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that there was direct contact between the microglia/
macrophages and synaptic structures, immune-electron
microscopic examination was performed. Consistent
with the confocal imaging, this analysis showed that the
microglia/macrophages made direct contact with both
presynaptic and postsynaptic structures (Figure 6B).
These observations indicated that classically activated
microglia/macrophages had migrated to the compressed
spinal cord and eliminated synaptic terminals.

Discussion
In the present study, we showed that severe chronic pro-
gressive spinal cord compression in twy mice caused more
body weight loss and neurological deficits in motor func-
tion than milder spinal cord progression. Furthermore, M1
macrophage-dominant inflammation was present in mice
with a severely compressed spinal cord. In agreement,
Cyr61, an inducer of M1 macrophages, was also markedly
upregulated in these spinal cords. Furthermore, immuno-
staining and electron microscopic analyses indicated that
the inflammmatory Clq complement cascade eliminated
synapse formation, resulting in neurodegeneration.
Macrophages are typically divided into classically acti-
vated (M1) and alternatively activated (M2) macrophages
[32]. M1 macrophages, activated via TLRs, produce proin-
flammatory cytokines and oxidative metabolites [33]. Here
we found that the M1 macrophage and TLR signals were
activated in the chronically compressed spinal cord. These
results were consistent with the distribution of M1 macro-
phages in traumatic spinal cord injury that continues even
during the chronic phase [34,35]. The shift to M1 macro-
phages, which have deleterious and cytotoxic effects [36],
may represent the main pathology of the neurodegenera-
tion that accompanies chronic spinal cord compression.
Although the extracellular matrix has been classically
viewed as an inert scaffold, recent studies have revealed
that it influences diverse aspects of cellular behavior and
function [37]. Cyr61 is a matricellular protein that is highly
expressed at sites of inflammation, where its ability to
regulate gene expression in macrophages plays an im-
portant role [25,38]. In addition, various mechanical
stresses induce Cyr6l expression in cartilage/bone
tissues and periodontal ligaments [26,39]. Our present
data indicated that Cyr61 is significantly upregulated in

the chronically, severely compressed spinal cord and -

colocalizes extensively with reactive astrocytes. These
findings suggest that Cyr61 engages in a distinct intra-
cellular signaling cascade in microglia/macrophages
and promotes M1 macrophage recruitment in the com-
pressed spinal cord.

Microglia/macrophages were recently identified as the
phagocytes responsible for eliminating tagged synapses, via
classical complement signaling [40], and the complement
cascade is strongly induced in the brain tissues of patients
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with various neurodegenerative diseases [41]. Interestingly,
in a mouse mode! of glaucoma, a relatively common neuro-
degenerative disease related to high intraocular pressure,
the classical complement pathway is upregulated long
before retinal ganglion cell death occurs [28]. Yet another
study suggested that initiation of the classical complement
pathway via Clq is detrimental to recovery after spinal cord
injury [42]. The present microarray and immunohisto-
chemical analyses showed that the classical complement
pathway via Clq was significantly upregulated in the
severely compressed spinal cord. Our findings raise the in-
triguing possibility that Clg may also be involved in synapse
elimination in the chronically compressed spinal cord.
Future studies should examine whether the inhibition of
Clq in animal models of chronic spinal cord compression
hinders the associated neurodegenerative changes.

Previous studies on the surgical outcomes of CCM
patients demonstrated that the postoperative recovery was
poor in those with severe canal stenosis, because irrevers-
ible changes had occurred in the spinal cord [5]. Recent
studies have revealed that neural stem cell therapy can be
an effective treatment for previously incurable nervous
system disorders, such as spinal cord injury [43-47]. There-
fore, an appropriate stem cell treatment for CCM should
be examined in future studies.

To our knowledge, these data are the first to document
the detailed pathophysiology of the inflammatory response
in an animal model of chronic spinal cord compression.
The clinical implications are noteworthy, because manipu-
lation of the classical complement cascade in the chronic-
ally compressed spinal cord could be a strategy for
minimizing synapse loss and secondary neurodegeneration
due to inflammation. We believe that our findings are valu-
able for future research on the alterations taking place in
the inflammatory environment in CCM.
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