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Tyrosine kinase inhibitors in the
treatment of unresectable or
metastatic gastrointestinal
stromal tumors

Toshirou Nishida®, Toshihiko Doi & Yoichi Naito
"National Cancer Center Hospital Fast, Surgery, Kashiwa, Japan

Introduction: Gastrointestinal stromal tumor (GIST) is the most common
sarcoma of the gastrointestinal tract. Proliferation of GIST is driven by activat-
ing mutations in the KIT or PDGFRA genes that found in most sporadic GISTs.
Surgery is the main remedial measure for primary GIST, and imatinib is the
principal therapeutic of choice for unresectable or metastatic GIST. Imatinib
revolutionized treatment for unresectable or metastatic GISTs; however,
resistance to imatinib has inevitably developed for most GIST patients.
Areas covered: PubMed was searched to find biological studies of GIST and
clinical trials of molecularly targeted agents on unresectable or metastatic
GISTs, and the key papers found have been reviewed. In this paper, the stan-
dard therapy which includes imatinib, sunitinib and regorafenib for unresect-
able or metastatic GIST has been reviewed and molecular mechanisms of
resistance for tyrosine kinase inhibitors (TKIs) have been postulated and
discussed. Treatment measures for resistant GIST and therapeutic choices after
the standard therapy have also been described.

Expert opinion: The standard therapy for unresectable or metastatic GISTs is
first-line imatinib, second-line sunitinib and third-line regorafenib. After stan-
dard therapy, best supportive care or clinical trials is recommended in the
guidelines. However, patients may benefit from continuation of TKIs beyond
disease progression and from rechallenge of TKls used previously.

Keywords: imatinib, molecularly targeted therapy, regorafenib, resistance, sunitinib,
tyrosine kinase inhibitor
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1. Introduction

1.1 Epidemiology of gastrointestinal stromal tumor

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor
of the gastrointestinal tract. GIST tumor cells (70 - 75%) consist mainly of spindle
cells; however; 20% of the morphology is made up of epithelioid cells, the other
5 - 10% show mixed morphology in pathological examinations. Almost all
GISTs are positive for KIT (95%), also known as CD117, and for DOG1 (95%),
a calcium-dependent, receptor-activated chloride channel protein, in immunohis-
tochemistry [1]. Activating mutations in the K77 gene are found in approximately
70 - 80% of primary GISTs, and mutations in the PDGFRA gene are found in
approximately 10% of primary GISTs (Figure 1) [1). Familial GISTSs, which are a
rare entity, are caused by germ-line mutations in either K77 or PDGFRA; they have
multiple GISTSs and specific features. Patients with familial GISTs are younger and
are typically associated with hyperplasia of interstitial cells of Cajal (ICC) in
the myenteric plexus 21. Thus, GISTs may be considered to be tumors with neoplastic
transformation of immature mesenchymal cells, in the lineage of which KIT-positive
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Article highlights.

 The standard therapy for unresectable or metastatic
gastrointestinal stromal tumors (GISTs) is imatinib in the
first-line. After imatinib, sunitinib is indicated as
second-line therapy for imatinib-resistant GIST, and, as
third-line, regorafenib is indicated for sunitinib-resistant
GIST.

Most GISTs have activating mutations either in the KIT
gene or in the PDGFRA gene, and genotype including
primary and secondary mutations is correlated with
activities of imatinib, sunitinib and regorafenib.
Imatinib inhibits wild-type and also most mutated KIT
and PDGFRA tyrosine kinases. Sunitinib and regorafenib
inhibit several kinases including VEGFRs in addition to
KIT and PDGFRA kinases, which may explain some
activities of the drugs on wild-type GISTs. Profiles of
KIT-inhibition including binding sites of the drugs are
distinctive; hence, the three drugs have different
activities on mutated KIT and PDGFRA tyrosine kinases.
It may require dose modification according to genotype
and patient conditions to optimize GIST therapy.
However, standard doses of imatinib, sunitinib and
regorafenib should be kept without any interruption
when the drugs are tolerable.

