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Abstract Somatic mutations of isocitrate dehydrogenase
1 and 2 (IDHI/2) are strongly associated with pathological
subtypes, genetic profiles, and clinical features in gliomas.
The IDH1/2 status is currently regarded as one of the most
important molecular markers in gliomas and should be
assessed accurately and robustly. However, the methods
used for IDHI/2 testing are not fully standardized. The
purpose of this paper is to review the clinical significance
of IDHI/2 mutations and the methods used for IDHI/2
testing. The optimal method for IDHI/2 testing varies
depending on a number of factors, including the purpose,
sample types, sample number, or laboratory equipment. It
is therefore important to acknowledge the advantages and
disadvantages of each method.
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Introduction

Somatic mutations of isocitrate dehydrogenase 1 (IDHI,
2q34) were first identified in a small subset of glioblasto-
mas [1, 2]. A large number of studies soon followed,
reporting that /DHI mutations actually occur in the
majority of lower grade gliomas [2—6]. Later, mutations of
isocitrate dehydrogenase 2 (IDH2, 15g26) were also
reported in a small number of gliomas [3, 4]. IDHI/2
mutations are currently regarded as the earliest event in
gliomagenesis and one of the most significant genetic
alterations in glioma biology [4]. IDHI1/2 mutations also
seem to be clinically significant based on their relationship
with pathology, other genetic changes, and clinical pre-
sentation. A rapidly growing number of published studies
constantly provide new information about IDHI/2, and
IDH]I/2 status is almost routinely evaluated in laboratories.
However, the methods for IDHI/2 testing are not fully
standardized. The purpose of this report is to review the
clinical significance of IDH1/2 mutation and the methods
used for testing these mutations.

Genetic aspect of IDH1/2 mutations
Mutational pattern of IDHI/2 in gliomas (Fig. 1)

All reported IDHI/2 mutations are missense mutations.
They are almost always hemizygous and mutually exclu-
sive to each other. IDH1 and IDH2 are homologous
enzymes localized in the cytosol and mitochondria,
respectively. IDH1/2 catalyze the conversion of isocitrate
to a-ketoglutarate using NADP™ as a cofactor. The IDH1/2
mutations in gliomas result in the reduced ability to pro-
duce o-ketoglutarate and the acquisition of abnormal
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Fig. 1 a Frequency of each
mutation in IDHI/2. The ratio
was calculated from the pooled
data from eight independent
studies, including the data on a
total of 3,029 glioma cases [3, 6,
9-14]. The left circular chart
represents the frequency of
IDHI R132H mutation and non-
R132H IDH1/2 mutations. The
right chart represents the
frequency of each type of
non-R132H IDH1/2 mutation.
b The nucleotide transitions in

IDH1/2. All the mutations B IDH1 IDH2
except R132V are point
mutations Codon Codon
132 172
CGT WT AGG WT
CAT €.394C>A R132H AAG c.515G>A R172K
G €.394C>T R132C ATG ¢.515G>T R172M
GGT €.394C>G R132G TGG c.514A>T R172W
AGT €.394C>A R132S AGC c.516G>C R172S
CTT €.395G>T R132L
GTT €.394C>G, ¢.395G>T R132V

function to convert o-ketoglutarate into (R)-2-hydroxy-
glutarate ((R)-2HG) by using NADPH as a cofactor [7, 8].
(R)-2HG 1is considered to be a major oncometabolite,
causing various biological effects on IDHI1/2 mutated
tumors. IDHI/2 mutations are therefore considered to be
gain-of-function alterations [7].

The frequency of each mutation type varies according to
the reports. The frequency of each mutation in a pooled
data from 8 independent studies, describing the mutation
types are shown in Fig. 1a [3, 6, 9-14]. The most common
IDH1/2 mutation in gliomas is ¢.395G>A transition in
IDH]I, which replaces the arginine with a histidine at codon
132 (R132H) (Fig. 1b). Other less common mutations also
occur at codon 132 in IDHI or codon 172 in IDH2. The
second most frequent mutations are R132C in IDHI and
R172K in IDH2 (2.8 % of all mutations, respectively).
Other mutations include R132S, R132G, and R132L in
IDHI] and R172M, R172W, and R172S in IDH2. Extre-
mely rare mutations include R132P, R132V, or those
affecting R49, G97, and R100 in IDHI and R172T in IDH?2
([15, 16] and references therein). The mutations affecting
R140 in IDH2 are among the most common mutations in
myeloproliferative neoplasms; however, these are not
observed in gliomas [8, 17].

