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viral infection (Fig. le). These results indicate that NESI is
not sufficient, but its flanking regions including leucine-540
are necessary for cytoplasmic localization of CALM-AFI10.
Thus, we concluded that the NES2 region is the minimal NES
that mediates cytoplasmic localization of CALM-AF10.

The nuclear export signal within CALM is necessary for CALM-
AF10-induced immortalization of cells in vitro. We next investi-
gated whether the NES within CALM-AF10 is required for
leukemogenesis. To this end, primary murine bone-marrow
stem/progenitor cells (HSPC) were infected with retrovirus
encoding CALM-AF10, CALMNES*A_AF10, NES2-AF10 and
mAF10. Serial-replating assays revealed that both CALM-
AF10 and NES2-AF10 immortalized HSPC, and that the cells
formed colonies for at least five rounds of resplating (Fig. 2a).
By contrast, neither mAF10 nor CALMNES*A.AF10, which
lacks a functional CALM NES, could immortalize cells. Trans-
duced cells with elevated colony-forming abilities also exhib-
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ited upregulation of the Hoxa cluster (Hoxa5, Hoxa7, Hoxa9
and Hoxal0) and Meisl genes (Fig. 2b)7?). These results indi-
cated that the CALM NES is necessary for CALM-AF10 to
immortalize hematopoietic stem/progenitor cells.

The nuclear export signal within CALM-AF10 is necessary to
induce leukemia in vivo. To determine whether CALM-AF10
and NES2-AF10 can induce leukemia in mice, we injected
bone-marrow progenitor cells transduced with CALM-AF10
and NES2-AF10 into lethally irradiated mice. Seven out of
eight mice transplanted with cells expressing CALM-AF10
developed leukemia within 6 months after transplantation
(Fig. 3a), and all mice transplanted with cells expressing
NES2-AF10 developed leukemia within 3 months after trans-
plantation. When cells prepared from bone marrow of these
leukemic mice were transplanted into secondary recipient
mice, all recipients promptly developed leukemia (medians:
CALM-AF10 donors, 21 days [n = 4]; NES2-AF10 donors,
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Fig. 3.

The nuclear export signal within clathrin assembly lymphoid myeloid leukemia protein (CALM) is sufficient for leukemic transformation

by CALM-AF10. (a) Survival of mice injected with murine bone-marrow cells transduced with FLAG-CALM-AF10 or FLAG-NES2-AF10. The
leukemia-free survivals of the mice were analyzed. CALM-AF10 primary transplantation, n = 8, CALM-AF10 secondary transplantation, n = 4;
NES2-AF10 primary transplantation, n = 4; NES2-AF10 secondary transplantation, n = 9. (b) Peripheral blood smears and bone-marrow cytospins
were stained with May-Giemsa from CALM-AF10-transduced or NES2-AF10-transduced bone-marrow cells. Original magnification is 400x.
(c) Population of blasts and segmented neutrophils in bone-marrow cells shown in (b). The scale bars represent 20 pm.
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25 days [n =9]). Morphological analysis revealed large Moreover, as shown in Figure 4b, Hoxa5, Hoxa7, Hoxa9,
populations of blast cells in leukemic mice receiving cells HoxalO and Meisl expression levels were upregulated in cells
transduced with either CALM-AF10 or NES2-AF10 (Fig. 3b, expressing CALM-AF10 and NES2-AF10 compared with nor-
¢). Flow cytometry analysis showed that cells expressing mal bone marrow cells, although upregulation of Hoxa5 and
CALM-AF10 and NES2-AF10 in the bone marrow cells of pri-  Meis/ in primary recipient mice harboring NES2-AF10 was
mary recipient mice were Mac1*, CSFIR" and c-kit" (Fig. 4a).  not significant (P = 0.084 and P = 0.093, respectively). These
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Fig. 4. Characterization of leukemic cells in vivo. (a) Flow cytometric analysis of leukemic cells. Murine bone-marrow cells were prepared from
mice that developed leukemia after receiving transplantation of tumor cells transduced with CALM-AF10 or NES2-AF10, and were co-stained for
Gr-1, Mac-1, colony stimulating factor 1 receptor (CSF1R) and c-kit; data are representative of CALM-AF10 primary transplantation (n = 3) and
NES2-AF10 primary transplantation (n = 3). (b) Hoxa cluster and Meis1 expression in mice receiving cells transduced with wild-type and mutant
CALM-AF10. RNA transcripts were analyzed by real-time PCR of bone-marrow cells in mice that developed leukemia after CALM-AF10 and NES2-
AF10 bone-marrow transplantation. Expression levels of Hoxa5, Hoxa7, Hoxa9, Hoxa10 and Meis1 were normalized against Actb and compared
with wild-type whole bone marrow. Data are shown as means + SEM from three independent leukemic mice. *P < 0.05; **P < 0.01 (vs normal