Patients with pediatric GISTs and/or SDH-mutated GISTs,
which are thought to be insensitive to imatinib, may
demonstrate some benefits from sunitinib

and regorafenib.

Imatinib resistance is divided into two: primary and
secondary. Primary resistance is defined as disease
progression within 6 months, and secondary (or
acquired) resistance is practically defined as progressive
disease (PD) after 6 months.

Mutations newly appeared in the KIT and PDGFRA
genes after treatment may be major causes of resistance
to imatinib, sunitinib and regorafenib.

Therapeutic options for imatinib-resistant GIST may
include change to sunitinib, dose increase and surgical
interventions to limited progression. The latter two may
have limited evidence.

After the standard therapy of tyrosine kinase inhibitors,
continuation of the drug beyond PD or rechallenge of
previously used drugs may be feasible and may have
benefits for some GIST patients. In this situation, the
drug that showed effectiveness and tolerability in
previous treatment should be considered.

It may require individualized approaches based on
patterns of disease progression and causes of resistance
to optimize the prognosis of unresectable or metastatic
GIST patients. Genotyping of GIST is important in the
selection of targeted agents, and mutation testing is
recommended prior to medical therapy.

This box summarizes key points contained in the article.

ICC in normal myenteric plexus may be included [3]. Taken
together, GIST may be diagnosed when mesenchymal tumors
in the gastrointestinal tract have spindle and/or epithelioid
features and are positive for KIT- and/or DOG1- immunos-
taining or for a mutation test of K77 and PDGFRA.
Incidence of GIST is clinically reported to be 10 - 20 cases
per million per year. Clinical GIST is mainly found in the

stomach (60 - 70%) and small intestine (20 — 30%), and
< 5% of GISTs are found in the colon, esophagus or perito-
neum including the mesentery, retroperitoneum and
omentum [4,5]. The median age of patients with clinical GIST
is around 60 years at diagnosis, although GIST has been
reported in all age groups. By pathological and endoscopic
examinations, preclinical small GISTs are shown to be more
prevalent in middle age than expected (1,5). Furthermore, micro-
scopic GISTs, which may harbor K77" mutations, were fre-
quenty found in the proximal stomach (10 - 30%) of
middle-aged or more elderly individuals, and their incidences
were varied at each gastrointestinal site (1,5-8]. The natural his-
tory of these small tumors, including growth and malignant
potential, are largely unknown. Most microscopic GISTs are
supposed to be biologically indolent and remain stable for a
long time or may even show involution [19]. Only a tiny
fraction of microscopic GIST and a small fraction of small
GISTs may be considered to progress and become clinically
malignant GISTs ().

1.2 Therapeutic outcomes of surgery for primary
disease

The treatment for primary and resectable GIST is complete
resection (RO) by surgery. The treatment with tyrosine kinase
inhibitors (TKI) including imatinib, sunitinib, and regorafe-
nib, is indicated for unresectable, metastatic or recurrent
GIST. In addition, imatinib is indicated for adjuvant therapy
of GIST patients with significant risk of recurrence. Most
patients (nearly 60%) with primary localized GIST are con-
sidered to be cured only by RO surgery [10]. GIST metastasizes
to the liver and peritoneal cavity but rarely to the lymph
nodes. As recurrences of GISTs after surgery are usually
observed in the abdominal cavity, postoperative monitoring
could be covered by abdominal CT with contrast media [4,11).
The important prognostic factors for recurrence after com-
plete surgery include mitotic rate high power field, tumor
size (cm), tumor location (gastric or non-gastric) and the pres-
ence or absence of tumor rupture [4,10,11]. Recently, genotype
has not been indicated to be an independent prognostic
factor (12]. Using these four prognostic factors, several risk
stratification methods have been proposed [10,11,13,14].