Thus, the great majority of /DHI/2 mutations involve
codon 132 in IDHI or codon 172 in IDH2, and approxi-
mately 90 % of them are R132H in IDH].

@ Springer

The relationship with other genetic alterations

IDH1/2 mutations show a distinct pattern with other
genetic alteration characteristics in diffuse gliomas.

Genetic changes

IDH1/2 mutations are frequently observed in grade II-III
gliomas, as described above, and are mostly associated
with either 7P53 mutations or total 1p19q loss [4] (Fig. 2).
TP53 mutations are typically observed in grade II-III
astrocytomas with IDH1/2 mutations, and ATRX mutations
are commonly observed in these populations [18]. Total
1p19q loss almost always coexists with /DH1/2 mutations
and TERT promoter mutations. This combination is typi-
cally observed in oligodendroglial tumors [9, 19]. TP53
mutations and total 1p19q loss are mutually exclusive [4].
Similarly, ATRX and TERT promoter mutations also show
mutually exclusive patterns [12, 19]. Thus, the combination
of TP53-ATRX mutations or total 1p19q loss-7TERT muta-
tions is the hallmark of astrocytic or oligodendroglial
tumors harboring IDH1/2 mutations, respectively.

Epigenetic changes

Another important feature in /DH1/2 mutated tumors is the
epigenetic changes, which are some of the most
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Fig. 2 Relationships among /DH1/2 mutations, other genetic alter-
ations, and histological subtypes. Each column represents individual
tumors. /DH1/2 mutations are strongly associated with 7P53 mutation
or total 1pl19q loss. Most IDHI/2 mutated tumors show MGMT
methylation. The data for the cases from National Cancer Center

fundamental alterations induced by these mutations. IDHI/
2 mutations have strongly been associated with the glioma-
CpG island methylator phenotype (G-CIMP) and aberrant
histone methylation [20, 21]. The mechanisms involved in
the changes in DNA methylation and histone methylation
status caused by /DH1/2 mutations have been extensively
discussed in several reviews [16, 22]. Thus, we only briefly
summarized them in this review.

G-CIMP

G-CIMP was identified as a phenomenon in which DNA
methylation in the CpG islands is increased genome-wide
in a subset of gliomas [20]. It is well documented that
G-CIMP is tightly associated with the presence of IDHI1/2
mutations and relative absence of typical copy-number
alterations normally observed in glioblastomas, including
EGFR amplification and chromosomal arm 10q loss. The
tumors with G-CIMP present gene expression profiles of
the proneural type [20]. DNA hypermethylation in these
loci is considered to downregulate the expression of target
genes, some of which may act as a tumor suppressor.

Aberrant (R)-2HG production in IDHI/2 mutated
tumors may inhibit a-ketoglutarate-dependent dioxygenase
family, including ten—eleven-translocation (TET) [23]. The
TET family catalyzes the conversion of 5-methylcytosine
(5mC) to 5-hydroxymethycytosine (ShmC), which is a
critical step in demethylating methylcytosine in the CpG
dinucleotides, the main target of DNA methylation [24].
Inhibition of TET2 by (R)-2HG may possibly contribute to
global DNA methylation in G-CIMP [21].

Histone modification

In IDHI1/2 mutated tumors, trimethylation at lysine resi-
dues of histone H3, including H3K9, H3K27, and H3K79
are increased [23]. Histone methylation is regulated by
histone methyltransferase and demethylases and may affect

OA EAOA

(Tokyo, Japan) are extracted and modified from the study by Arita
et al. [9]. DA diffuse astrocytoma, AA anaplastic astrocytoma, GBM
primary glioblastoma, sGBM secondary glioblastoma, OL oligoden-
droglioma, AO anaplastic astrocytoma, OA oligoastrocytoma, AOA
anaplastic astrocytoma

gene transcription by altering chromatin structures.
A Fe(Il) and o-ketoglutarate-dependent subset of histone
demethylase (e.g., lysine (K)-specific demethylase 6A
(KDM6A)) is inhibited by (R)-2HG in IDHI1/2 mutated
tumors, resulting in global alterations of histone demeth-
ylation and gene expression [23].