bone-marrow cells).
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Fig. 5. Dot1L mainly localize in the nucleus in CALM-AF10-induced or NES2-AF10-induced leukemic cells. (a) Subcellular distribution of endoge-
nous Dot1L in CALM-AF10-induced or NES2-AF10-induced leukemic cells. Cytospins of the cells were stained with anti-FLAG antibody (red), anti-
DOTIL antibody (green) and DAPI (blue) and observed by confocal laser scanning microscopy. Note that GFP expression was not detected in the
condition. (b) Subcellular distribution of endogenous Dot1L in the control vector-infected murine using fluorescence microscopy. (c) Population
of leukemia cells expressing DOT1L and CALM-AF10 or FLAG-NES2-AF10 in the nucleus and the cytoplasm shown in (a) and (b). The scale bar rep-
resents 5 um in (@) and 10 pm in (b).
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data demonstrate that the NES within CALM-AF10 is a criti-
cal element for induction of leukemia.

It has been reported that CALM-AF10 interacts with the histone
methyltransferase DOT1L to mediate H3K79 hypermethylation at
the Hoxa5 locus.” To determine whether DotlL colocalizes
with CALM-AF10. and NES2-AF10 in the leukemia cells, we
performed immunofluorescence analysis. DotlL mainly localized

in the nucleus while CALM-AF10 and NES2-AF10 mainly

localized in the cytoplasm (Fig. 5a,b). Dot1L partially colocalized
with both- CALM-AF10 and NES2-AF10, but neither CALM-
AF10 nor NES2-AF10 altered the localization of Dot1L (Fig. 5a).

Discussion «

AF10 and CALM localize diffusely in the nucleus and cyto-
plasm, respectively, whereas CALM-AF10 primarily localizes
in cytoplasmic speckle domains (see Fig. 1c,d). The fact that
CALM-AF10 regulates histone methylation at the Hoxa5 locus
suggests that. CALM-AF10 is likely to  function: in  the
nucleus.® However, the results described here indicate that
the CALM NES is essential for CALM-AF10-induced leuke-
mogenesis, suggesting that cytoplasmic localization (or shut-
tling between nucleus and cytoplasm) is critical for the
function of CALM-AF10. During the preparation of the manu-
script, another group reported. similar ﬁndings,(lg) indicating
that the results are reproducible. and the conclusions can be
validated using alternative experimental systems:

The molecular mechanism by which CALM-AF10 exerts its
function in the cytoplasm remains unclear, but two possibilities
are consistent with the existing data: CALM-AF10 may affect
cytoplasmic signaling pathways that regulate expression of its
target genes, including HoxA cluster genes; alternatively,
CALM-AF10 may affect the functions of transcriptional regula-
tors by changing their localization from the nucleus to the cyto-
plasm. DOTIL, a candidate mediator of CALM-AF10-induced
leukemia, interacts with AF10 and induces H3K79 hypermethy-
lation at Hoxa5.> However, our present data suggest that
CALM-AF10 and NES2-AF10 did not affect the localization of