2. Focus of the review

This review focuses on standard therapy with imatinib, suni-
tinib and regorafenib for unresectable or metastatic GIST
and also discusses treatment of TKI-resistant GIST as well
as postulated resistant mechanisms. Guidelines indicate that
initial therapy for unresectable or metastatic GIST is imatinib
(Figure 2A). When GIST is refractory or resistant or patients
are intolerable, sunitinib is recommended (11]. After sunitinib,
regorafenib may be used. To optimize medical therapy, we
should be acquainted with tumor nature, drug action, clinical
features of drug resistance and its basic mechanisms.
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Figure 1. Driver mutations in GIST. Possible driver mutations in GISTs are illustrated with their frequency.
AKTi: Inhibitors of AKT; BRAFi: Inhibitors of BRAFi; GISTs: Gastrointestinal stromal tumors; MEKi: Inhibitors of MEK; mTORi: Inhibitors of mTOR; PDGF: Platelet-

derived growth factor; RAS: Inhibitors of RAS; VEGFRI: Inhibitors of VEGFR.

3. Heterogeneous causes of GIST

As mentioned above, most GISTs have mutations either in
the KIT or in the PDGFRA gene (Figure 1). Affecting KIT
mutations are typically found in the juxtamembrane domain
encoded by exon 11 (70%), followed by the extracellular
domains encoded by exons 9 (about 6%) and exon 8 (very
infrequent), and by mutations in the kinase I and II domains
(mainly encoded by exons 13 and 17, respectively; each
1%) (141 In the PDGFRA gene (prevalence in the primary dis-
ease is about 10%), mutations are found in the juxtamembrane
domain (nearly 1%), the kinase domain I (< 1%) and the kinase
domain II (9%). Prevalence rate of mutations in each exon may
be different between primary and advanced diseases by some
degree, where K77 exon 9 mutations account for higher pro-
portion (nearly 10%), and PDGFRA mutations appears to be
lower (nearly 5%) in unresectable or metastatic GISTs [1.4].
Most primary mutations found in the K77"and PDGFRA genes
are stabilized in autoinhibited form except the two rare
mutations of D816H/V in the K77 gene and D842V in the
PDGEFRA gene, which show conformational equilibrium stabi-
lizing in activated form [15.16]. In general, mutations stabilized
in autoinhibited form may be considered sensitive to imatinib,
sunitinib and regorafenib, and those in activated form are resis-
tant to these drugs. The K/7 exon 9 insertion mutation,
however, is usually less sensitive to the standard dose of
imatinib (400 mg/day) than K77 exon 11 mutations and
requires a higher dose of imatinib (800 mg/day) (17].

Nearly 10% of GISTs have mutation neither in K77 nor
in PDGFRA. These GISTs are called ‘wild-type GIST” forming
a heterogencous group with various mutations in the
BRAF, RAS-family (HRAS, NRAS, KRAS), succinate dehydro-
genase (SDH) or NFI gene (Figure 1) [1.18]. Wild-type GIST
usually express the wild-type KIT protein and thus, is KIT-
positive in immunohistochemistry. Mutations in SDHs and
NFI are loss-of-function mutations, and those in BRAF and
RAS are gain-of-function mutations. Later, we will discuss
wild-type GIST in a separate section. Mutations in GISTs
including K17 and PDGFRA are mutually exclusive.

4. TKls available for GIST

4.1 Imatinib

Imatinib, a derivative of 2-phenylaminopyrimidine, inhibits
the BCR-ABL protein, ABL, KIT and PDGFRs. Imatinib is
water soluble and is efficiently absorbed from the gastrointes-
tinal tract (Table 1). The drug mostly binds to albumin and, in
a part, to 0/l-acid glycoprotein in the blood and is metabo-
lized in the liver, mainly by CYP3A4. Its half-life in the blood
is 16 - 18 h. The response rates (RR) are around 50 - 70%
and median progression-free survival (PES) is nearly 2 years
[19-22]. Biomarkers of imatinib activity may include blood level
of the drug, genotype of GIST, initial tumor volume, perfor-
mance status (PS) of patients and initial white blood cell
count and serum albumin [20,22-25].
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Figure 2. Therapeutic flow of tyrosine kinase inhibitors in unresectable or metastatic GIST. A. Standard therapy for
unresectable or metastatic GIST is shown. B. Postulated genotype-guided treatment option for imatinib-resistant GIST in
future is indicated.

