a
glucose-6-phophatase catalytic subunit, whose aberrations could be
linked to metabolomic changes in HCC.

Significant oncogenic pathways in HCC
Oncogenic pathways were further explored by aggregating the
alterations of each gene within a particular pathway (Fig. 3a).

TP53-RB pathway. Inactivation of the tumor-suppressor TP53-
RB pathway was a consistent theme in HCC. TP53 mutations were
observed in 31% of tumors, and two genes encoding p53-activating
kinases, ATM and RPS6KA3, were also recurrently mutated. The RB1
gene was mutated in 4.4% of cases. The CDKNZ2A gene encoding the
RB regulator pl6™K4A was subject to frequent focal homozygous
deletion, and the p53 target and RB regulator CDKNIA (encoding
p21€IP1) was significantly mutated. Overall, 72% of cases had altera-
tions in component genes of one or both of these pathways.

WNT pathway. In addition to activating CTNNNBI mutations,
inactivating mutations were frequently observed in WNT regulators,
including AXINI and APC. CCNDI is a key downstream target of
WNT signaling21, and FGF19 has been shown to activate CTNNB1
transcriptional functions?2. Mutual exclusivity of CTNNB1, AXIN1

and APC mutations and CCNDI1-FGF19 amplification supports the
functional role of these genes in altering WNT signaling (Fig. 3b).
Overall, 66% of HCCs showed WNT pathway-related alterations.

Chromatin and transcription modulators. A large proportion
of the genes on the list of significantly mutated genes encoded
chromatin modulators or transcriptional regulators. Frequent
alterations in NFE2L2, encoding a transcriptional regulator that
activates antioxidant and cytoprotective target genes??, and its
negative regulators KEAPI and CUL3 (ref. 24) were noted. Also
mutated were the nucleosome remodelers ARIDIA, ARID2 and
BRD7, with CNAs and mutations in six additional members of
the SWI/SNF complex (Fig. 3a), SRCAP and the transcriptional
corepressor NCORI, both of which have roles in steroid receptor-
mediated transcription. These genes displayed primarily
inactivating frameshift and nonsense mutations that suggest a
tumor-suppressor gene function in HCC (Supplementary Fig. 18
and Supplementary Table 9). NCOR1 has been shown to directly
suppress CTNNBI function?® and exhibits mutual exclusivity
for mutations with other WNT pathway genes (Fig. 3b).
SRCAP encodes an Snf2-related CREBBP activator in several
pathways, including NOTCH? and steroid receptors?’. Truncating
SRCAP mutations cause a rare hereditary disease with developmen-
tal defects and early-onset tumor formation22?, highlighting its
potential function as a tumor-suppressor gene.

mTOR-PIK3CA pathway. Recurrent inactivating mutations in
TSC1-TSC2 and activating mutations and copy gain in PIK3CA were
observed (Fig. 3a). Other modulators involved with this pathway, such
as NF1, PTEN, INPP4B and STK11, were also affected, and, in total,
45% of cases had alterations in the mTOR-PIK3CA pathway. Somatic
TSCI mutation was reported as a potential predictive biomarker of
an mTOR inhibitor3?, and TSCI-mutated HCC cell lines showed
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To identify networking among the onco-
genic pathways in HCC, we developed a
pathway compression algorithm and applied
it to the significantly altered genes. We identified 11 core oncogenic
network modules in HCC (Supplementary Table 18). To visualize
these modules in the context of a biological network, we constructed
a schematic view of the modules and the additional nodes that can
connect them (Supplementary Fig. 20). The nodes were typically
classified into two types; one type was closely connected to neighbor-
ing nodes (with higher value for centrality; Supplementary Table 19)
and the other type had long-range edges that reached distant nodes,
which can be used to measure the effect of each module alteration
on the total network. Further comparison of the association between
these module alterations and background clinical factors showed that
the mTOR module was significantly different (P < 0.05, Cochran-
Mantel-Haenszel test) in Asian and European-ancestry populations
with respect to mutational frequencies (Supplementary Fig. 21).