DotlL (see Fig. 5a). It is possible that CALM-AF10 squelches -

DOTI1L inhibitors by exporting them to the cytoplasm.
CALM glays an.important role in clathrin-mediated endocy-
tosis.*7?*#D It and other endocytosis-related genes, such as
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EPS15, EEN, CLTC and HIP1, are involved in multiple types of
leukemia-associated chromosomal translocations (e.g. MLL-
CALM, MLL-EPS15, MLL-EEN, CLTC-ALK and HIPI1-
PDGFBR),#*729 suggesting that these leukemia-associated
fusions might affect endocytosis in a manner that contributes to
leukemogenesis. However, recent reports have shown that the
clathrin-binding domain of CALM is not essential for CALM-
AF10-mediated leukemogenesis.m’zg) Here, we show that
nuclear export of CAL-AF10 is critical for the leukemogenesis.
Because the endocytosis-related proteins mentioned above are
also exported from the nucleus to the cytoplasm; as in the case
of CALM, %29 it is possible that changes in the localization
of fusions involving: endocytosis-related proteins have some

~ shared consequence that is important for leukemogenesis.

Molecular exchange between  the nucleus and cytoplasm
takes place -through nuclear pore complexes (NPC). Fusion
proteins containing NUP98 and NUP214, which are compo-
nents of the NPC, have been found in AML and T-ALL;%*V
as in cells expressing CALM-AF10, a set of Hoxa and MeisI
genes ~are upregulated in- leukemia cells expressing these
NUP98 fusions and NUP214 fusions.®**® In addition, the
NPC-component fusions interact with CRM1, the major recep-
tor for the nuclear export of protein.®*>* These observations
suggest that alteration of the localization of certain factors by
NUP98 fusions and NUP214 fusions might be important for
leukemogenesis, and that a-.common mechanism may underlie
leukemias induced by CALM and NUP fusions.
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ABSTRACT

Mixed-lineage leukemia (MLL) maintains the expres-
sion of cellular memory genes during development,
while leukemic MLL fusion proteins aberrantly
maintain expression of hematopoietic stem cell
program genes such as HOXA9 to cause leukemia.
However, the molecular mechanism of gene activa-
tion is unclear. Here we show that only two func-
tional modules are necessary and sufficient for
target recognition: those that bind to non-
methylated CpGs and di-/tri-methylated histone H3
lysine 36 (H3K36me2/3). An artificial protein
composed of the two targeting modules and an
interaction domain for AF4-family coactivators can
functionally substitute for MLL fusion proteins.
Because H3K36me2/3 markers are indicative of
active transcription, MLL fusion proteins target
previously active CpG-rich genes and activate tran-
scription by recruiting coactivators thereto. Our
results indicate that such chromatin context-
dependent gene activation is the fundamental
mechanism by which MLL fusion proteins main-
tain the expression of the cellular memory/
hematopoietic stem cell program genes.

INTRODUCTION

The MLL gene encodes an epigenetic regulator that main-
tains HOX gene expression during embryogenesis (1).
HOX genes are so-called cellular memory genes because
their expression is maintained throughout the develop-
ment. In the hematopoietic lineage, the MLL protein