MGMT

CpG island methylation in O°-methylguanine-DNA meth-
yltransferase (MGMT) has also been associated with IDH1/
2 mutations [25, 26]. MGMT is a DNA-repair protein that
removes alkyl adducts from O° position of guanine.
Increased activity of MGMT reduces the chemosensitivity
of alkylating agents, including temozolomide because O°
position of guanine is the main target of DNA alkylation.
MGMT methylation results in reduced MGMT expression
and may lead to better response to temozolomide in glio-
blastoma [27]. MGMT methylation is invariably observed
in IDHI1/2 mutated tumors [26]. On the other hand, about
half of glioblastomas harbor MGMT methylation, regard-
less of the IDHI/2 status (Fig. 2).

Clinical value
The relationship with pathology

In the pooled data from the eight reports (see above),
IDHI/2 mutations were observed frequently in grade II-III
astrocytomas and oligodendrogliomas (53-83 %) as well
as in secondary glioblastomas (54 %), but rarely in primary
glioblastomas (6.3 %). IDHI/2 mutations are highly spe-
cific to diffuse gliomas among CNS tumors. Other neuro-
epithelial tumors, including pilocytic astrocytoma,
ependymoma, and ganglioglioma, rarely harbor IDHI1/2
mutations [15]. Non-neoplastic lesions mimicking gliomas
never present these mutations [28]. The presence of IDHI1/

@ Springer



Brain Tumor Pathol

2 mutations is a strong evidence of diffuse gliomas even in
such cases (discussed further below).

Prognostic value

Several studies have suggested that patients with IDH1/2
mutated tumor show longer survival than those with IDH1/
2 wild-type tumor, in most entities of gliomas [29].

The favorable prognosis of IDHI1/2 mutated glioblasto-
mas was first reported in the pioneering study about IDH]
[1], which was then followed by several other studies [3, 4,
14,25, 30, 31]. IDHI1/2 mutations are generally regarded as
a positive prognostic factor in glioblastomas. The overall
survival in IDHI/2 mutated cases is about twice longer
than that of I[DHI/2 wild-type cases (24-31 vs.
9.9-15 months) [3, 25, 30]. Using a multivariate analysis,
some studies have shown that IDHI/2 status is an inde-
pendent prognostic factor in glioblastomas [25], while
others failed to reproduce this finding [31]. The small
population of IDHI/2 mutated glioblastomas might cause
this controversy.

Several studies have reported that IDH1/2 status is also a
prognostic factor in grade IIT gliomas [14, 25, 32]. Some
reports even demonstrated the positive prognostic value of
IDH /2 mutations in each subtype: anaplastic astrocytomas
[3] or anaplastic oligodendroglial tumors [33].

The prognostic value of IDH1/2 status in grade II glio-
mas remains under debate. Some reports associated the
presence of IDHI/2 mutations with better prognosis [25,
34-37], while others did not [14, 38]. Sun et al. [39]
investigated the prognostic value of IDHI1/2 status through
a meta-analysis of ten previous studies and found that
IDHI/2 mutation was associated with longer survival in
grade II gliomas. They pointed out several problems in the
interpretation of currently available data, which include
mixed cohorts of astrocytomas and oligodendroglial
tumors, the close relationship with other prognostic factors,
different methodology to evaluate IDH1/2 status, and most
importantly the lack of standard treatment in grade II gli-
omas. There are also other studies investigating the prog-
nostic value in each subtype (i.e., astrocytomas or
oligodendrogliomas); however, they remain inconclusive
[14, 34, 35].

Overall, the independent value of IDHI/2 as a bio-
marker remains somewhat controversial. This can be
attributed to confounding factors or the study design as

~ pointed out by Sun et al. [39] in their analysis of grade II
gliomas. IDHI/2 mutations are closely related to other
prognostic/predictive factors, including patient age, MGMT
status, or 1p19q copy number. Limited cohort size, dif-
ferent treatment, and the heterogeneity of tumor subtypes
in each study may also result in conflicting results. None-
theless, the IDH1/2 status adds valuable information to the
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WHO grades in predicting the clinical course, and it should
be considered as a stratification factor in clinical trials of
gliomas [40].

Molecular classification and IDHI1/2

One of the aims of the current WHO classification is to
predict the clinical outcome of the patients harboring the
tumor [41]. Nonetheless, the current diagnostic system
poses the limitation that one type of tumor can include
biologically and clinically different subsets of tumors. The
molecular classification is expected to refine the current
diagnostic system [42]. IDH1/2 mutations present a strong
association with the histological types and clinical outcome
as described above. Therefore, these mutations are among
the most promising markers.