Ancestry-dependent diversity in HCC mutation signatures
Somatic mutation patterns in human cancer are closely associated
with epidemiological factors®'~3% however, their association with
ancestry remains unexplored. We integrated genomic data from
an additional 105 HCC cases sequenced by TCGA along with the
503 cases sequenced by us (Supplementary Table 1) and compared
somatic substitution patterns according to epidemiological data and
ancestry group. Because mutation patterns in hypermutated cases and
IHCC were distinctive (Supplementary Figs. 4 and 22), these two
groups were excluded from further mutation pattern analysis.
Principal-component analysis of the 96 possible nucleotide triplets,
dependent on the bases immediately 5" and 3’ to each substitution,
showed that the constitution of substitution patterns with these triplets
was significantly different by ancestry group (Japanese, US Asian and
European ancestry; P=2.2 x 10716, Wilks’ test) and by sex (P=9.5x 1078)
(Fig. 4a). Notably, substitution patterns were not significantly asso-
ciated with viral status (HBV, HCV and non-viral, P = 0.35; Fig. 4a
and Supplementary Fig. 23). T>C substitutions, particularly in an

ATA context, were specifically increased in Japanese male samples,
and T>A substitutions (most frequently in a CTG context) were
specifically increased in US-Asian male and female samples. The
distributions of the frequencies for the 96 substitution types were
similar among Japanese female samples and European-ancestry male
and female samples (Fig. 4b).

We applied non-negative matrix factorization (NMF) analysis to
the 96-substitution pattern®? and identified 3 mutation signatures
(HCC signatures A-C; Fig. 5a and Supplementary Fig. 24). Each
signature was composed of context-specific substitutions: HCC
signature A was characterized by dominant T>C mutations, espe-
cially in an AT(A/G/T) context, whereas HCC signature B contained
dominant T>A mutations, with a sharp increase in frequency for
a CTG context. HCC signature C contained dominant C>T muta-
tions, especially in an (A/C/G)CG context. The distribution of these
signatures was associated with ancestry and sex but not with the
virus status (Supplementary Table 20). Among the different ances-
try groups, HCC signatures A and B more frequently contributed to
Japanese male (odds ratio (OR) = 2.2; P = 0.0025, Fisher’s exact test)
and US-Asian (OR = 2.5; P = 0.00036) cases, respectively, whereas
HCC signature C was common across all ancestry groups and in both
sexes (Fig. 5b,c and Supplementary Fig. 25). Remarkable differ-
ences in mutation prevalence between the transcribed and untran-
scribed strands were observed for T>C substitutions, especially in an
AT(A/G/T) context (P =7.4 x 107152, ¥2 test), in HCC signature A and
for T>A substitutions, especially in a CTG context (P = 3.3 x 1078),
in HCC signature B (Fig. 5d). These significant strand biases imply
the involvement of transcription-coupled repair, which is tightly
associated with known carcinogens in other tumor types!-34, There
was no significant association between the signature distribution
and the ALDH2 SNP rs671, which is associated with alcohol metab-
olism and is a more frequent genotype in the Asian population33
(Supplementary Table 21).
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To collect large amounts of cancer genome data from different
ancestry groups and epidemiological backgrounds, we currently
need to combine data from multiple institutes that apply individual
analytical platforms. An important caveat in multicenter trans-
ancestry analysis has been the possibility that ancestry-specific sig-
natures can be biased by experimental or analytical differences. To
avoid this potential bias, we processed the DNA from 99 Japanese
HCC cases using the sequencing and analysis pipeline at the United
States~based Baylor College of Medicine. Using this data set from a
single center, we replicated exactly the same signatures in each pop-
ulation (Supplementary Fig. 26). We also examined the distribu-
tion of signatures among three centers using Japanese male samples
and confirmed that similar distributions were seen among the three
centers (Supplementary Fig. 27). Furthermore, we analyzed whole-
genome sequencing data for 88 Chinese HCC samples!? and success-
fully identified HCC signatures B and C in this independent data set

- (Supplementary Fig. 28).