(also known as HRX, MLL1 and KMT2A) activates the
transcription of posterior HOXA genes (e.g. HOXA7-A10)
(2,3). Posterior HOXA genes are hematopoietic stem cell
(HSC) program genes (4) that promote the self-renewal of
HSCs/immature progenitors (5). In normal hematopoiesis,
their expression is maintained by MLL in the HSC/
immature progenitor compartments, which diminishes as
cells differentiate. Chromosomal translocation generates
MLL fusion genes, whose products constitutively
activate the posterior HOXA genes, which results in
aberrant self-renewal of hematopoietic progenitors,
leading to leukemia (6). However, the precise molecular
mechanism by which MLL and MLL fusion proteins
activate their target genes remains unclear. MLL fusion
proteins exert their oncogenic functions as a complex with
the lens epithelium-derived growth factor (LEDGF) (also
known as PSIP1) (7). Disruption of Psip/ in mice causes
homeotic skeletal transformation, a characteristic pheno-
type caused by dysregulation of Hox gene expression (8).
LEDGEF also facilitates the specific integration of the HIV
genome into transcriptionally active regions, presumably
by tethering the HIV genome/integrase complex with tran-
scriptionally active chromatin (9,10). In leukemia, MLL
frequently fuses with the ALLI-fused gene from chromo-
some 4 (AF4)- and eleven-nineteen leukemia (ENL)-family
genes, whose protein products are the components of
a transcriptional coactivator, termed AEP (the AF4
family/ENL family/PTEFb complex) (11-14). MLL
fusion proteins constitutively recruit AEP components
to activate transcription through direct interaction (e.g.
MLL-ENL) or by an as-yet-uncharacterized indirect
mechanism (e.g. MLL-AF6) (14). These previous studies
postulate that MLL fusion proteins recognize their target
genes through the MLL portion and constitutively recruit
the AEP coactivator through the fusion partner portion.
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Here, we report that MLL fusion proteins recognize a
specific chromatin context to activate cellular memory
genes. Our structure/function analyses demonstrate that
MLL fusion proteins recognize their target genes
through two functional domains: the PWWP domain of
LEDGEF and the CXXC domain of MLL that specifically
bind to H3K36me2/3 and non-methylated CpGs, respect-
ively. Because H3K36me2 and H3K36me3 are generally
linked to gene activation (15,16), a previously transcribed
gene containing non-methylated CpGs in its promoter is
subjected to transcriptional activation by MLL fusion
proteins. These studies provide a novel chromatin
context-dependent gene activation mechanism by which
MLL fusion proteins maintain cellular memory.

MATERIALS AND METHODS
Cell culture

The human leukemia cell line ML-2 was cultured in RPMI
1640 medium supplemented with 10% fetal calf serum and
non-essential amino acids. 293T, plat-E and HeLa cells
were cultured in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal calf serum and non-essential
amino acids.

Vector construction

The pMSCV-neo MLL-ENL, PME (7) and Bcl2-
ires-E2A-HLF (17) vectors are described elsewhere.
Various MLL fusion constructs were generated by restric-
tion enzyme digestion or polymerase chain reaction
(PCR)-based mutagenesis. The cDNAs were cloned into
the pMSCYV neo vector (for virus production) (Clontech,
Mountain View, CA) or the pCMVS5 vector (for transient
expression). The expression vectors for FLAG-tagged
GAL4 fusion proteins were constructed by PCR using
pM (Clontech) as template and cloned into the pCMV5
vector. Various LEDGF constructs were generated by
PCR-based mutagenesis and cloned into the pcDNA4
HisMax vector (Invitrogen, Carlsbad, CA).

Western blotting

Western blotting was performed as described elsewhere
(14). The antibodies used in this study have been listed
in Supplementary Table S2.

Reverse transcription-PCR

RNAs were prepared using the RNeasy kit (Qiagen,
Valencia, CA) and reverse-transcribed with the
Superscript III first strand c¢cDNA synthesis kit with
oligo(dT) primers (Invitrogen). Expression of PCE was
confirmed by regular PCR using the primer pair 5-AGA
ATTCGATATCGGAAACATGACTCGCGATTTCAA
ACC-3'/5-TCACGTGTTCGCGATGCGACGGGCTTT
CGTGGAGGAG-3'. Quantitative PCR (qPCR) for other
genes was performed as described previously (14) using
TagMan probes [Gapdh (Mm99999915 ¢gl), Hoxa7
(Mm00657963_m1), Hoxa9 (Mm00439364 m1l), Hoxal0
(MmO00433966_m1), Cbx5 (Mm00483092_ml), Myb
(Mm00501741_m1) and Hmgb3 (Mm01377544_gH)

(Applied Biosystems)]. The expression levels, normalized
to Gapdh, were estimated using a standard curve and the
relative quantification method, as described in ABI User
Bulletin #2.