The existence of IDH1/2 mutations strongly supports the
diagnosis of grade II-III gliomas. Intriguingly, Hartmann
and colleagues reported that patients with IDHI wild-type
anaplastic astrocytomas exhibited shorter survival than
those with IDHI-mutated glioblastomas [43]. Underesti-
mation of the tumor grades in histological diagnosis may
lead to this observation along with the prognostic impact of
the IDHI mutation itself. Malignant gliomas are histolog-
ically heterogeneous, and missampling can lead to under-
grading [43]. Their findings argue for the significant value
of IDHI/2 mutation in the molecular classification com-
bined with the current histological classification.

Combination of IDH1/2 and other genetic status may aid
in further predicting the subtypes of gliomas, because
IDH1/2 mutations show strong relationships with either the
combination of T7P53-ATRX mutations or total 1p19q loss-
TERT mutation in astrocytic or oligodendroglial tumors, as
described above.

The molecular diagnosis seems promising; however, it
poses some significant limitations. The evaluation for
molecular markers often needs DNA analysis, which
requires expensive equipment and reduces the feasibility of
the method in clinical use. Another issue is that standard-
ization of the testing for each marker is needed. For
example, MGMT methylation status is evaluated using
various methods, including methylation-specific PCR
(MSP) or pyrosequencing. However, these tests have not
yet been standardized. Availability of molecular markers
requires the accessibility of detection methods and their
standardization.

IDH1/2 detection

IDH1/2 mutations undoubtedly divide diffuse gliomas into
two groups, which have distinct biological and clinical
features, as described above. IDH1/2 mutations also have a
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Table 1 The methods for IDHI1/2 detection

Advantage

Limitation

Gold standard
Detects all types of mutations

Sanger sequencing

Immunohistochemistry Sensitive and robust
Available for FFPE samples
without additional treatment
Pyrosequencing Sensitive
Quantitative
Melting curve analysis Rapid

Detects all types of mutations

MRS Noninvasive

Modestly sensitive (>20 % of mutant allele is required)

Detects only the mutation specific to the antibody used

Needs special equipment

The robustness depends on the assay design

Needs special equipment

Modestly sensitive (improved by combining with COLD-PCR)
Not validated and standardized for clinical use

MRS magnetic resonance spectroscopy, FFPE formalin-fixed paraffin-embedded, COLD-PCR co-amplification at lower denaturation temper-

ature-polymerase chain reaction

significant impact on glioma diagnosis. Their highly spe-
cific distribution in grade II-III diffuse gliomas among
CNS tumors also indicates that the presence of IDHI/2
mutation is almost sufficient for the diagnosis of diffuse
glioma, although the absence of these mutations does not
exclude the diagnosis of gliomas [28]. Equivocal micro-
scopic diagnosis can be derived from various factors,
including small sample size (i.e., obtained by needle
biopsy), sampling site (i.e., from infiltrative zone apart
from the tumor core), or sample quality. The IDHI/2 status
may provide clinically important information in such cases.
IDH]1/2 status therefore needs to be evaluated accurately.

IDH]1/2 testing includes various methods targeting DNA
sequence, mutant protein, or aberrant increase in (R)-2HG
levels. However, IDH1/2 testing should be easy to be incor-
porated into daily diagnostic practice. Sanger sequencing and
immunohistochemistry (IHC) are conventionally applied for
the assessment of /DH1/2 status. Each assay has advantages
and limitations (Table 1). Some of the currently available
methods for IDH1/2 testing are reviewed below.

Sanger sequencing

Sanger sequencing is the gold standard for detecting IDH1/
2 mutations, and most of the published data are based on
this method [1-3]. This technique can detect all types of
IDH1/2 mutations and, if the mutation is detected, the
result is reliable.

However, this technique requires sophisticated equip-
ment and trained personnel [44]. Complicated procedures
including DNA extraction, polymerase chain reaction
(PCR), or purification of PCR products need to be opti-
mized. The difference in the equipment or procedure may
yield inconsistent results between laboratories [45].

Another caveat is that the results of this method largely
depend on the tumor cell content of the samples. The
source of non-neoplastic DNA includes adjacent normal

brain, infiltrating lymphocytes, and microglia or endothe-
lial cells, which may dilute mutant alleles and cause false-
negative results [15]. At least 20 % of the mutant allele is
required for detection by Sanger sequencing in our ana-
lysis, evaluating the sensitivity of IDHI/2 detection [46]
(Fig. 3a). Diagnosis for small samples obtained from tumor
margin is challenging, but clinically important. The critical
limitation of this method is its relatively low sensitivity,
which might lead to missing out /DH1/2 mutations.