Outcome analysis from mutational signatures

We analyzed the derived NMF signatures to determine whether any
signature or signature component was associated with differences
in outcome in the HCC cohort. NMF signature values were merged
with annotated clinical data. We performed calculations using
standardized signature values to control for differences in the mutation
rate between the subjects. Multivariate analysis with the Cox propor-
tional hazards model (Supplementary Fig. 29 and Supplementary
Tables 22-26) indicated that histological grade, HCC signature B
and the interaction with HCC signature A (but not with HCC
signature C) were significant predictors of outcome.

DISCUSSION

The present trans-ancestry liver cancer genome study first identified
mutational signatures that are independent of hepatitis virus infec-
tion and contribute more to the Asian cases than to ones of European
ancestry (Supplementary Tables 27). One signature, characterized by
AT>AC mutations, was predominant in Japanese males, whereas the
other, featuring CTG>CAG mutations, was found more frequently
in tumors from Asians living in the United States. These correlations
may highlight deeper intra-ancestry diversity and/or environmental
contributions, and sex bias might further affect downstream target
genes and molecular features in HCC3S. As several genetic loci are
associated with individual HCC risk together with HBV and/or HCV
infection”38, somatic and germline genome interaction might also
be important to consider. Notably, these signatures were not evident
in THCC for Japanese cases (data not shown), suggesting that they
are unique properties of HCC. The causes of these signatures remain
unknown, but skewed transcriptional strand biases in characteristic
sequence contexts strongly imply the presence of specific, previously
unexplored mutational processes, which profoundly influence tumor
genome constitution and behavior.

With 503 cases, this study is the largest liver cancer genome analysis
thus far, enabling the formation of a more thorough picture of the
mutational landscape of HCC than ever before. In addition to iden-
tifying a large number of significantly mutated genes, we have also
identified recurrent alterations of 9 of the 14 core genes making up the
SWI/SNF complex. We also find a combination of hotspot TERT pro-
moter and ATRX mutations, along with focal amplification and virus
genome integration in the TERT locus, in more than 68% of HCC
cases regardless of virus subtype. These findings show that TERT is a
central driver gene and a promising molecular target® in HCC. The
targeting of high-prevalence mTOR-PIK3CA pathway activation and

antiproliferative activity in HCC cells by chemical inhibition should
also offer new therapeutic opportunities. In addition, newly identi-
fied alterations in the chromatin-remodeling complex and metabolic
enzymes are expected to be associated with cancer-specific epigenetic
and metabolomic features.

URLs. DNAcopy, http://www.bioconductor.org/packages/2.13/bioc/
html/DNAcopy.html; R software, http://www.R-project.org/; R survival
package, http://CRAN.R-project.org/package=survival/; HGSC
Mercury analysis pipeline, https://www.hgsc.bcm.edu/software/
mercury; GRCh38 human reference genome, http://www.ncbi.nlm.nih.
gov/projects/genome/assembly/grc/human/; BWA2, http://bio-bwa.
sourceforge.net/; GATK4, http://www.broadinstitute.org/gatk/.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. Sequence data have been deposited in the European
Genome-phenome Archive (EGA) under accession EGAS00001000389,
the ICGC database (http://www.icgc.org/) and the database of
Genotypes and Phenotypes (dbGaP) under accession phs000509.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

DNA preparation, DNA capture and sequencing. The tissues and clinical
information used in this study were obtained under informed consent and
approval of the institutional review boards of each institute. DNA was extracted
from liver cancer tissue and matched non-cancerous liver tissues or blood
using a general protocol for genome sequencing. Exome capture was carried
out using the SureSelect Human All Exon V3 or V4 plus kit depending on the
samples (Supplementary Table 28). Preparation of sequencing libraries, DNA
capture methods and Illumina sequencing were carried out as described in
the Supplementary Note.

Mutation calling, Mutation calling (National Cancer Center Research Institute).
Paired-end reads were aligned to the human reference genome (GRCh37)
using the Burrows-Wheeler Aligner (BWA)#? for both tumor and normal
samples. Probable PCR duplications, for which paired-end reads aligned to
the same genomic position, were removed, and pileup files were generated
using SAMtools#! and a program developed in house. Details on our filtering
conditions are provided in Supplementary Tables 29 and 30.