Virus production

The ecotropic retrovirus was produced using plat-E
packaging cells (18). Supernatant medium containing the
virus was harvested 24-48 h after transfection and used for
viral transduction.

Myeloid progenitor transformation assay

The myeloid progenitor transformation assay was per-
formed using cells harvested from the femurs and tibiae
of C57BL/6 mice. C-kit-positive cells were enriched using
magnetic beads conjugated with anti-c-kit antibody
(Miltenyi Biotech, Bergisch Gladbach, Germany),
transduced with recombinant retrovirus by spinoculation
(19) and plated in methylcellulose medium (Iscove’s
modified Dulbecco’s medium, 20% fetal bovine serum,
1.6% methylcellulose, 100 uM B-mercaptoethanol) con-
taining stem cell factor, interleukin-3 and granulocyte
macrophage colony-stimulating factor (10ng/ml). The
colony-forming units per 10* plated cells at the third and
fourth rounds were quantified after 5-7 days of culture.

Subcellular fractionation and nucleosome
co-immunoprecipitation analysis

Subcellular fractions of 293T cells were obtained by CSK
buffer extraction (20) and MNase treatment. 293T cells
cultured in a 10-cm dish were resuspended in 1ml of
CSK buffer [100mM NaCl, 10mM PIPES (pH 6.8),
3mM MgCl,, 1mM EGTA (pH 7.6), 0.3M sucrose,
0.5% Triton X-100, 5mM sodium butyrate, 0.5mM
DTT, EDTA-free protease inhibitor cocktail (Roche,
Basel, Switzerland) and 2mM vanadyl ribonucleoside
complexes (Sigma, St. Louis, MO)], incubated on ice for
Smin and then centrifuged (400g, 4°C, 4 min). The super-
natant (the soluble fraction) was transferred to a new tube,
and the pellet was resuspended in 1ml of MNase buffer
[S0mM Tris-HCI (pH 7.5), 4mM MgCl,, 1mM CaCl,,
0.3M sucrose, SmM sodium butyrate, 0.5mM DTT
and protease inhibitor cocktail]. One unit of MNase
(Sigma) was added to the suspension, and the mixture
was incubated at 37°C for 10-12min to obtain
mononucleosomes. The MNase reaction was stopped by
adding EDTA (pH 8.0) at a final concentration of 20 mM.
The reaction mixture was centrifuged (13 000rpm, 4°C,
Smin) to separate the supernatant (the nucleosome
fraction) and the pellet. The pellet was resuspended in
elution buffer (1% sodium dodecyl sulfate, 50mM
NaHCOj). The nucleosome fractions were subjected
to immunoprecipitation (IP) using specific antibodies;
washed five times with MNase buffer with 20mM
EDTA and analyzed by western blotting, Oriole staining
(Bio-Rad, Hercules, CA), SYBR Green staining (Lonza,
Basel, Switzerland) and mass spectrometry. Optionally,
the precipitates were washed with MNase buffer three
times, treated with DNase I (Qiagen) for 10 min at 37°C
and washed five times with MNase buffer with 20 mM
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EDTA. The precipitates were analyzed by western blotting
and SYBR Green staining.