*Intervention includes surgery, transcatheter arterial embolization (TAE), or radiofrequency ablation (RFA) for limited progression

BSC: Best supportive care; CR: Complete response; GIST: Gastrointestinal stromal tumor; PD: Progressive disease; PR: Partial response; SD: Stable disease;

TKI: Tyrosine kinase inhibitor; VEGFRI: VEGFR inhibitors.

42 Sunitinib and imatinib are reported to be nearly 1.5 and 5 years, respec-
Sunitinib, a derivative of oxindole, is a multi-targeted receptor tively (222g). Clinical activities of sunitinib are thought to be
TKI, which specifically inhibits KIT, VEGFR-1,-2,-3, related with blood level of sunitinib, genotype and PS [291.
PDGFRA, PDGFRB, KIT, RET and FLT-3. Sunitinib has

less bioavailability than imatinib, and its metabolic pathways 4.3 Regorafenib

are similar to imatinib. Half-life of sunitinib is 40 - 50 h  Regorafenib is a diphenyl urea-based multi-targeted kinase
(Table 1). Second-line sunitinib for imatinib-resistant GISTs  inhibitor and inhibits KIT, VEGFRs, PDGFRs, TIE2,
showed 7% RR, and median PFS was 8 months (2627. The ~ FGFR, RET, RAF-1 and BRAF (both wild type and the
median overall survival (OS) from the starting date of sunitinib VG600E mutant). Absorption from the gastrointestinal tract
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Table 1. Pharmacological profile of imatinib, sunitinib and regorafenib.

Imatinib

Sunitinib Regorafenib

Targets BCR-ABL, KIT, PDGFRs, ABL

Molecular weight C29H31N70 - CH403S: 589.7

VEGFRs, KIT, PDGFRs, CSF-1R,
FLT3, RET
C22H27FN402 -

VEGFRs, KIT, PDGFRs, RET,
RAF-1, BRAF, FGFR
C21H15CIF4AN40O3 - H20: 500.8

C4H605: 532.6

16-18h
> 98%

t1 in blood

Absorption form the
gastrointestinal tract
Binding in blood > 95% binding to albumin and

a1- acid glycoprotein

95 - 90% binding to albumin
and others

40 ~50h 30 h
55 - 80%

70 - 85%

> 99.5% binding to albumin
and others

Metabolism Liver (CYP3A4) Liver (CYP3A4) Liver (CYP3A4, UGT1A9)

Doses 400 mg/day continuous 50 mg/day 4 weeks-on and 160 mg/day 3 weeks-on and
2 weeks-off 1 week-off

Biomarkers Blood level, genotype, initial Blood level (or doses), genotype, Genotype

tumor volume, performance
status, initial white blood cell
count and serum albumin

performance status

and protein binding in the blood are almost similar to suniti-
nib. The drug is mainly metabolized in the liver by
CYP3A4 and UGTI1AY, and its half-life is nearly 30 h
(Table 1). Third-line use of regorafenib for sunitinib-resistant
GISTs was 4.5% in RR, and median PFES is 4.8 months [30.31].
Biomarkers of regorafenib may include genotype; however, a
number of biomarkers are still under investigation [301.

The first metabolites of imatinib, sunitinib and regorafenib
have similar inhibitory activities to their original drugs.
Although these three TKIs directly inhibit the activities of
KIT and PDGFRA tyrosine kinases, which may result in apo-
ptosis of GIST cells and in tumor stabilization or shrinkage,
their inhibition profiles to the tyrosine kinases, such as bind-
ing sites, are distinctive. Importantly, activities of these TKIs
on GIST are largely dependent on mutations.

5. Resistance to TKl in GIST

Resistance to TKI therapy such as imatinib can be divided
into two types: primary and secondary [1.4]. Primary resistance
is disease progression without any responses and is practically
defined as PD (progressive disease) within 6 months. Second-
ary (or acquired) resistance is disease progression after show-
ing some sign of stable disease, partial response or complete
response and is practically defined as PD after 6 months.