Mutation calling (Research Center for Advanced Science and Technology).
Next-generation sequencing reads were mapped to the human genome (hg19)
using BWA and Novoalign independently. Reads with a minimal editing dis-
tance to the reference genome were taken to represent optimal alignments.
Then, bam files were locally realigned with SRMA. Normal-tumor pair bam
files were processed using an in-house genotyper (karkinos), with the variants
further filtered to remove all variants observed fewer than four times or present
atan allele frequency of less than 0.12 after adjustment for tumor sample purity.
The variants also had to have a score of greater than Q20 (representing the root
mean square of mapping quality). In addition, reads harboring the variant had
to be observed in both forward and reverse orientation. If a variant was present
in reads of only one orientation, we checked for strand bias using a t test com-
paring these reads to the reads without the variant, and variants with a P value
of <0.03 for strand bias were rejected. Variants also had to be called in different
sequence cycles and have at least one call that was outside of 3% of read ends.
Variants could not be located within 5 bp of an indel call, and varjants where the
mean base quality of the supporting reads was lower than 10 on the Phred scale
were removed. Germline variants having an allelic frequency of greater than
0.1 were collected for 50 normal liver exome samples and used as the panel of
normal variants. Any variant that was observed in this panel with a population
frequency of greater than 2% was filtered out. Finally, variants also observed in
the paired normal sample with an allelic frequency of greater than 3% and sites
registered in dbSNP Build 134 with validated status were removed.

Mutation calling (Baylor College of Medicine). Initial sequence analysis was
performed using the Human Genome Sequencing Center (HGSC) Mercury
analysis pipeline. First, the primary analysis software on the instrument pro-
duced bl files that were transferred off the instrument to the HGSC analysis
infrastructure by the HiSeq Real-Time Analysis module. Once each run was
complete and all bel files were transferred, Mercury ran the vendor’s pri-
mary analysis software (CASAVA), which demultiplexed pooled samples and
generated sequence reads and base call confidence values (qualities). In the
next step, reads were mapped to the GRCh37 human reference genome using
BWA (BWA2), producing a bam3 (binary alignment/map) file. The third step
involved quality recalibration (using GATK4) and, where necessary, the merg-
ing of bam files for separate sequence events into a single sample-level bam
file. Sorting of bam files, duplicate read marking and realignment to improve
indel discovery all occurred at this step.

Processing the significantly mutated genes. The significantly mutated genes
for this study were identified through three separate tests as described below
(an aggregated somatic alteration method, MutSigCV#? and an inactivation
bias method), and the resulting gene lists were combined in a final table of
significantly mutated genes (Supplementary Table 13).We also developed
two tests to detect bias in the mutation list that could be a source of artifact
(K.R.C.,E.S,,L.A.D. and D.A.W., unpublished data). One of these tests exam-
ined sequencing center bias, and the other examined bias in mutation allele
fraction, which if consistently low would suggest that a gene was a passenger
rather than a driver. Genes in the final combined table that failed these bias
tests were removed from the final list of significantly mutated genes. Data

from each process are shown in Supplementary Tables 7-12, and the steps
are shown schematically in Supplementary Figure 16.

Aggregated somatic alteration method. We identified significantly altered
genes by aggregating somatic substitutions, short indels, homozygous deletions
and focal amplifications. We initially estimated the expected number of each
alteration in each gene as follows.