Fractionation-assisted native chromatin
immunoprecipitation

293T cells cultured in a 10-cm dish or ML-2 cells (2 x 107)
were suspended in 1 ml of CSK buffer to remove chroma-
tin-unbound materials. The pellet was then resuspended in
1 ml of MNase buffer and mixed with 0.2-1 U of MNase
for 5-10min at 37°C to obtain chromatin with DNA
lengths of 150-3000 base pairs (bp). The MNase
reaction was stopped by adding EDTA (pH 8.0) at a
final concentration of 20mM, and then the mixture
was placed on ice. Lysis buffer (1ml) [10% glycerol,
20mM sodium phosphate (pH 7.0), 250mM NadCl,
30mM sodium pyrophosphate, 0.1% Nonidet P-40,
SmM EDTA, 10mM NaF and protease inhibitor
cocktail] (21) was added to solubilize the proteins, and
the mixture was spun down to remove insoluble
material. The supernatant was then subjected to IP.
Approximately 1pg of the primary antibodies listed in
Supplementary Table S2 was added to 400 pl of chromatin
suspension, and the mixture was incubated for 4-6h at
4°C. Ten microliters of protein-G magnetic beads
(Invitrogen) was added to each sample, and the mixture
was incubated for 2h with rotation. The beads were
washed five times with 500 pl of a 1:1 mixture of MNase
buffer containing 20mM EDTA and lysis buffer. For
histone modifications, incubation and washing were per-
formed with higher NaCl concentrations (plus 400 mM) to
strip chromatin-binding proteins. DNAs were harvested
from the precipitates by dissolving in elution buffer
followed by phenol/chloroform/iso-amyl alcohol extrac-
tion and ethanol precipitation. Deep sequencing of the
precipitated DNAs was performed using the Illumina
genome analyzer IIx at the Joint Usage/Research Center
(RIRBM), Hiroshima University. qPCR was performed
on the precipitated DNAs using the custom-made primer
sets described in Supplementary Table S3. The value
relative to the input was determined using a standard
curve and the relative quantification method as described
in the ABI User Bulletin #2. Optionally, co-precipitated
proteins were harvested by dissolving the immunopre-
cipitates in elution buffer, mixed with an equal volume
of 2x sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis sample buffer and subjected to western blotting.

Liquid chromatography-tandem mass
spectrometry analysis

The method for trypsin digestion of protein has been
described previously (22). Tandem mass spectrometry
analysis was performed using an LTQ Orbitrap ELITE
ETD mass spectrometer (Thermo Fisher Scientific). The
methods used for liquid chromatography-tandem mass
spectrometry (LC-MS/MS) were slightly modified from
those described previously (23). The mass spectrometer
was operated in data-dependent acquisition mode in
which MS acquisition with a mass range of m/z 400-
1000 was automatically switched to MS/MS acquisition
under the control of Xcalibur software. The top four
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precursor ions in the MS scan were selected by Orbitrap,
with resolution R = 240000, and those in the subsequent
MS/MS scans, with an ion trap in automated gain control
(AGC) mode, where AGC values were 1x10° and
1.00 x 10* for full MS and MS/MS, respectively. For frag-
mentation, electron transfer dissociation was used.

In vivo leukemogenesis assay

C-kit-positive cells (2 x 10°) prepared from mouse femurs
and tibiae were transduced with retrovirus by
spinoculation and intravenously transplanted into
sublethally irradiated (two doses of 500rad in 2 days)
C57BL/6 mice. Moribund mice were sacrificed, and the
spleen cells were either subjected to cytospin preparation
followed by May-Grunwald/Giemsa staining or tempor-
arily cultured in methylcellulose medium in the presence
of G418 (1mg/ml) to remove untransformed cells, and
then subjected to secondary transplantation or reverse
transcription-PCR (RT-PCR) analysis.

CpG island recovery assay

CpG island recovery assays for non-methylated CpGs
(CIRA) and methylated CpGs (MIRA) were performed
using the Unmethyl Collector kit and Methyl Collector
Ultra kit, respectively (Active Motif, Carlsbad, CA).
Deep sequencing after CIRA and MIRA was carried out
at the Joint Usage/Research Center (RIRBM), Hiroshima
University.

Transactivation assay

Transactivation assays using the pFR-luc reporter
(Clontech) were performed as described elsewhere (14).
Relative luciferase activities were normalized to Renilla
luciferase activity and expressed in terms of the average
values and standard deviations (SDs) of triplicate deter-
minations relative to the GAL4 DNA binding domain
controls.