5.1 Primary resistance

Primary resistance was seen in nearly 10% of GISTs treated
with imatinib. Primary resistance appeared as increased tumor
size or appearance of new lesions in radiographic examina-
tions with enhanced CT scan. The major cause of primary
resistance is considered to be mutations [1.23-25]. Mutations,
of which kinase domains are stabilized in activated form,
such as PDGFRA exon 18 D842V mutations, are considered
to be resistant to the all available three TKIs [1,327. GIST
showing KIT-independent proliferation including wild-type

GIST and is also considered to be insensitive to imatinib [1,4].
Some GISTs with K77 exon 9 mutations are clinically
insensitive to the standard dose of imatinib (400 mg/day) (33].

5.2 Secondary resistance
Secondary resistance is thought to eventually occur in the
majority of GISTs after initial benefits from the TKI therapy
are seen. Secondary resistance to imatinib is diagnosed by
the significant enlargement of tumors, new nodules in pre-
existing lesions or new lesions by enhanced CT, and, in
certain cases, by re-uptake of 2-deoxy-2-('*F)fluoro-n-glucose
in positron emission tomography-CT [34]. Resistant GIST's
may have secondary mutations in the K77 or PDGFRA gene
(70 — 80%) as described below, KIT over-expression or
copy-number increase of mutated K77 (< 10%), de novo acti-
vation of alternative pathways (> 10%) or decreased cellular
level of imatinib (not confirmed in GIST) [1.4.23-25,35]. Genetic
analysis of lesions resistant to imatinib revealed that most
resistant tumors have secondary mutations either in the ATP-
biding domain (exon 13 and 14 of the K77 gene) or in the
activation loop domain (exons 16, 17 and 18) (23-25]. Second-
ary mutations in the ATP-binding domain were sensitive to
sunitinib and those in the activation-loop were resistant to
sunitinib [29], whereas in vivo and in virro experiments have
indicated that regorafenib may be potentially active for some
secondary mutations in the activation-loop domain and for
T6701 mutations in K77 exon 14 (30.36]. These results indicate
that patients with imatinib-resistant GISTs due to secondary
mutations in the ATP-biding domain may benefit from
sunitinib and that those with activation loop mutations may
benefit from regorafenib (Figure 2B), if the genotypes of
resistant lesions are available. Recent progress in sequencing
technology of plasma DNA (liquid biopsy) indicates that this
will hopefully be available in practice in the near future [37-39].
Secondary resistant tumor cells may exist before imatinib or
may appear after treatment. Studies from CML and lung cancer
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have indicated that some secondary resistant tumor cells, to be
precise, tumor cells with secondary mutations, which are
clinically emerging after imatinib, may already exist before the
therapy (Figure 3) (40-42]. Other secondary mutations could be
considered to arise after imatinib. The proliferation of KIT-
dependent tumors depends on activated A77" mutations and,
thus, tumor cells may go for apoptotic death by imatinib. There
are, however, various amounts of surviving tumor cells even in
sensitive tumors that show responses. These cells may be specu-
lated to be stem-like cells or persistent cells without secondary
mutations [43]. After shutdown of KIT- and PDGFRA-signal-
ing, the persistent cells are envisaged to survive with signals
from alternative kinases and/or from extracellular stimuli (43,44],
such as FAK in GIST and MET-hepatocyte growth factor path-
ways as indicated in lung cancer [41-45). Some of these cells may
acquire secondary mutations in K77  subsequently, although
these are all hypotheses. Thus, it has not been settled when resis-
tant secondary mutations occur.

6. Therapy after disease progression

6.1 Potential therapy for resistant GIST

PFES of TKI therapy appears to be shortened with treatment-
lines in GIST, and RR also decreases in the late therapeutic
course (third line compared to first line). This may be partly
due to an increase in genetic heterogeneity of target diseases

kinase inhibitors. Postulated tumor responses to TKI, such as
hs of KIT-immunostaining.
e inhibitor

and due to increased malignant potential of the tumors [46,47].
In fact, after imatinib therapy, resistant lesions may have
various secondary mutations in the kinase domains, although
primary mutations are the same in a patient. For instance,
some metastatic lesions having ATP-binding domain muta-
tions may still respond to sunitinib, and others having activa-
tion loop mutations may show resistance to the drug [291. PES
of the placebo arm in the third-line trial (0.9 months) was
much shorter than that in the second-line (1.6 months),
suggesting an increase in tumor aggressiveness [26,31].