First, the substitution rate was estimated by dividing the number of syn-
onymous mutations in a sample by the number of synonymous sites in the
genome. For each gene, the expected number of substitutions was calculated
by multiplying the substitution rate by the number of nonsynonymous sites
and splice sites in the gene. Because the substitution rate at CpG sites was
much higher than that in other regions, the substitution rates and expected
numbers of substitutions at CpG and non-CpG sites were estimated separately
using the following equation:

n
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where 7 is the number of samples, Mg, is the number of synonymous muta-
tions at CpG sites in the ith sample, Mycg; is the number of synonymous
mutations in non-CpG sites in the ith sample, Scg is the number of synony-
mous sites at CpG sites in the genome, Sycg is the number of synonymous
sites at non-CpG sites in the genome, N¢g is the number of nonsynonymous
sites and splice sites at CpG sites in a gene, Nycg is the number of nonsyn-
onymous sites and splice sites at non-CpG sites in a gene, C; is the fraction
of sequence coverage in the genome in the ith sample (usually the fraction
of coding regions that have more than 20x sequence depth for whole-exome
sequencing) and EN is the expected number of nonsynonymous and splice-
site substitutions in a gene.

Second, the coding indel rate was estimated by dividing the number of cod-
ing indels in a sample by the number of coding sites in the genome. For each
gene, the expected number was calculated by multiplying the coding indel rate
by the coding length of a gene as follows:

where I; is the number of coding indels in the ith sample, S is the number of
coding sites in the genome, L is the coding length of the gene and EI is the
expected number of coding indels in a gene.

Third, as regions of focal amplification and homozygous deletion are much
broader than gene regions, the number of focal amplifications and homozygous
deletions affecting a gene in a sample is 0 or 1 and is not influenced by gene
length. Therefore, the expected number of these events is the same for all
genes. The expected numbers of focal amplifications and homozygous dele-
tions were estimated separately by dividing the total length of the focal amplifi-
cation or homozygous deletion region in a sample by the length of the genome
as follows:

1
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where A, is the total length of focal amplifications in the ith sample, D; is the
total length of homozygous deletions in the ith sample, G is the length of the
genome, EA is the expected number of focal amplifications in the gene and ED
is the expected number of homozygous deletions in the gene.

Fourth, the expected number of protein-altering mutations was calculated
by aggregating the expected numbers of nonsynonymous and splice-site sub-
stitutions in CpG and non-CpG sites, coding indels, focal amplifications and
homozygous deletions as follows:

E=EN+EIl+EA +ED

where E is the expected number of protein-altering mutations in a gene.
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Fifth, tests of the significance of each gene were performed by assuming a
Poisson distribution of mutation number. Adjustment for multiple testing was
performed using the Benjamini-Hochberg method?.

Inactivation bias method. The number of missense mutations was compared
to the number of inactivating mutations (nonsense, frameshift and splice site)
using a y? test.

Analysis of sequencing center bias. Because multiple centers participated in
this study, we sought to control for the influence of differenices in mutation
calling strategy, which might promote a gene to significance merely because of
a bias in the variant callers used. Many studies do not use multiple callers and
therefore have no way to control for these biases. For each gene with more than
five variants, we counted the number of subjects for whom the gene was called
for each center. These counts were compared to the total number of subjects
using the y? test. The results of the analysis for center bias are presented in
Supplementary Table 11.

Analysis of subclone bias. Oncogenic driver events in a given tumor should
exhibit allele fractions that are roughly the same as the mean allele fraction
for the entire sample for any given subject. We separated oncogenic (driver)
events from recurrent passenger events by comparing the allele fraction of
mutations in candidate genes to the matched mean allele fraction of the sam-
ple, across all samples in the cohort. First, the mean somatic allele fraction
was calculated for each subject (AFs). Next, for each variant in each gene, the
allele fraction for the variant (AFg) was compared to the AFs in the respec-
tive subject. We calculated the fraction of events where AFg was less than AFs
and generated a P value using a one-sided pairwise Wilcoxon test where the
alternative hypothesis was that AFg was less than AFs (always with respect
to the relevant subject). The histogram of all allele fraction biases
(sum(AFg < AFs)/n, where n is variant count) is shown in Supplementary
Figure 30. Selected significantly mutated genes are plotted individually to
show how known drivers are distributed by this test. Note that several tumor-
suppressor genes exhibited enrichment above the average allele fractions
(for example, RBI and TP53). In these cases, the genes were typically both
mutated and underwent loss of heterozygosity (LOH) for the wild-type allele.
The results of subclone bias testing for all genes with more than five mutations
are presented in Supplementary Table 12.