RESULTS

Murine leukemia models define the major functional
modules required for leukemic transformation
by MLL-ENL

MLL fusion proteins form a trimeric complex with menin
and LEDGF through the MLL portion (7). Because MLL
fusion proteins associate with LEDGF through menin as a
mediator, an MLL-ENL mutant (MEdNter) lacking the
high-affinity menin-binding motif failed to transform
hematopoietic progenitors in a myeloid progenitor trans-
formation assay (Figure 1A), in which successful trans-
formation is represented by vigorous colony-forming
activity in the third and fourth rounds of plating, and
elevated expression of Hoxa9 in first-round colonies
(Figure 1B). An artificial MLL-ENL fusion protein
(PME), in which high-affinity menin-binding motif is
replaced by the PWWP domain of LEDGF, transformed
myeloid progenitors despite its inability to form the
trimeric complex (7). Therefore, the PWWP domain is
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Figure 1. Major functional domains required for leukemogenesis by MLL-ENL. (A) Experimental scheme for the myeloid progenitor transformation
assay. (B) Transforming ability of various MLL-ENL (ME) mutants. The schematic structures of LEDGF, MENIN, ENL and various ME mutants are
shown, with the key functional modules indicated (left). P: the PWWP domain. C: the CXXC domain. E: the ENL portion included in MLL-ENL. The
numbers of colony-forming units (CFUs) at the third and fourth rounds of replating are shown with error bars (SD of >3 independent experiments)
(middle). Hoxa9 expression is presented relative to the value of ME (arbitrarily set at 100%) with error bars (SD of triplicate PCRs) (right). (C) Protein
expression of the PWWP-MLL-ENL (PME) and PCE mutants in the packaging cells. The PME and PCE proteins were visualized using the anti-ENL
antibody. Molecular standards are shown on the left. (D) Experimental scheme for the in vivo leukemogenesis assay. (E) Survival of the transplanted

(continued)
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the single functional module within menin and LEDGF
that is required for MLL-ENL-dependent transformation.

To identify the structural requirements of MLL fusion
proteins besides the PWWP domain, we examined the
transforming ability of a series of PME mutants with
various internal deletions in the MLL gene. A mutant
lacking the CXXC domain (PMEdC) failed to transform
myeloid progenitors (Figure 1B and C). Conversely, a
mutant (PCE) consisting only of the PWWP domain, the
CXXC domain and the ENL portion activated Hoxa9
expression and immortalized myeloid progenitors. The
PCE mutant induced leukemia in recipient mice within
3-4 months in the in vivo leukemogenesis assay
(Figure 1D-F). The PCE-induced leukemic blasts had
monocytic features (Figure 1G) and elevated expression
of posterior Hoxa genes and leukemia stem cell signature
genes including Myb, Hmgb3 and Chx5 (Supplementary
Figure S1), which are major characteristics of MLL-
associated myeloid leukemias (24). The leukemic blasts
recapitulated the same disease in secondary recipients
with a much shorter latency period (Figure 1E). These
results clearly show that PCE is as functional as MLL-
ENL for leukemic transformation. Thus, the PWWP
domain, the CXXC domain and the ENL portion
are the major structural elements required for MLL-
associated leukemogenesis.

Binding to a specific nucleosome through the PWWP
domain is essential for MLL fusion-dependent
gene activation