Immunohistochemistry (IHC)

THC is universally performed in clinical practice, and the
THC-based mutation detection is one of the most accessible
technologies.

The specific antibodies for IDH1 R132H mutation,
monoclonal antibody (mAb) H09 and Imab-1, are well
characterized and commonly used [47, 48]. The cytoplasm
of tumor cells with IDH1 R132H mutation is strongly
stained, while tumor cells without this mutation are not
stained (Fig. 3b). These antibodies are highly specific to
the mutant protein, and residual brain tissues, including
reactive glia, endothelial cells, or blood cells are not
stained [47—49]. A weak diffuse background staining and a
strong granular cytoplasmic staining of macrophages are
also observed in IDH1 wild-type tumors. Meningiomas and
schwannomas can show nonspecific positive-stained fibers.
These patterns can be easily recognized and distinguished
from the true-positive staining [49]. Based on these criteria,
the specificity for IDH1 R132H mutation is considered to
be nearly 100 % [50]. A cross-reactivity for R132L. mutant
has been reported [44]; however, this would not cause
misdiagnosis.

This method is highly accurate. It can detect tumor cells
with IDHI/2 mutation in even tissues containing 6-9 %
mutant allele [46, 51]. It has been claimed that the antibody
can stain single cells reliably even in the infiltration zone
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Fig. 3 a Sanger sequencing. Chromatograms of Sanger sequencing
for IDHI in representative cases. The three cases are all anaplastic
astrocytoma cases. Case I presents a wild-type IDHI, while cases 2
and 3 present the R132H mutant of /DH]. In case 3, a peak of adenine
(green) indicates the c.395G>A transition. In case 2, a peak indicating
the mutation is too low to be distinguished from other nonspecific
peaks. b Immunohistochemistry. Immunohistochemical staining
using anti-/DH] R132H mutant antibody. The cytoplasm of tumor
cells with IDH R132H is strongly stained, while endothelial cells are

and that it enables differentiation of tumor cells from
reactive glia [50]. The results of IHC using IDH1 R132H-
specific antibodies are consistent across laboratories, even
though different staining procedures were used [45].

The obvious limitation is that these antibodies cannot
detect non-R132H mutations in IDH1/2 that correspond to
approximately 10 % of all the IDH1/2 mutations [50].
Antibodies specific for other IDH1/2 mutations than R132H
have also been developed and some of them are commer-
cially available for IHC [52, 53]. A multispecific anti-
mutated IDH1/2 antibody recognizing a subset of IDH1 and
IDH2 mutations has also been reported [54]. The reactivity
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not stained. (Original magnification x200). ¢ Pyosequencing. Pyro-
grams for IDHI in representative cases. The arrows indicate the
specific peaks for the R132H mutants. The cases and analyzed
samples are identical to those used for Sanger sequencing. The
quantitative analysis of pyrosequencing reported that the frequency of
R132H mutant alleles in each case was 0, 16, and 45 %, respectively.
In case 2, the R132H mutation is apparent in pyrograms, although the
result of Sanger sequencing is inconclusive

of this antibody varies depending on the methodology used,
THC, enzyme-linked immunosorbent assay (ELISA), and/or
Western blotting. These approaches, especially the use of
the multispecific anti-mutated IDH1/2 antibody, need to be
further validated for clinical application.