Copy number analysis, tumor purity and adjustment of mutated allele
frequency. Initial copy number estimates were obtained by comparing read
depth information for tumor and normal samples using VarScan2 (vef. 43).
Depth estimates were then segmented using circular binary segmentation
(CBS) as implemented in the DNAcopy package in R*, We used the JISTIC*
program to generate a combined copy number matrix file. The VCRome2.1
probe locations were used as marker positions for copy number analysis. We
then used JISTIC to calculate the significance for copy number gains and
losses. Focal amplification at the TERT locus was determined using the average
read depth of each captured target region.

Evaluation of tumor ploidy and purity. Using bam files from normal and
tumor samples, read depth was calculated for each captured target region.
After normalization by the number of total reads and GC content using regres-
sion analysis, the tumor/normal depth ratio was calculated, and values were
smoothed using the moving average. Copy number peaks were then estimated
using wavelet analysis, and each peak was approximated using Gaussian models.
Hidden Markov models (HMMs) with the calculated Gaussian peaks were
constructed, and copy number peaks were linked to genomic regions. The
allelic imbalance for each copy number peak was calculated on the basis of
heterozygous SNPs within the assigned region, and imbalance information
and peak distances were further analyzed by model fitting where the optimal
solution for a copy number peak was determined using vector matching, yield-
ing estimated copy number and tumor purity and ploidy data simultaneously.
Detailed algorithms will be described elsewhere (H.U., 8.Y.,, K.T. and H.A.,
unpublished data).

HBV integration analysis. HBV integration detection. Viral genomes
(HBV, NC_003977.1; HPV-16, NC_001526; HPV-18, NC_001357; HTLV-1,
NC_001436) were downloaded from NCBI and included in the reference files
when reads were mapped by BWA. No read was mapped to a virus other
than HBV. To achieve more precise HBV mapping, we mapped all reads to

the HBV reference sequence using the g-gram and Smith-Waterman method.
An 11-mer g-gram was first applied to both strands of the HBV reference, and
reads with 15 or more hits were subjected to Smith-Waterman alignment. The
other end of each read was mapped to the hgl9 human sequence using BWA,
Finally, HBV integration sites were clustered by genomic position with a win-
dow size of 300 bp (approximately equal to the library fragment size), and sites
with more than three supporting reads were used in the analysis.

Randomization test of HBV integration and copy number breakpoints. The
7,891 copy number breakpoints and 1,039 HBV integration sites were detected
in 70 HBV-positive samples. Coexistence of the copy number breakpoints and
HBYV integration sites was examined using a 500-kb window size. To show
statistical significance, we performed a randomization test by switching the
position of the HBV integration sites to the same number of integration sites
observed in the normal sample of other cases. We repeated this switching
100,000 times to yield distributions and estimated the P value.

Verification of single-nucleotide variation. We validated our mutation calls
for frequently mutated genes (Supplementary Table 31) by resequencing sam-
ples using the Ion Proton sequencer (Life Technologies). Details are provided
in the Supplementary Note.

Sanger sequencing of the TERT promoter. Bidirectional sequencing of
the TERT promoter region was completed for 519 HCC samples. PCR runs
were set up using 20 ng of genomic DNA, 10 UM manually designed prim-
ers (Supplementary Table 32) and KAPA HiFi DNA polymerase (Kapa
Biosystems, KK2612). Touchdown PCR was performed with the following
parameters: an initial denaturation at 98 °C for 5 min followed by 10 cycles
0f 98 °C for 30's, 72 °C for 30 s and 72 °C for 1 min (decreasing the annealing
temperature by 1 °C per cycle). The reaction then continued with 30 cycles of
98 °C for 30’5, 63 °C for 30 s and 72 °C for 1 min followed by a final extension
at 72 °C for 5 min. The PCR products were purified with a 1:15 dilution of
Exo0-SAP, diluted by 0.6x and cycle sequenced for 25 cycles using a 1:64
dilution of BigDye Terminator v3.1 reaction mix (Applied Biosystems,
4337456). Finally, reactions were precipitated with ethanol, resuspended in
0.1 mM EDTA and analyzed on ABI 3730x] sequencing instruments using
the Rapid36 run module and 3xx base-caller. SNPs were identified using SNP
Detector software and were validated visually with Consed.