When GIST shows resistance to imatinib, a substantial
number of patients, especially patients with small intestinal
GISTs, which may have K77 exon 9 mutations, may have ben-
efits from cross-over to high-dose imatinib (800 mg/day)
(25,33,48]. At present, it is still unknown whether OS may be
prolonged by dose-increase, although therapeutic options are
increased. Other therapeutic options for imatinib-resistant
GISTs may include surgical interventions to limit progression,
where only one or two lesions among many metastatic lesions
show resistance to imatinib (1. In these approaches,
imatinib-resistant lesions are treated by surgical resection,
transcatheter arterial embolization or radiofrequency ablation,
and the other sensitive lesions are controlled by imatinib.
Several retrospective studies have indicated that surgery for
limited progression may have benefits, where median PFS
was extended for another 8 — 10 months with imatinib therapy
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after intervention [49-52). This therapeutic option also lacks
evidences in OS. Surgical interventions to limit progression
during sunitinib therapy do not always appear to be
beneficial [53].

6.2 Treatment beyond disease progression and
rechallenge

It has been reported that imatinib rechallenge for patients with
sunitinib-resistant GISTs have extended PFS (1.8 months)
as compared with placebo (0.9 months) [s4. Regorafenib,
however, demonstrated median PFS of 4.8 months in the
third-line therapy (31]. Thus, regorafenib is considered to be
indicated for patients with sunitinib-resistant GISTs if avail-
able. When regorafenib is intolerable or is not available, rechal-
lenge of imatinib may be an option [55]. Although PFS is usually
shorter and objective responses weaker at rechallenge, toxicity is
not cumulative, and rechallenged TKI may be tolerable even in
the late stages. Another optional treatrment after regorafenib
may include regorafenib continuation beyond PD when tolera-
ble. In fact, preliminary data indicated that patients with
treatment continuation even after disease progression showed
a median PFS of 4.5 months [56]. There are several reasons to
advise rechallenge of TKI or treatment beyond PD. First, target
mutations are varied in every lesion and responses to TKI differ
for each lesion. Although some lesions may show resistance to
the drug, others may still be sensitive to the drug. Second, the
presence of TKI may slow down proliferation activities of
tumor cells and clinical progression may appear to be slowed
under TKI even if TKI can not completely inhibit target kinase
activities as well as disease progression. Third, when tumors
have negative feedback on other survival signals downstream
of target kinases, resistance after TKI therapy may be caused
by feedback activation of alternative kinases as seen in BRAF-
mutated (V600E) melanomas [57-59]. Under these conditions,
drug holidays may restore activities of alternative kinases and
some tumors may regain sensitivity to TKIs. Together, even
after the standard therapy, TKI beyond PD or rechallenge
may be feasible and may have some benefits for some patients.
In the selection of TKIs, the drugs should have been effective
and tolerable in previous therapy.

7. Wild-type GIST

Wild-type GIST is caused by various causal mutations. Prolif-
eration of some wild-type GIST is driven by oncogenic
mutations in downstream kinases of the KIT and PDGFRA
receptor tyrosine kinases, including BRAF, RAS-family
(HRAS, NRAS, KRAS) and NFI. As wild-type GISTs show
KIT-independent growth, KIT inhibition by imatinib is
considered to be ineffective [1].

The product of the NFI gene, neurofibromin, is a negative
regulator of RAS and its loss of activity may constitutively acti-
vate RAS signaling [60). Because BRAF, neurofibromin and the
RAS proteins are constituents of the MAPK-signaling cascade,
their alterations may result in KIT-independent growth and

inactivation of the MEK-MAPK pathway, suggesting a possi-
bility of MEK inhibitors for GIST with these alterations. In
fact, experimental studies 7 vitro have implicated that patients
with VFI-mutated or RAS-mutated tumors may have potential
benefits from MEK inhibitors (Figure 2B) [61-63].