To further analyze the function of the PWWP domain, we
next tested a series of artificial PCE derivatives with
various alterations in the PWWP domain for the trans-
forming ability of myeloid progenitors (Figure 2A and
B). A mutant (P'CE) with the minimum structure of the
PWWP domain exhibited this transformation ability,
whereas an alanine substitution of the evolutionarily
conserved tryptophan (W21) resulted in a loss of the trans-
formation activity. The PWWP domain of LEDGF has
been implicated in chromatin binding (25,26). To examine
its chromatin-binding capacity, we transiently expressed
LEDGF and its mutant (dAPWWP) lacking the PWWP
domain in 293T cells (Figure 2C), and we divided the
cellular components into three subfractions (Figure 2D
and Supplementary Figure S2A). In this procedure,
(1) chromatin-unbound soluble materials were extracted
by cytoskeletal (CSK) buffer (the soluble fraction);
(i1) chromatin and its associated factors were eluted by
DNA fragmentation with micrococcal nuclease (MNase)
(the nucleosome fraction); and (iii) insoluble materials
after MNase treatment were solubilized by denaturing
detergent (the nuclear matrix fraction). Nearly all the
nucleosomes in the nucleosome fraction were
mononucleosomes based on their DNA length (~150 bp)
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(Figure 2E, top panels). LEDGF substantially localized to
the nucleosome fraction (Figure 2E, bottom panels) and
was able to pull down mononucleosomes (Figure 2F),
whereas dPWWP mainly localized to the soluble
fraction (Figure 2E) and failed to pull down nucleosomes
(Figure 2F). The PWWP domain (P’) by itself localized in
the nucleosome fraction (Figure 2G and H) and pulled
down endogenous nucleosomes (Figure 2I). Previously,
one group showed that LEDGF had specifically
associated with the histone H3 peptide containing
either H3K36me2 or H3K36me3 (25), while another
group showed that the recombinant PWWP domain of
LEDGF directly binds to H3K36me3 but not to
H3K36me2 in vitro (26), suggesting that the peptide pull-
down assay tends to overrepresent H3K36me3-PWWP
interaction, depending on the assay conditions. Our
nucleosome co-immunoprecipitation (co-IP) assay, which
can detect protein—nucleosome interaction under physio-
logical conditions, showed that the nucleosomes co-
precipitated with P’ contained high amounts of not only
H3K36me3 but also H3K36me2 (Figure 2I), indicating
that the PWWP domain of LEDGF is capable of
binding to either H3K36me2 or H3K36me3 in vivo.
In accordance with these results, an artificial protein
(P’C) composed of the PWWP domain and the CXXC
domain was substantially localized in the nucleosome
fraction (Figures 2G and H) and co-precipitated with
mononucleosomes and DNAs (Supplementary Figure
S2B and C). The W21A substitution mutants of P’
and P'C exclusively localized to the soluble fraction
(Figures 2G and H) and therefore were not used for the
nucleosome co-IP analysis (Supplementary Figures S2D
and E). These results indicate that the PWWP domain,
and not the CXXC domain, is mainly responsible for
stable association with chromatin. The purified P'C—
nucleosome complex contained no other proteins but
histones at the stoichiometric level (Supplementary
Figure S2B). Complete removal of the DNAs by
DNase I treatment did not abolish the P'C—nucleosome
interaction (Figure 2J) or P’-nucleosome interaction
(Supplementary Figure S2F). Thus, the PWWP domain
directly associates with histones. Taken together, these
findings show that the binding ability of the PWWP
domain to specific histones is required for MLL fusion-
dependent gene activation.

The PWWP domain and the CXXC domain target
transcriptionally active promoters containing either
H3K36me2 or H3K36me3

We next examined the functional similarities among
various PWWP domains. HRP2 is a close homolog
of LEDGF and has a highly homologous PWWP
domain (Figure 3A). The bromodomain and PHD
finger-containing 1 (BRPF1) protein is an associated

Figure 1. Continued

animals in the in vivo leukemogenesis assay. Light gray, vector; black, first PCE transplantation; dark gray, second PCE transplantation. n, number
of animals analyzed. (F) Expression of PCE in the PCE-induced leukemia cells (PCE-LCs). Leukemic cells derived from moribund mice were cultured
ex vivo in the presence of G418 and analyzed by RT-PCR. The PCE plasmid, PCE-immortalized cells (PCE-ICs) and Bcl2/E2A-HLF-immortalized
cells (BiEH-ICs) were included for comparison. nsp, non-specific band. (G) Morphology of PCE-LCs in the spleen. The splenic cells harvested from a
PCE-leukemic mouse were stained by the May-Grunwald/Giemsa staining method. Normal spleen is included for comparison. Scale bar, 50 um.
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