Analysis of mutation patterns and signatures. Mutation patterns for cases
with hypermutation and IHCC cases were distinct from those for HCC cases
(Supplementary Figs. 4 and 21), and cases with a small number of mutations
cannot accurately represent the frequency of mutational patterns; therefore,
cases with hypermutation, THCC cases and cases with fewer than 40 mutations
were excluded from further mutation pattern analysis.

The number of each of 96 possible somatic substitution types, C>A/G>T,
C>G/G>C, C>T/G>A, T>A/A>T, T>C/A>G and T>G/A>C with the bases
immediately 5" and 3’ to each substitution in coding regions, was counted for
each sample. The frequency of each of these substitutions was determined by
dividing each count by the total number of substitutions, and the resulting
frequencies were used for principal-component analysis. Principal-component
analysis was implemented using the R command prcomp with the scaling
option on. We used Wilks' A test to evaluate the significance of the mean
vector differences in different populations. We applied NMF to the
96-substitution pattern using published software!3, running 1,000 iterations
of NMF with each NMF run iterated until convergence was achieved (10,000
iterations without change) or until the maximum number of 1,000,000 itera-
tions was reached. We used another published software package!4 for model
selection in NMF (selecting the input number of mutational signatures).
Details on model selection for our NMF analysis are provided in the
Supplementary Note and Supplementary Figures 31-35.

Pathway analysis. We used gene sets from MsigDB C2.all as pathway data
sets. To assign P values representing the enrichment of mutations in pathways,
we first checked whether a gene had at least one non-silent mutation or over-
lapped with focal CNAs for each sample in a given pathway (gene set). If so, we
referred to such a gene as a ‘mutated gene’ for a sample. We then computed a
population frequency for pathways with at least one mutated gene in the given
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pathway and divided the frequency by the total length of the unioned exons
of all genes in the pathway to correct for the greater number of mutations in
longer genes. This quotient was used as a test statistic. We used a bootstrapping
approach to calculate P values. In the bootstrapping approach, we randomly
selected as many genes as in the given pathway from all genes in the genome
and then calculated the statistic. We repeated this sampling 2,000 times, cal-
culating a fraction corresponding to the number of sampling results in which
a statistic value was greater than or equal to the value in the observed data.
This fraction was used as a P value.

To find intensively mutated gene modules in liver cancer tissue using the
identified significantly mutated gene sets from MsigDB analysis, we used
Pathway Commons!® data for the whole unbiased human gene network and
integrated the gene sets into this network. All pairs of gene relationships were
weighted by how many mutated genes were shared by the two genes (shared
ratio). These gene relationships constituted the gene network. The whole
network was split into one large connected network and some isolated small
networks. To extract gene modules, we recursively eliminated edges with low
shared ratio values and distinguished into the smaller modules. Although
the recursive edge elimination procedure gradually clarifies tightly connected
gene modules, gene modules were rarely isolated from the whole network.
Using this compression process and some additional manual curation, we
finally selected ten representative modules that were intensively mutated in
liver cancer tissues. We took essentially the same approach as described above
to calculate Pvalues for mutation enrichment and mutual exclusivity for a gene
pair or combination of modules. For mutation enrichment, we used all genes in

a pair of modules. For mutual exclusivity, if a module had at least one mutated
gene, we referred to such a module as an ‘impaired module’ and computed a
frequency of impaired modules for each sample.

Outcome analysis from non-negative matrix factorization signatures. NMF
signature values were merged with annotated clinical data for our cohort. We
performed calculations using standardized signature values to control for dif-
ferences in mutational rate among the subjects. For the standardized data, the
contributions of each signature within a subject summed to 1. We performed
Cox proportional hazards analysis# using the R survival package, factoring
in all three signature components (signature A, signature B and signature C),
age at diagnosis and histological tumor grade.
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