Others may include loss of SDH (complex II of the mito-
chondrial respiratory chain) activity due to mutations in
subunits (SDHA, SDHB, SDHC and SDHD) or post-
translational defects [64.65]. SDH-mutated GIST may be
diagnosed as KIT-positive and SDHB-negative tumors in
immunohistochemistry [66). Functional loss in the SDH com-
plex is postulated to increase the cellular level of succinate,
which in turn negatively regulates prolyl hydroxylase [1]. The
decreased activity of the enzyme induces HIF1o, which in
turn activates transcriptional activities of IGF2, VEGF and
platelet-derived growth factor (PDGF). Hence, expression of
VEGF and PDGEF is considered to be increased in SDH-
mutated GISTs. This may indicate that although GISTs
with SDH mutations may be insensitive to imatinib, they
may be sensitive to multi-targeted kinase inhibitors such as
sunitinib. Recent reports suggested that sunitinib had
substantial activities against pediatric GIST that may have
frequent SDH alterations [67], and that pazopanib, a VEGER
inhibitor, stabilized unresectable or metastatic GIST with
SDH mutations [68]. These possibilities described above,
however, should be confirmed by clinical studies.

8. Conclusion

Although unresectable or metastatic GISTs had ominous
prognosis, TKIs including imatinib, sunitinib and regorafenib
revolutionized treatment of unresectable or metastatic GISTs,
and the prognosis of GIST patients has been improved tre-
mendously. However, drug resistance subsequently evolves
to each TKI, and cure is rarely obtained by TKI therapy
alone. The standard TKI therapy in GIST includes first-line
imatinib, second-line sunitinib and third-line regorafenib.
Major causes of drug resistance are additional mutations in
the kinase domains of the KIT or PDGFRA genes. Some
lesions may progress with secondary mutations, whereas the
others still show responses to the drug. Thus, responses to
the drug are heterogeneous and second mutations differ for
each resistant tumor in the same patients. Treatment contin-
uation with TKI or rechallenge may have benefits to some
patients even after the standard treatment. To optimize TKI
therapy, individualized approaches based on patterns of
disease progression and causes of resistance are required for
patients with unresectable or metasratic GISTs.

9. Expert opinion

9.1 Strategy of TKI therapy in unresectable or
metastatic GIST

The proliferation of GIST tumor cells are driven by mutated
kinases and subsequently activated downstream kinases. Thus,
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activities of TKIs may be well correlated with clinical
outcomes as seen in first-line imatinib therapy. Inhibitory
activities of imatinib are considered to be affected by binding
abilities to the KIT protein and intracellular concentration of
the drug. The former may be influenced by genotype and the
latter may be affected by blood level of imatinib and dose
intensity, although blood levels of the drug vary greatly indi-
vidually. Antitumor activities of imatinib and sunitinib are
shown to be correlated with dose intensity as well as blood
levels (69.70]. Drug interruption inevitably induced disease pro-
gression in advanced disease (71,72). Although most tumors
progressing after interruption responded to imatinib rechal-
lenge, quality of responses after reintroduction did not reach
the prior tumor status observed at interruption (73]. Thus,
we should keep standard doses of imatinib, sunitinib and
regorafenib without any interruption when tolerable.
Imatinib binding to the KIT tyrosine kinase is another
important determinant of drug activities. Imatinib binding
may be influenced by genotype of the K77 gene as mentioned
above. Antitumor activities of imatinib are correlated with
primary mutations in the K77 and PDGFRA genes [1,29-31).
Most secondary-resistant tumors have secondary mutations
in the kinase domains, which were also indicated to be corre-
lated with activities of sunitinib and regorafenib [3536). Wild-
type GISTs may be insensitive to imatinib (1. Wild-type
GISTs are heterogeneous. Wild-type GISTs with SDH inacti-
vation may have some sensitivity to multi-targeted inhibitors,
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9.2 After standard therapy

After standard therapy, best supportive care or clinical trials
are recommended in the guidelines. However, patients with
good PS could have further treatment, and clinical trials are
not always available. In such a situation, regorafenib beyond
PD as well as rechallenge of imatinib or sunitinib may works
for some patients. In drug selection, it is important for drugs
to have had good clinical activities and acceprable tolerability
in prior treatment (55].
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