Pyrosequencing

The principle of this method is a sequencing-by-synthesis
analysis based on the real-time detection of nucleotide
incorporation by DNA polymerase [55]. In practice, a DNA
template amplified by PCR is hybridized to a primer for
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pyrosequencing after purification, followed by pyrose-
quencing reactions using a pyrosequencer. Pyrosequencing
reactions consist of four reactions: a DNA polymerase
reaction, a sulfyrase reaction, a luciferase reaction, and
nucleotide degradation by apyrase. Pyrosequencing
reagents include the enzymes and the substrates for these
reactions as well as adenosine 5’ phosphosulfate (APS) and
luciferin (the four enzyme system) [56]. After adding the
substrates and enzymes to the templates, each deoxynu-
cleotide triphosphate (dNTP) is added to the samples
stepwise, as programmed by the operator (dispensation
order). If the injected dNTP is complementary to the
template, the dNTP is incorporated by the DNA polymer-
ase and the pyrophosphate is released. The concentration of
ATP is then increased through the conversion of pyro-
phosphate and APS to ATP by the ATP sulfyrase, followed
by the luciferase reaction. The light emitted by the lucif-
erase reaction is quantitatively detected by a charge-cou-
pled device (CCD) camera and represented as a peak at
each nucleotide dispensation in the pyrogram. The unin-
corporated dNTP is rapidly degraded by the apyrase. The
signal strength of the pyrosequencing reaction is propor-
tional to the amount of pyrophosphate released and dNTP
incorporated; hence the allele dosage. Therefore, the signal
strength can be decreased when different sequences are
mixed (i.e., heterozygous mutations) and also proportion-
ally increased in a sequence containing homopolymers (a
continuous stretch of the same nucleotide such as TT or
CCCQC). The allele frequencies contained in the sample are
automatically calculated from the signal strength by using a
software developed for pyrosequencing analysis [56].

Several studies have applied pyrosequencing for IDH1
testing [46, 57-59], some of which have validated the
advantages of this technique over Sanger sequencing.

This method is highly sensitive. The minimum detect-
able frequency of the mutant allele is 5-7 % for pyrose-
quencing [57, 58], while Sanger sequencing sensitivity is at
least 20 % for reliable detection (Fig. 3a, c) [15, 46].
Fragmented DNA template from the formalin-fixed paraf-
fin-embedded (FFPE) specimen can be utilized for analysis
[57, 59], as pyrosequencing allows the use of DNA tem-
plates under 100 bp [46].

Pyrosequencing requires expensive equipment and is
available only in limited centers and laboratories. The
robustness of pyrosequencing depends on the assay design,
including the primers and the dispensation order [46].

Melting curve analysis

Melting curve analysis is a technique that allows the gen-
eration of a melting temperature profile of the double-
stranded DNA. The melting temperature is unique to each
nucleotide sequence, and even a single nucleotide

substitution could alter the melting temperature. Thus, a
missense mutation can be accurately detected by measuring
the melting curve. Two different variants of this method
were reported as an application for IDHI/2 testing: fluo-
rescent melting curve analysis (FMCA) and high-resolution
DNA melting (HRM) [60-62].

In studies using FMCA, the PCR product of the target
sequence is hybridized with a pair of fluorescent probes
designed to complement the sequence, including mutation
hotspot or its adjacent sequence [61, 62]. A real-time PCR
system detects the fluorescent change derived by the
denaturation of the probes during the gradual heating. In a
mutant sequence, lower temperature is required for dena-
turation, unlike that in a wild-type sequence, because the
probe imperfectly binds the mutant sequence. These dif-
ferences appear in the patterns of the melting curve. A
sample with only wild-type alleles shows a single peak in
the melting curve, while a sample containing a mutant
allele shows an additional peak at lower temperature [62].
This technique is also reported to be highly sensitive and
rapid in detecting IDHI/2 status even in FFPE tissue
samples; the entire duration of this assay is about 80 min,
and the minimum amount of mutated allele for the detec-
tion is 10 % [62].

A fluorescent dye intercalating double-stranded DNA is
used in HRM. The amplified template with a saturating
fluorescent dye is first denatured by heating, and then
annealing is performed at the lower temperature. The
fluorescence of the double-stranded DNA reduces by the
gradual heating in a melting curve analysis. The samples
containing mutant sequences show different melting curves
because of the formation of heteroduplexed DNA after the
denaturation phase; a lower melting temperature is
observed [63]. The detection limit of this assay after con-
ventional PCR amplification is similar to that of Sanger
sequencing (25 %) [60].

These methods detect all types of mutations by detecting
the melting temperature specific to each mutation [60, 62].
The disadvantage is an unsatisfactory sensitivity, but the
sensitivity can be improved by combining co-amplification
at lower denaturation temperature PCR (COLD-PCR)
(reviewed below). COLD-PCR HRM and FMCA assays
allowed the detection of 2 or 1 % mutant allele, respec-
tively [60, 61]. Another disadvantage is that these methods
require expensive equipment, which is usually used for
another purpose in clinical settings [62].

Co-amplification at lower denaturation temperature
PCR (COLD-PCR)

COLD-PCR is a method used to amplify a specific allele

with mutation selectively. COLD-PCR itself is not an
independent technique for DNA analysis, and this
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